共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct mass spectrometric measurement of gases in peat cores 总被引:1,自引:0,他引:1
Abstract Dissolved gas concentrations (O2 , CH4 , CO2 ) in peat cores were monitored simultaneously using a fine (1.56 mm diameter) membrane inlet probe connected to a quadrupole mass spectrometer. This technique allows direct measurements at specific locations within the sample with minimal disturbance. Detailed gas profiles in completely waterlogged peat samples (hollows) and samples in which the water table was several cm below the vegetation surface (hummocks) were compared. The depth of the water table played a central role in the distribution of gases. In a hollow, oxygen was present (90 μM) at the surface but was not detectable (<0.5 μM) at depths greater than 2 cm. Concentrations of CH4 and CO2 increased from 6 and 300 μM respectively at the surface to maxima of 450 and 3900 μM at 13 cm depth. At a hummock, O2 and CO2 were present above the water table but CH4 was not detectable. CH4 was measurable 2 cm below the water table. Both CH4 and CO2 concentrations increased with depth but maxima were not attained in the sampled cores. 相似文献
2.
Land use and agricultural practices are known to influence the source and sink concentrations of various gases, including greenhouse gases (NOx CH4 and CO2). in soils. With everincreasing production of domestic sewage sludge and the prohibition of disposal at sea, pressure on waste disposal increases. Anaerobically digested domestic sewage sludge and/or lime were applied to an upland. Scottish soil and their effects on gas depth profiles monitored as indicators of microbial processes of the soil ecosystem. The concentrations of various gases (Ar, O2. CO2, CH4, N2, NOx) were measured simultaneously at each depth using membrane inlet mass spectrometry (MIMS). This technique enables the direct measurement of multiple gas species throughout soil cores with minimal disturbance. Intact soil monoliths were collected from the sample site, following amendment, and maintained in a constant temperature, environmental growth chambers. Statistical analyses (one-way ANOVA and LSD tests) were conducted to identify the depths at which gas concentrations in amended cores were significantly different from those in control (un-amended) cores. Significant effects were observed on the concentration of CO2, CH4, NOx and N2 at certain depths. Average CH4 concentration was consistently higher (>1 microM) in the upper horizon following application of sludge and sludge and lime together. N2 and NOx concentrations were elevated in cores treated with lime by approximately 100 and 32 microM. respectively, in much of the upper horizon. CO2 concentration increased above control mean values, at certain depths, following application of either sludge or lime. Some explanation for the changes in soil gas concentration was provided by reference to the microorganism assemblages and the gases associated with biochemistry of nitrification, denitrification, methane oxidation and methanogenesis. 相似文献
3.
Membrane inlet mass spectrometry is a novel technique that has been used to measure concentrations of dissolved gases and volatile compounds of microbiological interest. This technique is compared with other methods of measuring dissolved gases. Applications to some microbiological processes (respiration, photosynthesis, fermentation, nitrogen fixation and methanogenesis) are discussed in greater detail. The advantages of the technique and possible future developments are presented; its major attraction is that a number of different gases can be simultaneously and continuously monitored directly and non-invasively in cell suspensions. 相似文献
4.
We point out the advantages of membrane inlet mass spectrometry for the measurement of nitric oxide in aqueous solution. The membrane inlet probe was a 1.0-cm segment of Silastic tubing attached to the vacuum inlet leading to the ion source. Silastic is a semipermeable silicon rubber that allows flux of uncharged substances including nitric oxide (NO). The use of such an inlet to measure NO has several advantages that we demonstrate in this report. It provides a direct, continuous, and quantitative determination of dissolved nitric oxide concentrations over long periods of real time. The use of such an inlet in our system had a response time of 5 to 7 s and a detection lower limit with the current model of 1.0 nM. This apparatus was used to measure the generation of NO from solutions of nitrite, NONOates, and nitroprusside. The usefulness of such an inlet in measuring NO in physiological systems is discussed. 相似文献
5.
Direct measurement of ammonium excretion in soil microarthropods 总被引:4,自引:0,他引:4
6.
Membrane inlet mass spectrometry (MIMS) uses diffusion across a permeable membrane to detect in solution uncharged molecules of small molecular weight. We point out here the application of MIMS to determine catalytic properties of decarboxylases using as an example catalysis by oxalate decarboxylase (OxDC) from Bacillus subtilis. The decarboxylase activity generates carbon dioxide and formate from the nonoxidative reaction but is accompanied by a concomitant oxidase activity that consumes oxalate and oxygen and generates CO2 and hydrogen peroxide. The application of MIMS in measuring catalysis by OxDC involves the real-time and continuous detection of oxygen and product CO2 from the ion currents of their respective mass peaks. Steady-state catalytic constants for the decarboxylase activity obtained by measuring product CO2 using MIMS are comparable to those acquired by the traditional endpoint assay based on the coupled reaction with formate dehydrogenase, and measuring consumption of O2 using MIMS also estimates the oxidase activity. The use of isotope-labeled substrate (13C2-enriched oxalate) in MIMS provides a method to characterize the catalytic reaction in cell suspensions by detecting the mass peak for product 13CO2 (m/z 45), avoiding inaccuracies due to endogenous 12CO2. 相似文献
7.
