首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land use and agricultural practices are known to influence the source and sink concentrations of various gases, including greenhouse gases (NOx CH4 and CO2). in soils. With everincreasing production of domestic sewage sludge and the prohibition of disposal at sea, pressure on waste disposal increases. Anaerobically digested domestic sewage sludge and/or lime were applied to an upland. Scottish soil and their effects on gas depth profiles monitored as indicators of microbial processes of the soil ecosystem. The concentrations of various gases (Ar, O2. CO2, CH4, N2, NOx) were measured simultaneously at each depth using membrane inlet mass spectrometry (MIMS). This technique enables the direct measurement of multiple gas species throughout soil cores with minimal disturbance. Intact soil monoliths were collected from the sample site, following amendment, and maintained in a constant temperature, environmental growth chambers. Statistical analyses (one-way ANOVA and LSD tests) were conducted to identify the depths at which gas concentrations in amended cores were significantly different from those in control (un-amended) cores. Significant effects were observed on the concentration of CO2, CH4, NOx and N2 at certain depths. Average CH4 concentration was consistently higher (>1 microM) in the upper horizon following application of sludge and sludge and lime together. N2 and NOx concentrations were elevated in cores treated with lime by approximately 100 and 32 microM. respectively, in much of the upper horizon. CO2 concentration increased above control mean values, at certain depths, following application of either sludge or lime. Some explanation for the changes in soil gas concentration was provided by reference to the microorganism assemblages and the gases associated with biochemistry of nitrification, denitrification, methane oxidation and methanogenesis.  相似文献   

2.
Studies of the land disposal of biosolids and municipal sewage have focused largely on the potential pollution of the soil with pathogens, toxic compounds or heavy metals. Little is known about the impact of sludge amendment on carbon source and sink concentrations in soils. In this study gas concentrations in Scottish soil cores (from limed and unlimed plots) were monitored continuously at 3 cm depth before, during and after sludge application using membrane inlet mass spectrometry (MIMS). Following sludge application to soil cores, significant and sustained increases in CH4 (for 8 days) and CO2 (for between 16 and 120 days) concentration were observed. This suggested short-term stimulation of indigenous methanogens, provision of a new methanogenic inoculum, or inhibition of methane oxidizers (for example by heavy metals or NH4 in sludge). Soil microbial fermentative activity was enhanced over periods of a few months as shown by elevated CO2 concentrations.  相似文献   

3.
A mixed-gas model for rats was developed to further explore the role of different gases in decompression and to provide a global model for possible future evaluation of its usefulness for human prediction. A Hill-equation dose-response model was fitted to over 5,000 rat dives by using the technique of maximum likelihood. These dives used various mixtures of He, N(2), Ar, and O(2) and had times at depth up to 2 h and varied decompression profiles. Results supported past findings, including 1) differences among the gases in decompression risk (He < N(2) < Ar) and exchange rate (He > Ar approximately N(2)), 2) significant decompression risk of O(2), and 3) increased risk of decompression sickness with heavier animals. New findings included asymmetrical gas exchange with gas washout often unexpectedly faster than uptake. Model success was demonstrated by the relatively small errors (and their random scatter) between model predictions and actual incidences. This mixed-gas model for prediction of decompression sickness in rats is the first such model for any animal species that covers such a broad range of gas mixtures and dive profiles.  相似文献   

4.
Spatial and temporal variations in the concentrations of dissolved gases (CH4, CO2, and O2) in peat cores were studied using membrane inlet mass spectrometry (MIMS). Variations in vertical gas profiles were observed between random peat cores taken from hollows on the same peat bog. Methane concentrations in profiles (0–30 cm) generally increased with depth and reached maximum values in the range of 200–450 m CH4 below about 13-cm depth. In some profiles, a peak of dissolved methane was observed at 7-cm depth. Oxygen penetrated to approximately 2-cm depth in the hollows. The sampling probe was used to continuously monitor CH4, CO2, and O2 concentrations at fixed depths in peat cores over periods of several days. The concentration of dissolved CO2 and O2 at 1-cm depth oscillated over a 24-h period with the maximum of CO2 concentration corresponding with the minimum of 02. Diurnal variations in CO2 but not CH4 were measured at 15-cm depth; dissolved CO2 levels decreased during daylight hours to a constant minimum concentration of 4.85 mm. This report also describes the application of MIMS for the measurement of gaseous diffusion rates in peat using an inert gas (argon); the value of D, the diffusion coefficient, was 2.07 × 10–8 m2 s–1. Correspondence to: D. Lloyd  相似文献   

