首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A membrane-bound aminopeptidase which cleaves the tyrosin-glycine bond of enkephalin was purified about 1600-fold from monkey brain. This aminopeptidase hydrolyzed Leu-enkephalin with a Km value of 35 μM and also hydrolyzed basic, neutral and aromatic amino acid β-naphthylamides. An apparently homogeneous enzyme consisted of a single polypeptide chain with a molecular weight of approx. 100 000. The optimum pH was in the neutral region. From the analysis of the reaction products, only aminopeptidase activity was detected. The enzyme was inactivated by metal chelators, but the activity could be restored by the addition of divalent cations, such as Co2+, Mg2+ and Zn2+. Puromycin, bestatin and amastatin, which are aminopeptidase inhibitors derived from microorganism, showed strong competitive inhibition of the enzyme, the most potent being amastatin, with a Ki value of 0.02 μM.  相似文献   

2.
An intracellular arginine--specific aminopeptidase synthesized by Bacillus mycoides was purified and characterized. The purification procedure for studied aminopeptidase consisted of ammonium sulphate precipitation and three chromatographic steps: anion exchange chromatography and gel permeation chromatography. A molecular weight of -50 kDa was estimated for the aminopeptidase by gel permeation chromatography and SDS-PAGE. The optimal activity of the enzyme on arginyl-beta-naphthylamide as a substrate was at 37 degrees C and pH 9.0. The enzyme showed maximum specificity for basic amino acids: such as Arg and Lys but was also able to hydrolyze aromatic amino acids: Trp, Tyr, and Phe. Co2+ ions activated the enzyme, while Zn2+, Cu2+, Hg2+ and Mn2+ inhibited it. The enzyme is a metalloaminopeptidase whose activity is inhibited by typical metalloaminopeptidase inhibitors: EDTA and 1,10-phenanthroline. Analysis of fragments of the amino acid sequence of the purified enzyme demonstrated high similarity to AmpS of Bacillus cereus and AP II of B. thuringensis.  相似文献   

3.
A 50.4-fold purification of aminopeptidase is achieved by alcohol precipitation, DEAE-cellulose, CM-cellulose and finally Sephadex G-200 chromatography. On polyacrylamide gel electrophoresis of the purified enzyme after molecular sieving on Sephadex G-200, only one band was obtained, suggesting that the enzyme preparation was obtained almost homogeneous by three steps of column chromatography. Aminopeptidase showed highest activity at pH 7.0, using a buffer system, of 70 mM Na-phosphate. The enzyme was found to be active at 40 degrees C, even at 60 degrees C (80% activity), suggesting that the human seminal plasma enzyme is fairly thermostable. Amongst the various aminoacyl derivatives evaluated as substrates in the present study, L-alanine beta-naphthylamide hydrochloride was found to have the highest rate of hydrolysis. Ovalbumin showed effective cleavage in comparison to that of other natural substrates. The Km value for the purified seminal plasma aminopeptidase towards L-alanine beta-naphthylamide hydrochloride was 4 x 10(-4) M. Hg+2 showed highest inhibitory effect than other metal ions tested in the present study. Concentration causing 50% inhibition of the enzyme (I50) by Hg2+ was 4.7 x 10(-6) M. Inhibition by EDTA at 1 mM concentration in the incubation system was higher than by EGTA and sodium azide, suggesting that the enzyme contains a metallo group at the active site. A 50% inhibition of the enzyme by EDTA was obtained at 5.11 x 10(-3) M. The Ackerman and Potter plot for EDTA inhibition suggests that EDTA is a reversible inhibitor of seminal plasma aminopeptidase. A single molecular form of aminopeptidase was found to be present in human seminal plasma as shown by polyacrylamide activity gel electrophoresis.  相似文献   