The identification and relative quantification of proteins in closely related biological samples is the backbone for many investigations in systems biology and for the discovery of biomarkers. While two-dimensional gel-based methodologies are still widely used for comparative proteomic studies, the recent advent of gel-free methodologies may allow the analysis of a larger number of samples in an automated fashion. Most of the technologies presented in this review require a chemical modification of proteins before analysis, and rely on the relative intensities of mass spectrometry signals for protein quantification. In particular, two-dimensional mass spectrometric mapping methodologies provide a visual representation of mass spectrometric data, thus facilitating the identification of differences in relative protein abundance. 相似文献
8.
The dynamics of the anaerobic conversion of formate in a microbial mixed culture taken from an anaerobic fluidized bed reactor was studied using a new stirred micro reactor equipped with a membrane mass spectrometer. The microreactor with a toroidally shaped bottom and pitched blade turbine and a cylindrical flow guide was thermostated and additionally equipped with a pH electrode and pH control. During fed-batch experiments using formate, the dissolved gases (methane, hydrogen, and carbon dioxide), as well as the acid consumption rates for pH control were monitored continuously. Initially and at the end of each experiment, organic acids were analyzed using ion chromatography (IC). It was found that about 50% of the formate was converted to methane via hydrogen and carbon dioxide, 40% gave methane either directly or via acetate. This was calculated from experiments using H(13)CO(3) (-) pulses and measurement of (12)CH(4) and (13)CH(4) production rates. About 10% of the formate was converted to lactate, acetate, and propionate, thereby increasing the measured CO(2)/CH(4) production ratio. The nondissociated formic acid was shown to be rate determining. From the relatively high K(s) value of 2.5 mmol m(-3), it was concluded that formate cannot play an important role in electron transfer. During dynamic feeding of formate, hydrogen concentration always increased to a maximum before decreasing again. This peak was found to be very discriminative during modeling. From the various models set up, only those with two-stage degradation and double Monod kinetics, both for CO(2) and hydrogen, were able to describe the experimental data adequately. Additional discrimination was possible with the IC measurement of organic acids. (c) 1995 John Wiley & Sons, Inc. 相似文献
9.
10.
11.
Leucine enkephalin is measured in canine spinal cord tissue in a structurally unambiguous manner. A rapid tissue procurement procedure minimizes enkephalin metabolism. High-performance liquid chromatography purification of brian neuropeptides is followed by field desorption mass spectrometric measurement of leucine enkephalin in spinal cord tissue extracts. Quantification is performed at the 70 ng (126 pmol) g-1 of wet weight tissue, or 70 parts per billion level. The higher homolog of leucine enkephalin, 2ala-leucine enkephalin, is utilized as internal standard. Straight-line statistics are obtained for a series of samples to which a peptide standard is added. 相似文献
12.
13.
Agricultural soils in China have been estimated to have a large potential for carbon sequestration, and modelling and literature survey studies have yielded contrasting results of soil organic carbon (SOC) stock change, ranging from ?2.0 to +0.6% yr?1. To assess the validity of earlier estimates, we collected 1394 cropland soil profiles from all over the country and measured SOC contents in 2007–2008, and compared them with those of a previous national soil survey conducted in 1979–1982. The results showed that average SOC content in the 0–20 cm soil increased from 11.95 g kg?1 in 1979–1982 to 12.67 g kg?1 in 2007–2008, averaging 0.22% yr?1. The standard deviation of SOC contents decreased. Four major soil types had statistically significant changes in their mean SOC contents for 0–20 cm. These were: +7.5% for Anthrosols (paddy soils), +18.3% for Eutric Cambisols, +30.5% for Fluvisols, and ?22.3% for Chernozems. The change of SOC contents showed a negative relationship with the average SOC contents of the two sampling campaigns only when soils in the region south of Yangtse River were excluded. SOC contents of the two major soil types in the region south of Yangtse River, i.e., Haplic Alisols/Haplic Acrisols and Anthrosols (paddy soils), changed little or significantly increased, though with a high SOC content. We suggest that the increase of SOC content is mainly attributed to the large increase in crop yields since the 1980s, and the short history as cropland establishment is mainly responsible for the decrease in SOC content for some soil types and regions showing a SOC decline. 相似文献
14.
