首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy metal removal is mainly conducted by adjusting the wastewater pH to form metal hydroxide precipitates. However, in recent years, the xanthate process with a high metal removal efficiency, attracted attention due to its use of sorption/desorption of heavy metals from aqueous solutions. In this study, two kinds of agricultural xanthates, insoluble peanut‐shell xanthate (IPX) and insoluble starch xanthate (ISX), were used as sorbents to treat the copper‐containing wastewater (Cu concentration from 50 to 1,000 mg/L). The experimental results showed that the maximum Cu removal efficiency by IPX was 93.5 % in the case of high Cu concentrations, whereby 81.1 % of copper could rapidly be removed within one minute. Moreover, copper‐containing wastewater could also be treated by ISX over a wide range (50 to 1,000 mg/L) to a level that meets the Taiwan EPA's effluent regulations (3 mg/L) within 20 minutes. Whereas IPX had a maximum binding capacity for copper of 185 mg/g IPX, the capacity for ISX was 120 mg/g ISX. IPX is cheaper than ISX, and has the benefits of a rapid reaction and a high copper binding capacity, however, it exhibits a lower copper removal efficiency. A sequential IPX and ISX treatment (i.e., two‐stage xanthate processes) could therefore be an excellent alternative. The results obtained using the two‐stage xanthate process revealed an effective copper treatment. The effluent (Ce) was below 0.6 mg/L, compared to the influent (C0) of 1,001 mg/L at pH = 4 and a dilution rate of 0.6 h–1. Furthermore, the Cu‐ISX complex formed could meet the Taiwan TCLP regulations, and be classified as non‐hazardous waste. The xanthatilization of agricultural wastes offers a comprehensive strategy for solving both agricultural waste disposal and metal‐containing wastewater treatment problems.  相似文献   

2.
Sorption potential of pretreated crab and arca shell biomass for lead and copper from aqueous media was explored. The effects of pH, initial concentration, biosorbent dosage and contact time were studied in batch experiments. Effects of common ions like sodium, potassium, calcium and magnesium on the sorption capacity of pretreated crab and arca biomasses were also studied. At equilibrium, the maximum uptake by crab shell biomass was 19.83+/-0.29 and 38.62+/-1.27 mg/g for lead and copper, respectively. In case of arca shell biomass the maximum uptake capacity was 18.33+/-0.44 mg/g and 17.64+/-0.31 mg/g for lead and copper, respectively. Combined effect of all the common ions up to 50 microg/ml concentration was negligible for both the metals using both biomasses. Sorption isotherms were studied to explain the removal mechanism of both elements by fitting isotherms data into Lagergren, Freundlich and Langmuir equations.  相似文献   

3.
《Bioresource technology》2000,71(2):133-142
Heavy metal removal using alkali-treated straw (ATS) and insoluble straw xanthate (ISX) is reported. Insoluble straw xanthate consisting of 4.1% total sulfur is also applied for the removal of various metal ions simultaneously. Potentiometric data of alkali-treated straw and xanthated straw indicated polyfunctionality of these materials. Diffuse Reflectance IR (DRIFT) spectra of ISX exhibited peaks characteristic of xanthate groups on straw. Removal of Cr3+ from aqueous solutions using ATS and ISX followed the Langmuir adsorption model and both the materials have shown significant chromium removal efficiencies (>80%). In the case of chromate and dichromate, pore adsorption preceded the surface adsorption. Detailed spectroscopic (DRIFT & EPR) and sodium release studies conducted using ISX suggest that Cr3+ is removed through the adsorption-exchange mechanism involving alkoxide or xanthate groups. Xanthate groups bind Cr3+ aqua complex through unidentate monosulfur chelation.  相似文献   

4.
Decontamination of lead ions from aqueous media has been investigated using cross linked xanthated chitosan (CMC) as an adsorbent. Various physico-chemical parameters such as contact time, amount of adsorbent, concentration of adsorbate were optimized to simulate the best conditions which can be used to decontaminate lead from aqueous media using CMC as an adsorbent. The atomic absorption spectrometric technique was used to determine the distribution of lead. Maximum adsorption was observed at both pH 4 and 5. The adsorption data followed both Freundlich and Langmuir isotherms. Langmuir isotherm gave a saturated capacity of 322.6+/-1.2mg/g at pH 4. From the FTIR spectra analysis, it was concluded that xanthate and amino group participate in the adsorption process. The developed procedure was successfully applied for the removal of lead ions from real battery wastewater samples.  相似文献   