4.
Neutral alpha-D-mannosidase from monkey brain was purified by Co2+-chelate affinity chromatography and immunoadsorbent affinity chromatography. The purified enzyme, with subunit Mr 45,000, was essentially homogeneous with only traces of two contaminant proteins as revealed by SDS/polyacrylamide-gel electrophoresis and AgNO3 staining. The purified enzyme, on preincubation with Co2+ at 37 degrees C or 60 degrees C followed by assay, showed a time-dependent enhancement in activity. The enhanced activity of the enzyme persisted even after removal of the Co2+. Bacitracin could partially prevent the activation. An aminopeptidase activity that was stimulated by Co2+ both at 37 degrees C and at 60 degrees C was present in the purified enzyme. After preincubation of the enzyme with Co2+ there was evidence for the release of amino acids, as revealed by t.l.c., but the Mr determined by SDS/polyacrylamide-gel electrophoresis was not appreciably altered. It is suggested that a Co2+-stimulated thermostable aminopeptidase, inseparable from the neutral mannosidase, may be involved in the stimulation of neutral mannosidase activity during its preincubation with Co2+.  相似文献   

5.
Purification and characterization of human placental aminopeptidase A   总被引:3,自引:0,他引:3  
Human placental aminopeptidase A (AAP) was purified 3,900-fold from human placenta and characterized. The enzyme was solubilized from membrane fractions with Triton X-100, then subjected to trypsin digestion, zinc sulfate fractionation, chromatographies with DE-52, Sephacryl S-300, and hydroxylapatite, affinity chromatography with Bestatin-Sepharose 4B, and finally immunoaffinity chromatography with the antibody against microsomal leucine aminopeptidase (LAP). Aminopeptidase A was completely separated from leucine aminopeptidase by the immunoaffinity chromatography. The apparent relative molecular mass (Mr) of the enzyme was estimated to be 280,000 by gel filtration. The purified enzyme was most active at pH 7.1 with L-aspartyl-beta-naphthylamide (L-Asp-NA) as substrate; the Km value for this substrate was 4.0 mmol/l in the presence of Ca2+. Human placental aminopeptidase A was markedly activated by alkaline earth metals (Ca2+, Sr2+, Ba2+), but strongly inhibited by metal chelating agents such as EDTA and o-phenanthroline. The highest activity was observed with L-glutamyl-beta-naphthylamide, while only minimal hydrolysis was found with some neutral and basic amino acid beta-naphthylamides.  相似文献   

6.
An aminopeptidase has been purified to homogeneity from bovine lens tissue by gel filtration and DEAE-cellulose chromatography. This enzyme has a molecular weight of 96,000 under both native and denaturing conditions. The purified enzyme hydrolyzed a variety of synthetic substrates as well as di-, tri-, and higher molecular weight peptides. Significantly this enzyme is capable of hydrolyzing arginine, lysine, and proline aminoacyl bonds. The pH optimum for activity and stability was 6.0. Both a reduced sulfhydryl group and a divalent metal ion are essential for activity. The native enzyme contains 1.6 mol of zinc and 1.0 mol of copper/mol of enzyme. No activation was seen upon incubation with either magnesium or manganese; however, heavy metal ions were inhibitory. Bestatin and puromycin were effective inhibitors and no endopeptidase activity could be detected in the purified preparation. This enzyme is clearly distinct from the lens leucine aminopeptidase, but rather, is identical to a cytosolic aminopeptidase III isolated from other tissues. Evidence is presented which argues that this enzyme may be the major lens aminopeptidase under in vivo conditions.  相似文献   