The use of an ion trap mass spectrometer with three different membrane inlet probes is described. Two methods of removing water from the sample are compared. One is the use of a PTFE-silicone rubber double membrane, PTFE is relatively impermeable to water and so reduces the amount entering with the gas sample (Probe A). The second is the use of a silicone rubber membrane covered long probe, which condenses water out of the sample (Probe B). Response times (100%) for dissolved N2O, O2, Ar and CO2 without He in the chamber vary from between 158 and 684 s with Probe A. For the same probe with He, the response times were between 283 and 551 s. In the gas phase response times were between 99 and 153 s with He and 117 and 122 s without He. Probe B had 100% response of between 122 and 152 s for dissolved gases. Further extension of the probe by 2 m slowed response times as did increasing the ionisation time. Response times for Probe B increased to between 99 and 340 s when ionisation time increased from 1000 to 24,930 microseconds. Plots of output against concentration showed the steepest line of response for the short single membrane covered probe with 1000 microseconds ionisation time. Increasing the ionisation time, extending the probe and the use of a double membrane all reduced the gradient of output against concentration for every gas tested. In an intact sediment core, concentrations of O2, N2O and CO2 rose at the start and the concentration of N2 fell. As the disturbed sediment settled, this was reversed. The initial increase in O2 concentration stimulated respiration and inhibited the final pathway in dentrification producing higher concentrations of N2O and reducing the concentration of N2. 相似文献
15.
Barr JR Maggio VL Barr DB Turner WE Sjödin A Sandau CD Pirkle JL Needham LL Patterson DG 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2003,794(1):137-148
To increase our analytical throughput for measuring polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticides without sacrificing data quality, we have developed and validated a combined PCB/OC pesticide gas chromatography-high-resolution mass spectrometry (GC-HRMS) analysis. In a single GC-HRMS analysis, both selected PCBs and OC pesticides are detected and quantified. Previously, this has been difficult, if not impossible, because of the major difference in masses of the most abundant electron-impact ions. However, we have identified slightly less abundant ions to monitor that allow us to successfully combine these analytes into a single analysis without sacrificing any analytical sensitivity or instrument reliability. Consequently, we have been able to double our analytical throughput by modification of mass spectrometric parameters alone. Our new methodology has been validated against our current GC-HRMS method, which entails using two separate injections, one for PCB analysis and one for OC pesticide analysis. The two methods differ by less than 4% overall, with no systematic bias. We used this method to analyze approximately 350 serum samples over a period of several months. We found that our new method was as reliable in automated, overnight runs as our current method. 相似文献
16.
K Barnouin 《Amino acids》2012,43(3):1005-1007
17.
Slominska EM Adamski P Lipinski M Swierczynski J Smolenski RT 《Nucleosides, nucleotides & nucleic acids》2006,25(9-11):1245-1249
Monitoring level of the metabolites of the coenzyme NAD such as nicotinamide and its oxidized and methylated derivatives is important due to therapeutic applications of these compounds and monitoring of oxidative stress. We evaluated feasibility of using HPLC with electrospray ion-trap mass detection for single run separation and quantitation of all the NAD metabolites. We achieved good separation and retention of all the metabolites of interest using reversed-phase with ion-pairing. Single ion monitoring or tandem MS were used for detection and quantitation of the specific compounds with good linearity. The method was able to detect all the physiological metabolites in plasma samples of rats and humans or in urine. However, full validation is necessary before this method could be routinely applied. 相似文献
18.
Mass spectrometric (MS) isotopomer analysis has become a standard tool for investigating biological systems using stable isotopes. In particular, metabolic flux analysis uses mass isotopomers of metabolic products typically formed from 13C-labeled substrates to quantitate intracellular pathway fluxes. In the current work, we describe a model-driven method of numerical bias estimation regarding MS isotopomer analysis. Correct bias estimation is crucial for measuring statistical qualities of measurements and obtaining reliable fluxes. The model we developed for bias estimation corrects a priori unknown systematic errors unique for each individual mass isotopomer peak. For validation, we carried out both computational simulations and experimental measurements. From stochastic simulations, it was observed that carbon mass isotopomer distributions and measurement noise can be determined much more precisely only if signals are corrected for possible systematic errors. By removing the estimated background signals, the residuals resulting from experimental measurement and model expectation became consistent with normality, experimental variability was reduced, and data consistency was improved. The method is useful for obtaining systematic error-free data from 13C tracer experiments and can also be extended to other stable isotopes. As a result, the reliability of metabolic fluxes that are typically computed from mass isotopomer measurements is increased. 相似文献
19.
A new methodology for examining the interactions of microbes with heterogeneous minerals is presented. Imaging laser desorption Fourier transform mass spectrometry was used to examine the colonization patterns of Burkholderia vietnamiensis G4 (previously Burkholderia cepacia G4) on a heterogeneous basalt sample. Depth-profile imaging found that the bacterium preferentially colonized the plagioclase mineral phase within the basalt. 相似文献
20.
A number of N-dicarboxylmonoglycines of biological interest have been synthesized. They were characterized by means of mass spectrometry. Gas chromatography of the methyl esters of methylmalonyl-, succinyl-, glutaryl-, adipyl-, suberyl- and sebacylglycines showed a single sharp peak for each compound on Dexsil 300 and OV-17 columns. Methylene unit values and mass spectra of the six methyl esters are reported. 相似文献