5.
Polymeric composites made up of nano-hydroxyapatite (n-HAp) with chitin and chitosan have been prepared and studied for the removal of Cu(II) ions from the aqueous solution. The sorption capacity (SC) of n-HAp, n-HAp/chitin (n-HApC) composite and n-HAp/chitosan (n-HApCs) composite were found to be 4.7, 5.4 and 6.2 mg/g respectively with a minimum contact time of 30 min. Batch adsorption studies were conducted to optimize various equilibrating conditions like contact time, pH and selectivity of metal ion. The sorbents were characterized by FTIR, TEM, XRD and SEM with EDAX analysis. The sorption process was explained with Freundlich and Langmuir isotherms respectively. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were calculated to understand the nature of sorption. A suitable mechanism for copper sorption was established and the selectivity of the metal ions for the composites was identified.  相似文献   

6.
The cyanobacterium Gloeothece sp. strain PCC 6909 and its sheathless mutant were tested for their abilities to remove copper ions from aqueous solutions, with the aim of defining the role of the various outermost polysaccharidic investments in the removal of the metal ions. Microscopy studies and chemical analyses revealed that, although the mutant does not possess a sheath, it releases large amounts of polysaccharidic material (released exocellular polysaccharides [RPS]) into the culture medium. The RPS of the wild type and the mutant are composed of the same 11 sugars, although they are present in different amounts, and the RPS of the mutant possesses a larger amount of acidic sugars and a smaller amount of deoxysugars than the wild type. Unexpectedly, whole cultures of the mutant were more effective in the removal of the heavy metal than the wild type (46.3 +/- 3.1 and 26.7 +/- 1.5 mg of Cu(2+) removed per g of dry weight, respectively). Moreover, we demonstrated that the contribution of the sheath to the metal-removal capacity of the wild type is scarce and that the RPS of the mutant is more efficient in removing copper. This suggests that the metal ions are preferably bound to the cell wall and to RPS functional groups rather than to the sheath. Therefore, the increased copper binding efficiency observed with the sheathless mutant can be attributed to the release of a polysaccharide containing larger amounts and/or more accessible functional groups (e.g., carboxyl and amide groups).  相似文献   

7.
Aspergillus fumigatus removed uranium(VI) very rapidly and reached equilibrium within 1 h of contact of biomass with the aqueous metal solution. Biosorption data fitted to Langmuir model of isotherm and a maximum loading capacity of 423 mg U g–1 dry wt was obtained. Distribution coefficient as high as 10,000 (mg U g–1)/(mg U ml–1) at a residual metal ion concentration of 19 mg l–1 indicates its usefulness in removal of uranium(VI) from dilute waste streams. Optimum biosorption was seen at pH 5.0 and was independent of temperature (5–50°C ). Initial metal ion concentration significantly influenced uptake capacity which brought down % (w/w) uranium(VI) removal from 90 at 200 mg U l–1 to 35 at 1000 mg U l–1. Presence of 0.84 mmol Fe2+, Fe3+, Ca2+ and Zn2+ had no effect on uranium(VI) biosorption unlike Al3+ (0.84 mM) which was inhibitory.  相似文献   

8.
Yeast cells are capable of accumulation of various heavy metals, preferentially accumulating those of potential toxicity and also those of value. They retain their ability to accumulate heavy metals under a wide range of ambient conditions. In the present study it was shown that yeast cells in suspension accumulate heavy metal cations such as Cu2+, Co2+. The level of copper accumulation was dependent on the ambient metal concentration and was markedly inhibited by extremes of ambient pH. Temperature (5–40°C) and the presence of the alkali metal sodium had much smaller effects on the level of copper accumulation. This suggests that in waste-waters of pH 5.0–9.0, yeast biomass could provide an effective bioaccumlator for removal and/or recovery of the metal. During bioaccumulation and subsequent processes it is necessary to retain the biomass. It was shown in the present study that this could be achieved by cell immobilization. Immobilization allowed for complete removal of Cu2+, Co2+, and Cd2+ from synthetic metal solutions. The immobilized material could be freed of metals by use of the chelating agent ethylenediamine tetraacetic acid (EDTA) and recycled for further bioaccumulation events with little loss of accumulation capacity.Correspondence to: J. R. Duncan  相似文献   