7.
An aminopeptidase was isolated from a soluble fraction of Alaska pollack roe in the presence of 2-mercaptoethanol by fractionation with ammonium sulfate and column chromatography on DEAE-cellulose, hydroxyapatite, and Sephadex G-200. The molecular weight of the enzyme was estimated to be 125,000 and 105,000 by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, respectively. The pH optimum and temperature optimum were 7.2 and 35 degrees C, respectively. The purified enzyme hydrolyzed various alpha-aminoacyl beta-naphthylamides and cleaved L-Ala-beta-naphthylamide most rapidly. Both a sulfhydryl group and a divalent metal ion are essential for activity; however, the enzyme was inhibited when incubated with divalent metal ions. Puromycin, chelating agents, and thiol reagents were effective inhibitors. The enzyme was also inhibited by L-amino acids, in particular glutamic acid. Thus, the Alaska pollack roe aminopeptidase resembles soluble alanyl aminopeptidase [EC 3.4.11.14].  相似文献   

8.
Using agarose gel electrophoresis, a faster moving alanine aminopeptidase (EC 3.4.11.2) has been demonstrated in the urine from cases of Fanconi syndrome, endemic (Balkan) nephropathy and advanced renal insufficiency. The enzyme was partially purified and its properties (isoelectric point, molecular weight, substrate specificity, influence of metal ions, Michaelis constant, antigenic behavior) were compared with those of normal kidney alanine aminopeptidase. Isoelectric points and antigenic properties are identical, but the molecular weights differ by a factor of about 2. Therefore, the greater electrophoretic mobility is due to the smaller size of the atypical enzyme.  相似文献   

9.
Cytosolic aminopeptidase P was obtained in highly purified form from human leukocytes by a four-step procedure. Buffy coats were the starting material. A M(r) of 140,000 was obtained by size-exclusion HPLC for the native enzyme. As shown by SDS/PAGE under reducing and denaturing conditions, the enzyme consisted of likely identical subunits with M(r) of 71,000. Purified aminopeptidase P cleaved off, specifically and efficiently, the N-terminal residues from peptides with N-terminal Xaa-Pro sequences. The penultimate proline was not replaceable by hydroxyproline, alanine and glycine in di-, tri- and tetrapeptides. Polyproline was not hydrolyzed. Dipeptides were cleaved (Arg-Pro, Phe-Pro > Trp-Pro > Pro-Pro) although slower than longer peptides. Cleavage was observed of several biologically active peptides; C-terminal fragment (residues 201-206) of C-reactive protein, oxytocin fragment Tyr-Pro-Leu-Gly, morphiceptin, peptide Gly-Pro-Arg-Pro (inhibitor of fibrin polymerization) and kentsin. In addition, cleavage of a protein, interleukin-6, was also demonstrated. Aminopeptidase P was maximally activated by Mn2+, and to a lesser extent by Co2+. The activity was optimal at pH 8. Ni2+, Zn2+ and especially Cd2+ caused marked inhibition. EDTA, 1,10-phenantroline and dithiothreitol were also inhibitory. Carbobenzoxy-phenylalanine, as well as several N-carbobenzoxy-proline-containing peptides, caused partial inhibition. The observed resistance of Gly-Pro, Pro-Gly, Pro-Phe and Pro-Ile to hydrolysis by the purified enzyme strongly indicates absence of known proline-specific dipeptidases in the aminopeptidase-P preparation.  相似文献   

10.
1. Leucine aminopeptidase does not catalyze the hydrolysis of glutathione. 2. Glutathione inhibits the hydrolysis of the substrates leucine hydrazide and leucine-p-nitroanilide by leucine aminopeptidase. 3. By means of kinetic experiments the type of the inhibition has been determined as noncompetitive. The inhibition constant Ki for the Mg2+-activated enzyme is five times higher than for the non-activated enzyme. 4. The degree of inhibition caused by glutathione depends on the pH value indicating a competition between glutathione and OH- ions. Mg2+-activated enzyme is invariably inhibited in the investigated pH range of 7.2 to 9.8. 5. A preincubation of the enzyme with glutathione changes the degree of activity enhancement by metal ions.  相似文献   