5.
The effects of ruminal concentrations of CO2 and O2 on glucose-stimulated and endogenous fermentation of the rumen isotrichid ciliate Dasytricha ruminantium were investigated. Principal metabolic products were lactic, butyric and acetic acids, H2 and CO2. Traces of propionic acid were also detected; formic acid present in the incubation supernatants was found to be a fermentation product of the bacteria closely associated with this rumen ciliate. 13C NMR spectroscopy revealed alanine as a minor product of glucose fermentation by D. ruminantium. Glucose uptake and metabolite formation rates were influenced by the headspace gas composition during the protozoal incubations. The uptake of exogenously supplied D-glucose was most rapid in the presence of O2 concentrations typical of those detected in situ (i.e. 1-3 microM). A typical ruminal gas composition (high CO2, low O2) led to increased butyrate and acetate formation compared to results obtained using O2-free N2. At a partial pressure of 66 kPa CO2 in N2, increased cytosolic flux to butyrate was observed. At low O2 concentrations (1-3 microM dissolved in the protozoal suspension) in the absence of CO2, increased acetate and CO2 formation were observed and D. ruminantium utilized lactate in the absence of extracellular glucose. The presence of both O2 and CO2 in the incubation headspaces resulted in partial inhibition of H2 production by D. ruminantium. Results suggest that at the O2 and CO2 concentrations that prevail in situ, the contribution made by D. ruminantium to the formation of ruminal volatile fatty acids is greater than previously reported, as earlier measurements were made under anaerobic conditions.  相似文献   

6.
The effects of ruminal concentrations of CO2 and oxygen on the end products of endogenous metabolism and fermentation of D-glucose by the ruminal entodiniomorphid ciliate Polyplastron multivesiculatum were investigated. The principal metabolic products were butyric, acetic, and lactic acids, H2, and CO2. 13C nuclear magnetic resonance spectroscopy identified glycerol as a previously unknown major product of D-[1-13C]glucose fermentation by this protozoan. Metabolite formation rates were clearly influenced by the headspace gas composition. In the presence of 1 to 3 microM O2, acetate, H2, and CO2 formation was partially depressed. A gas headspace with a high CO2 content (66 kPa) was found to suppress hydrogenosomal pathways and to favor butyrate accumulation. Cytochromes were not detected (less than 2 pmol/mg of protein) in P. multivesiculatum; protozoal suspensions, however, consumed O2 for up to 3 h at 1 kPa of O2. Under gas phases of greater than 2.6 kPa of O2, the organisms rapidly became vacuolate and the cilia became inactive. The results suggest that fermentative pathways in P. multivesiculatum are influenced by the O2 and CO2 concentrations that prevail in situ in the rumen.  相似文献   

7.
The effects of ruminal concentrations of CO2 and oxygen on the end products of endogenous metabolism and fermentation of D-glucose by the ruminal entodiniomorphid ciliate Polyplastron multivesiculatum were investigated. The principal metabolic products were butyric, acetic, and lactic acids, H2, and CO2. 13C nuclear magnetic resonance spectroscopy identified glycerol as a previously unknown major product of D-[1-13C]glucose fermentation by this protozoan. Metabolite formation rates were clearly influenced by the headspace gas composition. In the presence of 1 to 3 microM O2, acetate, H2, and CO2 formation was partially depressed. A gas headspace with a high CO2 content (66 kPa) was found to suppress hydrogenosomal pathways and to favor butyrate accumulation. Cytochromes were not detected (less than 2 pmol/mg of protein) in P. multivesiculatum; protozoal suspensions, however, consumed O2 for up to 3 h at 1 kPa of O2. Under gas phases of greater than 2.6 kPa of O2, the organisms rapidly became vacuolate and the cilia became inactive. The results suggest that fermentative pathways in P. multivesiculatum are influenced by the O2 and CO2 concentrations that prevail in situ in the rumen.  相似文献   