9.
Removal of heavy metals present in wastewaters has been a major concern due to their non-biodegradability and toxicity. Removal of copper ion using NaOH treated Rhizopus oryzae biomass was investigated in a batch reactor. The copper uptake exhibited substantial enhancement both in terms of kinetics of uptake as well as the loading capacity. The copper biosorption by viable and pretreated fungal biomass fit well to a Lagergren's pseudo second order reaction in comparison to pseudo first order kinetics. Investigation on effect of pH indicated improved performance in the range of pH 4-6 in alkali treated biomass. Copper uptake exhibited by viable biomass was highest at 21 degrees C, unlike pretreated biomass that showed maximum uptake across the range of temperature 21-55 degrees C. The maximum copper loading capacity of the viable and pretreated biomass according to Langmuir isotherm was 19.4 and 43.7 mg/g, respectively. Distribution coefficient of pretreated biomass showed improvement at lower residual concentration, indicating a change in the nature of binding by the treated biomass. Copper uptake decreased with an increasing dose of biosorbent, although enhancement in the total metal ion removal was observed at higher dose.  相似文献   

10.
Poly-gamma-glutamic acid (gamma-PGA) obtained from Bacillus licheniformis ATCC 9945 was evaluated as a potential biosorbent material for use in the removal of heavy metals from aqueous solution. Copper (Cu(2+)) was chosen as the model heavy metal used in these studies since it is extensively used by electroplating and other industries, has been the model for many other similar studies, and can be easily assayed through a number of convenient methods. Cu(2+)-gamma-PGA binding parameters under varying conditions of pH, temperature, ionic strength, and in the presence of other heavy metal ions were determined for the purified biopolymer using a specially designed dialysis apparatus. Applying the Langmuir adsorption isotherm model showed that gamma-PGA had a copper capacity approaching 77.9 mg/g and a binding constant of 32 mg/L (0.5 mM) at pH 4.0 and 25 degrees C. Cu(2+)-gamma-PGA adsorption was relatively temperature independent between 7 and 40 degrees C, while an increase in ionic strength led to a decrease in metal ion binding. Cd(2+) and Zn(2+) ions compete with Cu(2+) for binding sites on the gamma-PGA biopolymer. Metal uptake by gamma-PGA was further tested using a tangential flow filtration apparatus in a diafiltration mode in which metal was continually processed through a dilute solution of gamma-PGA without allowing for equilibrium to be established. The circulating polymer solution was able to complex metal as well as successfully prevent passage of unbound copper ions present in solution through the membrane. Using 500 mL of a 0.2% gamma-PGA solution, up to 97% of a 50 mg/L copper sulfate solution processed at a flow rate of 115 mL/min was retained by the polymer. For a 10 mg/L solution of Cu(2+) as copper sulfate, filtrate concentrations of Cu(2+) never rose above 0.6 mg/L while processing 2.5 L of dilute copper sulfate.  相似文献   

11.
Akar T  Tunali S 《Bioresource technology》2006,97(15):1780-1787
The Pb(II) and Cu(II) biosorption characteristics of Aspergillus flavus fungal biomass were examined as a function of initial pH, contact time and initial metal ion concentration. Heat inactivated (killed) biomass was used in the determination of optimum conditions before investigating the performance of pretreated biosorbent. The maximum biosorption values were found to be 13.46 +/- 0.99 mg/g for Pb(II) and 10.82 +/- 1.46 mg/g for Cu(II) at pH 5.0 +/- 0.1 with an equilibrium time of 2 h. Detergent, sodium hydroxide and dimethyl sulfoxide pretreatments enhanced the biosorption capacity of biomass in comparison with the heat inactivated biomass. The biosorption data obtained under the optimum conditions were well described by the Freundlich isotherm model. Competitive biosorption of Pb(II) and Cu(II) ions was also investigated to determine the selectivity of the biomass. The results indicated that A. flavus is a suitable biosorbent for the removal of Pb(II) and Cu(II) ions from aqueous solution.  相似文献   