11.
Human intestinal alanine aminopeptidase has been purified to greater than 90% homogeneity. The enzyme was released from mucosal cell membranes by Triton X-100 treatment. The native enzyme had a molecular weight of 206,000 in dilute buffer and 108,000 in the presence of sodium dodecyl sulfate. The enzyme was inhibited by chelators suggesting the presence of a metal ion in the enzyme. The most potent chelator inhibitor tested, o-phenanthroline, gave mixed kinetics (Ki = 67 micro M). Activity was restored by removal of the chelator. The enzyme was inhibited competitively by amino acids having hydrophobic side chains such as L-phenylalanine (Ki = 0.67 mM). Puromycin and methicillin also inhibited the enzyme in the competitive (Ki = 12.5 micro M) and noncompetitive (Ki = 4.6 mM) manner, respectively. Kinetic analysis of several amino acid beta-naphthylamides as substrates demonstrated the preference for substrates having hydrophobic or basic amino terminal residues with no beta-branching. L-Methionyl-beta-naphthylamide was the most tightly bound with L-alanyl-beta-naphthylamide was the most rapidly hydrolyzed.  相似文献   

12.
Using leucine-p-nitroanilide (Leu-pNA) as a substrate, we demonstrated aminopeptidase activity in the culture filtrates of several Pseudomonas aeruginosa strains. The aminopeptidase was partially purified by DEAE-cellulose chromatography and found to be heat stable. The apparent molecular mass of the enzyme was approximately 56 kDa; hence, it was designated AP(56). Heating (70 degrees C) of the partially purified aminopeptidase preparations led to the conversion of AP(56) to a approximately 28-kDa protein (AP(28)) that retained enzyme activity, a reaction that depended on elastase (LasB). The pH optimum for Leu-pNA hydrolysis by AP(28) was 8.5. This activity was inhibited by Zn chelators but not by inhibitors of serine- or thiol-proteases, suggesting that AP(28) is a Zn-dependent enzyme. Of several amino acid p-nitroanilide derivatives examined, Leu-pNA was the preferred substrate. The sequences of the first 20 residues of AP(56) and AP(28) were determined. A search of the P. aeruginosa genomic data base revealed a perfect match of these sequences with positions 39-58 and 273-291, respectively, in a 536-amino acid residue open reading frame predicted to encode an aminopeptidase. A search for sequence similarities with other proteins revealed 52% identity with Streptomyces griseus aminopeptidase, approximately 35% identity with Saccharomyces cerevisiae aminopeptidase Y and a hypothetical aminopeptidase from Bacillus subtilis, and 29-32% with Aeromonas caviae, Vibrio proteolyticus, and Vibrio cholerae aminopeptidases. The residues potentially involved in zinc coordination were conserved in all these proteins. Thus, P. aeruginosa aminopeptidase may belong to the same family (M28) of metalloproteases.  相似文献   

13.
The major aminopeptidase from human quadriceps muscle was purified (as judged by polyacrylamide-gel electrophoresis) by anion-exchange chromatography (two steps) and gel filtration (two steps). The enzyme showed maximum activity at pH 7.3, in the presence of 1 mM-2-mercaptoethanol and 0.5 mM-Ca2+ ions; activation of the enzyme occurred in the presence of several other bivalent cations. Inhibition of activity was obtained in the presence of metal-ion-chelating agents and inhibitors of aminopeptidases and thiol proteinases. The molecular weight of the enzyme was 102 000 (by gel filtration). The enzyme hydrolysed several amino acyl-7-amido-4-methylcoumarin derivatives; highest activity was obtained with alanyl-7-amido-4-methylcoumarin. The enzyme also degraded a series of dipeptides, alanine oligopeptides and some naturally occurring peptides. Of particular interest was the high activity of the enzyme towards the enkephalins.  相似文献   