8.
To investigate the effects of multiple environmental conditions on greenhouse gas (CO2, N2O, CH4) fluxes, we transferred three soil monoliths from Masson pine forest (PF) or coniferous and broadleaved mixed forest (MF) at Jigongshan to corresponding forest type at Dinghushan. Greenhouse gas fluxes at the in situ (Jigongshan), transported and ambient (Dinghushan) soil monoliths were measured using static chambers. When the transported soil monoliths experienced the external environmental factors (temperature, precipitation and nitrogen deposition) at Dinghushan, its annual soil CO2 emissions were 54% in PF and 60% in MF higher than those from the respective in situ treatment. Annual soil N2O emissions were 45% in PF and 44% in MF higher than those from the respective in situ treatment. There were no significant differences in annual soil CO2 or N2O emissions between the transported and ambient treatments. However, annual CH4 uptake by the transported soil monoliths in PF or MF was not significantly different from that at the respective in situ treatment, and was significantly lower than that at the respective ambient treatment. Therefore, external environmental factors were the major drivers of soil CO2 and N2O emissions, while soil was the dominant controller of soil CH4 uptake. We further tested the results by developing simple empirical models using the observed fluxes of CO2 and N2O from the in situ treatment and found that the empirical models can explain about 90% for CO2 and 40% for N2O of the observed variations at the transported treatment. Results from this study suggest that the different responses of soil CO2, N2O, CH4 fluxes to changes in multiple environmental conditions need to be considered in global change study.  相似文献   

9.
Soil cores (35 cm long, 7 cm diameter) from the Macaulay Land Use Research Institute's Sourhope Research Station in the Scottish Borders were kept and monitored at constant temperature (18± 1°C) for gas production using a 1.6 mm diameter stainless steel probe fitted with a membrane inlet and connected to a quadrupole mass spectrometer. This provided a novel method for on-line, real time monitoring of soil gas dynamics. In closed-system headspace experiments, O2 and CO2 (measured at m/z values 32 and 44, respectively) showed anti-phase diurnal fluctuations in low-intensity simulated daylight and under a light-dark (LD, 12:12 h) regime. O2 increased during periods of illumination and decreased in the dark. The inverse was true for CO2 production. Ar (m/z = 40) concentration and temperature (°C) remained constant throughout the experiments. The same phase-related oscillations, in CO2 and O2 concentrations, were observed at 2 and 5 cm depth in soil cores. The O2 concentration did not oscillate diurnally at 10 cm depth. In below-ground experiments, CH4 (m/z = 15) concentration showed diurnal cycles at 2, 5 and 10 cm depth. The CH4 production had the same diurnal phase cycle as CO2 but with lower amplitude. Evidence of below-ground diurnal oscillations in N2 (m/z = 28) concentration was provided at 5 cm depth. The scale of production and consumption of gases associated with soil-atmosphere interactions and below-ground processes, are shown to be a multifaceted output of several variables. These include light, circadian-controlled physiological rhythms of plants and microbes, and the interactions between these organisms.  相似文献   

10.
The present investigation was performed to determine whether inert gas sequencing at depth would affect decompression outcome in rats via the phenomenon of counterdiffusion. Unanesthetized rats (Rattus norvegicus) were subjected to simulated dives in either air, 79% He-21% O2, or 79% Ar-21% O2; depths ranged from 125 to 175 feet of seawater (4.8-6.3 atmospheres absolute). After 1 h at depth, the dive chamber was vented (with depth held constant) over a 5-min period with the same gas as in the chamber (controls) or one of the other two inert gas-O2 mixtures. After the gas switch, a 5- to 35-min period was allowed for gas exchange between the animals and chamber atmosphere before rapid decompression to the surface. Substantial changes in the risk of decompression sickness (DCS) were observed after the gas switch because of differences in potencies (He less than N2 less than Ar) for causing DCS and gas exchange rates (He greater than Ar greater than N2) among the three gases. Based on the predicted gas exchange rates, transient increases or decreases in total inert gas pressure would be expected to occur during these experimental conditions. Because of differences in gas potencies, DCS risk may not directly follow the changes in total inert gas pressure. In fact, a decline in predicted DCS risk may occur even as total inert gas pressure in increasing.  相似文献   