12.
Biosorption of Cr (VI) from aqueous solution by Rhizopus nigricans   总被引:3,自引:0,他引:3  
The study was aimed to quantify the Cr sorption ability of powdered biomass of Rhizopus nigricans at the best operating conditions. The influence of solution pH, agitation, Cr (VI) concentration, biomass dosage, contact time, biomass particle size and temperature were studied. The optimum pH for biosorption of Cr (VI) was found to be 2.0. Higher adsorption percentage was noted at lower initial concentrations of Cr ions, while the adsorption capacity of the biomass increased with increasing concentration of ions. Optimum biomass dosage was observed as 0.5% (w/v). More than 75% of the ions were removed within 30 min of contact and maximum removal was obtained after 8 h. Biomass particles of smaller size (90 microm) gave maximum adsorption (99.2%) at 100 mg/l concentration. The adsorption capacity increased with increase in temperature and agitation speed and the optimum were determined as 45 degrees C at 120 rpm. Freundlich and Langmuir isotherms were used to evaluate the data and the regression constants were derived. The adsorption rate constant values (Kad) were calculated for different initial concentration of Cr ions and the sorption was found to be higher at lower concentration (100 mg/l) of metal ion.  相似文献   

13.
Biosorption is an innovative and alternative technology to remove heavy metal pollutants from aqueous solution using live, inactive and dead biomasses such as algae, bacteria and fungi. In this study, live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was applied as heavy metal adsorbent material. Biosorption of copper(II) cations in aqueous solution by live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was investigated to study the effects of initial heavy metal concentration, pH, temperature, contact time, agitation rate and amount of fungus. Copper(II) was taken up quickly by fungal biomass (live or dried) during the first 15 min and the most important factor which affected the copper adsorption by live and dried biomass was the pH value. An initial pH of around 5.0 allowed for an optimum adsorption performance. Live biomass of two white rot fungi showed a high copper adsorption capacity compared with dried biomass. Copper(II) uptake was found to be independent of temperature in the range of 20–45 °C. The initial metal ion concentration (10–300 mg/L) significantly influenced the biosorption capacity of these fungi. The results indicate that a biosorption as high as 40–60 % by live and dried biomass can be obtained under optimum conditions.  相似文献   

14.
15.
In this study was developed a natural process using a biological system for the biosynthesis of nanoparticles (NPs) and possible removal of copper from wastewater by dead biomass of the yeast Rhodotorula mucilaginosa. Dead and live biomass of Rhodotorula mucilaginosa was used to analyze the equilibrium and kinetics of copper biosorption by the yeast in function of the initial metal concentration, contact time, pH, temperature, agitation and inoculum volume. Dead biomass exhibited the highest biosorption capacity of copper, 26.2 mg g−1, which was achieved within 60 min of contact, at pH 5.0, temperature of 30°C, and agitation speed of 150 rpm. The equilibrium data were best described by the Langmuir isotherm and Kinetic analysis indicated a pseudo-second-order model. The average size, morphology and location of NPs biosynthesized by the yeast were determined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The shape of the intracellularly synthesized NPs was mainly spherical, with an average size of 10.5 nm. The X-ray photoelectron spectroscopy (XPS) analysis of the copper NPs confirmed the formation of metallic copper. The dead biomass of Rhodotorula mucilaginosa may be considered an efficiently bioprocess, being fast and low-cost to production of copper nanoparticles and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process.  相似文献   

16.
Recently these laboratories have demonstrated that it is possible to use proteins as efficient, selective agents for heavy metal removal and recovery. In this study, transferrin was chemically bound to an insoluble support. The ability of immobilized transferrin to produce clean water was demonstrated. Copper loading was independent of feed concentration. The loaded copper could be readily eluted and concentrated into the gram per liter range. The mechanism of copper release was studied. It was shown that release was dependent on pH and the chelating ability of the stripping agent. Metal release occurred slowly at pH < 7. However, at low pH in the presence of a chelator, metal removal occurred much more efficiently. The binding constant of copper to immobilized transferrin was determined as a function of pH. This information was used to model metal binding and release to the protein/support matrix. (c) 1997 John Wiley & Sons, Inc.  相似文献   