11.
Washout of insoluble inert test gases of different diffusivity (He and SF6 or He and Ar) from dog lungs was studied during high-frequency ventilation (HFV). Test gas equilibrium and subsequent washout were performed with HFV, succeeding measurements being performed at different stroke volumes (1.5-2.5 ml/kg body wt), oscillation frequencies (10-30 Hz), and with different lung volumes (32-74 ml X kg-1). Test gas concentrations were continuously measured by a mass spectrometer. The time course of washout could be described as the sum of two exponentials. There were no consistent differences in the time courses of washout between He and SF6 or between He and Ar. It is concluded that gas mixing in the airways during HFV is not significantly limited by diffusion, and this is suggested to apply during HFV to steady-state transport of respiratory gases (e.g., O2 and CO2) as well as to the transient state of inert gas washout.  相似文献   

12.
喀斯特地区土壤剖面CO_2、CH_4 和N_2O浓度的相关关系   总被引:1,自引:0,他引:1  
2006年6月—2007年5月对喀斯特地区土壤剖面中CO2、CH4和N2O进行采样测定,分析了三者间时空分布的相关关系。结果表明,土壤剖面中CO2和N2O含量分别为0.35~35.3ml.L-1和0.31~5.31μl.L-1,夏秋季节高于冬春季节;CH4浓度为0.1~4.7μl.L-1,季节差异不大。随着土壤深度的增加,CO2和N2O的浓度先增加而后明显减小或趋于稳定,CH4浓度则与CO2和N2O相反。相关分析表明,土壤剖面CO2与N2O浓度的时空分布呈显著正相关,与CH4则呈显著负相关。N2O和CH4的时空变化规律为互逆关系,但只在花溪荒草地、清镇阔叶林以及森林公园的马尾松林和阔叶林观测点达到显著水平。  相似文献   

13.
Since the end of the 1950s hydrogencarbonate ('bicarbonate') is discussed as a possible cofactor of photosynthetic water-splitting, and in a recent X-ray crystallography model of photosystem II (PSII) it was displayed as a ligand of the Mn(4)O(x)Ca cluster. Employing membrane-inlet mass spectrometry (MIMS) and isotope labelling we confirm the release of less than one (~0.3) HCO(3)(-) per PSII upon addition of formate. The same amount of HCO(3)(-) release is observed upon formate addition to Mn-depleted PSII samples. This suggests that formate does not replace HCO(3)(-) from the donor side, but only from the non-heme iron at the acceptor side of PSII. The absence of a firmly bound HCO(3)(-) is corroborated by showing that a reductive destruction of the Mn(4)O(x)Ca cluster inside the MIMS cell by NH(2)OH addition does not lead to any CO(2)/HCO(3)(-) release. We note that even after an essentially complete HCO(3)(-)/CO(2) removal from the sample medium by extensive degassing in the MIMS cell the PSII samples retain > or =75% of their initial flash-induced O(2)-evolving capacity. We therefore conclude that HCO(3)(-) has only 'indirect' effects on water-splitting in PSII, possibly by being part of a proton relay network and/or by participating in assembly and stabilization of the water-oxidizing complex.  相似文献   

14.
Nitrate-dependent iron(II) oxidation in paddy soil   总被引:2,自引:0,他引:2  
Iron(III) profiles of flooded paddy soil incubated in the greenhouse indicated oxidation of iron(II) in the upper 6 mm soil layer. Measurement of oxygen with a Clark-type microelectrode showed that oxygen was only responsible for the oxidation of iron(II) in the upper 3 mm. In the soil beneath, nitrate could be used as electron acceptor instead of oxygen for the oxidation of the iron(II). Nitrate was still available 3 mm below the soil surface, and denitrifying activity was indicated by higher concentrations of nitrite between 3 and 6 mm soil depth. Nitrate was generated by nitrification from ammonium. Ammonium concentrations increased beneath 6 mm soil depth, indicating ammonium release and diffusion from deeper soil layers. High concentrations of ammonium were also found at the surface, probably resulting from N2 fixation by cyanobacteria. Experimental adjustment of the nitrate concentration in the flooding water to 200 microM stimulated nitrate-dependent iron(II) oxidation, which was indicated by significantly lower iron(II) concentrations in soil layers in which nitrate-dependent iron(II) oxidation was proposed. Soil incubated in the dark showed high iron(III) concentrations only in the layer where oxygen was still available. In this soil, the nitrogen pool was depleted because of the lack of N2 fixation by cyanobacteria. In contrast, soil incubated in the dark with 500 microM nitrate in the flooding water showed significantly higher iron(II) and significantly lower iron(II) concentrations in the anoxic soil layers, indicating nitrate-dependent iron(II) oxidation. Anoxic incubations of soil with nitrate in the flooding water also showed high concentrations of iron(II) and low concentrations of iron(II) in the upper 3 mm. As oxygen was excluded in anoxic incubations, the high iron(III) concentrations are a sign of the activity of nitrate-dependent iron(II) oxidizers. The presence of these bacteria in non-amended soil was also indicated by the most probable number (MPN) counts of nitrate-dependent iron(II) oxidizers in the layer of 3-4 mm soil depth, which revealed 1.6 x 10(6) bacteria g(-1) dry weight.  相似文献   

15.
Vertical profiles were measured in soil cores taken from flooded rice fields in the Po valley during July and August 1990. Methane concentrations generally increased with depth and reached maximum values of 150–500 μM in 5–13 cm depth. However, the shape of the profiles was very different when studying different soil cores. The CH4 content of gas bubbles showed a similar variability which apparently was due to spatial rather than temporal inhomogeneities. Similar inhomogeneities were observed in the vertical profiles of acetate, propionate, lactate, and formate which showed maximum values of 1500, 66, 135, and 153, μM, respectively. However, maxima and minima of the vertical profiles of the different substates usually coincided in one particular soil core. Large inhomogeneities in the vertical profiles were also observed for the rates of total CH4 production, however, the percentage contribution of H2/CO2 to CH4 production was relatively homogeneous at 24 ± 7% (SD). Similarly, the H2 content of gas bubbles was relatively constant at 93.3 ± 9.6 ppmv when randomly sampled in the rice field at different times of the day. A small contribution (6%) of H2/CO2 to acetate production was also observed. Vertical profiles of the respiratory index (RI) for [2-14C] acetate showed that acetate was predominantly degraded by methanogenesis in 5–11 cm depth, but by respiration in the surface soil (3 cm depth) and in soil layers below 13–16 cm depth which coincided with a transition of the colour (grey to reddish) and the physical characteristics (porosity, density) of the soil. The observations indicate that the microbial community which degrades organic matter to CH4 is in itself relatively homogenous, but operates at highly variable rates within the soil structure. Author for correspondence  相似文献   

16.
Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium   总被引:6,自引:0,他引:6  
Production of H2 by Azospirillum brasilense under N2-fixing conditions was studied in continuous and batch cultures. Net H2 production was consistently observed only when the gas phase contained CO. Nitrogenase activity (C2H2 reduction) and H2 evolution (in the presence of 5% CO) showed a similar response to O2 and were highest at 0.75% dissolved O2. Uptake hydrogenase activity, ranging from 0.3 to 2.5 mumol H2/mg protein per hour was observed in batch cultures under N2. Such rates were more than sufficient to recycle nitrogenase-produced H2. Tritium-exchange assay showed that H2 uptake was higher under Ar than under N2. Uptake hydrogenase was strongly inhibited by CO and C2H2. Cyclic GMP inhibited both nitrogenase and uptake hydrogenase activities.  相似文献   

17.
Membrane inlet mass spectrometry (MIMS) was used to monitor continuously and simultaneously the concentrations of dissolved gases (O2, CO2, CH4) within the treatment bed of a willow vegetation filter treating leachate at a landfill site in mid Wales. The distribution of dissolved gasses within the bed was shown to be highly heterogeneous at the small spatial scale with considerable variation between vertical profiles measured simultaneously at different locations. In general, aerobic conditions were observed above the water table with reduced levels of oxygen and increasing levels of carbon dioxide and methane below it. Distinct pockets of oxygen (up to 200 μM) were observed in anaerobic zones and pockets of reduced oxygen and elevated carbon dioxide were observed in the aerobic zone. Pockets of methane were observed in some profiles coexisting with up to 200 μM oxygen at 5 cm depth. These observations confirm the hypothesis that micro-sites exists within the soil/root matrix where aerobic organic matter decomposition and anaerobic processes such as methanogenesis can occur in relatively close proximity to each other. We hypothesise that the distribution of dissolved gases is determined by rapid diffusion of air maintaining aerobic conditions above the water table, removal of oxygen by microbial processes creating anaerobic conditions below the water table and the distribution of willow roots in the soil which create local aerobic zones by oxygen release.  相似文献   