17.
Abstract: An automated bench-scale countercurrent biosorption system (CBS) has been designed for the removal of metals from aqueous effluents. The system has been tested with activated sludge microorganisms as a biosorbent and lead and copper as model metals. Nearly 5 1 of a lead nitrate solution at 100 mg l−1 of lead have been treated down to a final concentration of 0.1 mg l−1 (99.9% removal) by using 4.8 g of dry biosorbent. Under similar conditions, copper chloride solutions at 100 mg 1−1 of copper were treated down to a final concentration of 35–45 mg l−l representing 60% removal. The advantage of the CBS is to maximize metal concentration in the biosorbent, from which the metal may thereby be recovered if desired. In addition, the CBS minimizes metal concentration in the treated effluent, which is the first objective of the treatment.  相似文献   

18.
Heavy metals can be adsorbed by living or non-living biomass. Submerged aquatic plants can be used for the removal of heavy metals. In this paper, lead, zinc, and copper adsorption properties of Ceratophyllum demersum (Coontail or hornwort) were investigated and results were compared with other aquatic submerged plants. Data obtained from the initial adsorption studies indicated that C. demersum was capable of removing lead, zinc, and copper from solution. The metal biosorption was fast and equilibrium was attained within 20 min. Data obtained from further batch studies conformed well to the Langmuir Model. Maximum adsorption capacities (q(max)) onto C. demersum were 6.17 mg/g for Cu(II), 13.98 mg/g for Zn(II) and 44.8 mg/g for Pb(II). Kinetics of adsorption of zinc, lead and copper were analysed and rate constants were derived for each metal. It was found that the overall adsorption process was best described by pseudo second-order kinetics. The results showed that this submerged aquatic plant C. demersum can be successfully used for heavy metal removal under dilute metal concentration.  相似文献   

19.
Saccharomyces cerevisiae NCYC 1190 cells accumulated (after 1 h) lead and cadmium at similar levels, and to a lesser degree also copper. During heavy metal accumulation, there was a considerable loss of viability of copper-treated cells (about 99% in the first 20 min of contact with the metal), and a less pronounced lethal effect on cadmium- and lead-treated cells (about 66% and 46% after 1 h of contact with cadmium or lead, respectively) was detected. During copper accumulation, a leakage of UV-absorbing compounds and inorganic phosphate was observed; this did not occur with lead, whereas with cadmium a small amount of leakage of inorganic phosphate was detected. The filtrates of copper-treated cells contained copper-binding molecules. The copper-binding capacity of the filtrates increased with time according to the release of inorganic phosphate and UV-absorbing compounds. These compounds can bind an appreciable quantity of metal ions, making them unavailable for cell uptake and thus reducing the efficiency of heavy metals removal by yeast cells.  相似文献   

20.
Milliliter scale (ligno)cellulose saccharifications suggest general solute concentration and its impact on water availability plays a significant role in detrimental effects associated with high solids lignocellulose conversions. A microtumbler developed to enable free‐fall mixing at dry solids loadings up to 35% (w/w) repeatedly produced known detrimental conversion trends on cellulose, xylan and pretreated lignocellulose with commercial enzymes. Despite this, high concentrations of insoluble nonhydrolysable dextrans did not depress saccharification extents in 5% (w/w) cellulose slurries suggesting mass transfer limitations may not significantly limit hydrolysis extents at high solids loadings. Interestingly, cellulose saccharification by purified cellulases showed increased conversions with increasing dry solids loadings. This prompted investigations into impacts the concentration of soluble species, such as sugar alcohols, low molecular weight enzyme preparation components, and monomer hydrolysis products, have on the hydrolysis environment. Such substances significantly depress conversion rates and were shown to correlatively lower water activity (Aw) in the hydrolysis environment while high insoluble solids concentrations did not. Furthermore, low‐field NMR on concentrated slurries of insoluble complex carbohydrates, including the nonhydrolysable dextrans, showed all solids constrained water significantly more than high concentrations of soluble species (inhibitory) suggesting water constraint may not be as problematic an issue at high solids loadings compared to the availability of water in the system. Additionally, the introduction of soluble species lessened overall water constraint in high solids systems and appears to shift the distribution of water away from insoluble surfaces. This is potentially a critical issue for industrial processes operating at high dry solids levels. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号