18.
Toluene-permeabilized Rhodospirillum rubrum cells were used to study activation of and catalysis by the dual-function enzyme ribulose bisphosphate carboxylase/oxygenase. Incubation with CO2 provided as HCO3-, followed by rapid removal of CO2 at 2 degrees C and subsequent incubation at 30 degrees C before assay, enabled a determination of decay rates of the carboxylase and the oxygenase. Half-times at 30 degrees C with 20 mM-Mg2+ were 10.8 and 3.7 min respectively. Additionally, the concentrations of CO2 required for half-maximal activation were 56 and 72 microM for the oxygenase and the carboxylase respectively. After activation and CO2 removal, inactivation of ribulose bisphosphate oxygenase in the presence of 1 mM- or 20mM-Mn2+ was slower than that with the same concentrations of Co2+ or Mg2+. Only the addition of Mg2+ supported ribulose bisphosphate carboxylase activity, as Mn2+, Co2+ and Ni2+ had no effect. A pH increase after activation in the range 6.8-8.0 decreased the stability of the carboxylase but in the range 7.2-8.0 increased the stability of the oxygenase. With regard to catalysis. Km values for ribulose 1,5-bisphosphate4- were 1.5 and 67 microM for the oxygenase and the carboxylase respectively, and 125 microM for O2. Over a broad range of CO2 concentrations in the activation mixture, the pH optima were 7.8 and 8-9.2 for the carboxylase and the oxygenase respectively. The ratio of specific activities was constant (9:1 for the carboxylase/oxygenase) of ribulose bisphosphate carboxylase/oxygenase in toluene-treated Rsp. rubrum. Below concentrations of 10 microM-CO2 in the activation mixture, this ratio increased.  相似文献   

19.
玉渡山水库生长季温室气体排放特征及其影响因素   总被引:2,自引:0,他引:2  
为了探讨温带水库温室气体排放规律,采用静态箱-色谱分析法,研究了温带地区库龄10年内的北京玉渡山水库生长季3种温室气体CO2、CH4及N2O排放特征,及其影响因子。结果表明:样地类型、测定月份与样地类型交互作用对3种温室气体通量影响极显著,5月消落带CO2通量(664.31mg·m-2·h-1)达到最大,显著高于入库口和浅水区;8月消落带CH4通量(0.87mg·m-2·h-1)及N2O通量(3.05mg·m-2·h-1)最大;8月,切除消落带样地地上植物后,3种温室气体通量均有所降低。CO2通量与地下5cm地温、氧化还原电位和水体总氮显著正相关,与地上生物量和水体pH显著负相关;CH4通量与地表温度、地上生物量、水体pH呈显著相关,与水体总氮和水体铵态氮显著负相关;N2O通量与水体总氮含量显著相关,与水体pH显著负相关。采取平均估值法初步推测,在生长季,水库消落带、入库口及浅水区CO2排放量依次为15960、2160、-70kg·hm-2;CH4排放量依次20.04、-7.05、14.8kg·hm-2;N2O排放量依次83.42、3.79、-1.54kg·hm-2;表明消落带3种温室气体的排放量均较高,为玉渡山水库3种温室气体排放的重点区域。  相似文献   

20.
Many wetland plants have gas films on submerged leaf surfaces. We tested the hypotheses that leaf gas films enhance CO(2) uptake for net photosynthesis (P(N)) during light periods, and enhance O(2) uptake for respiration during dark periods. Leaves of four wetland species that form gas films, and two species that do not, were used. Gas films were also experimentally removed by brushing with 0.05% (v/v) Triton X. Net O(2) production in light, or O(2) consumption in darkness, was measured at various CO(2) and O(2) concentrations. When gas films were removed, O(2) uptake in darkness was already diffusion-limited at 20.6 kPa (critical O(2) pressure for respiration, COP(R)>/= 284 mmol O(2) m(-3)), whereas for some leaves with gas films, O(2) uptake declined only at approx. 4 kPa (COP(R) 54 mmol O(2) m(-3)). Gas films also improved CO(2) uptake so that, during light periods, underwater P(N) was enhanced up to sixfold. Gas films on submerged leaves enable continued gas exchange via stomata and thus bypassing of cuticle resistance, enhancing exchange of O(2) and CO(2) with the surrounding water, and therefore underwater P(N) and respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号