14.
S Wilk  S Pearce  M Orlowski 《Life sciences》1979,24(5):457-464
An apparently new endopeptidase with a pH optimum between 7.0 and 7.5 was purified 600 fold from bovine pituitaries. The enzyme hydrolyzed synthetic substrates such as Cbz-Gly-Gly-Leu-pNA and Cbz-Gly-Gly-Tyr-Leu-pNA by splitting the bond between the leucine residue and p-nitroaniline. Replacement of the leucine residue by alanine, greatly diminished the rate of reaction. Simple model trypsin and chymotrypsin substrates such as Bz-DL-Arg-2NA and N-succinyl-Phe-2NA were not attacked. The enzyme was also inactive toward aminopeptidase and carboxypeptidase substrates. Strong inhibition of the enzyme was observed at relatively low concentrations of sodium and potassium ions. Leupeptin, pepstatin and phenylmethylsulfonylfluoride had no effect on enzyme activity, however inhibition was obtained with p-mercuribenzoate. Preliminary experiments with filtration through Sephadex G-100 columns suggest a molecular weight in excess of 100,000.  相似文献   

15.
A surface-bound aminopeptidase of Lactobacillus lactis cells was solubilized with lysozyme, and the extract was subjected to streptomycin sulfate precipitation, ammonium sulfate fractionation, chromatography on Sephadex G-100 and diethylaminoethyl-Sephadex A-50, and preparative polyacrylamide gel electrophoresis. The purified enzyme was homogeneous in disc electrophoretic analysis and consisted of a single polypeptide chain with a molecular weight of 78,000 to 81,000. The optimal pH and optimal temperature for enzyme activity were 6.2 to 7.2 and 47.5 degrees C, respectively, for l-lysine-4-nitroanilide as the substrate. The enzyme was activated by Co and Zn ions and inhibited by Cu, Hg, and Fe ions and by the metal-complexing reagents ethylenediaminetetraacetic acid, 1,10-phenanthroline, and alpha,alpha'-dipyridyl. Higher concentrations of substrate and hydrolysis products also inhibited the activity of the enzyme. The aminopeptidase had broad substrate specificity and hydrolyzed many amino acid arylamides and many peptides with unsubstituted NH(2)-terminal amino acids.  相似文献   

16.
An aminopeptidase was isolated from the culture filtrate of Clostridium histolyticum and purified to homogeneity. Absence of endopeptidase activity in the purified preparation was demonstrated. Gel filtration on a calibrated column indicates an apparent molecular weight of 340000 for the native enzyme. Gel electrophoresis of the denatured enzyme in the presence of dodecylsulfate in constant acrylamide concentration and in a concentration gradient, resulted in the appearance of a single component for which a molecular weight of 51000 and 59000 respectively, was calculated. From mobilities of crosslinked and denatured protein species a molecular weight of 56000 was obtained for the monomer. Specificity studies show that the enzyme cleaves all types of N-terminel amino acid residues including proline and hydroxyproline from small peptides and from polypeptides. The peptide bond formed between an N-terminal amino acid residue and proline is not cleaved by the enzyme. The combined action of aminopeptidase-P and clostridal aminopeptidase leads to complete hydrolysis of the proline-rich nonapeptide bradykinin. Low rates of hydrolysis was observed for charged residues, and amides of amino acids. Kinetic studies with five tripeptides of the general structure X-Gly-Gly, where X stands for Leu, Phe, Val, Ala, or Pro, show a decrease in Km with the increasing size of the hydrophobic side chain of X. The highest Kcat values are observed with proline and alanine. In the series Pro-Gly, Pro-Gly-Pro, Pro-Gly-Pro-Pro, the last peptide is the best substrate, indicating an active site complementary to at least four amino acid residues. The enzymatic activity is dependent on the presence of divalent cations, maximal activation being reached with Mn2+ and Co2+. The optimal pH for the Mn2+ and Co2+- activated enzyme is 8.6 and 8.2 respectively. The optimal temperature is 40 degrees C. Inhibition of the aminopeptidase was achieved with Zn2+, Cu2+ and p-mercuribenzoate, but not with diisopropylphosphofluoridate.  相似文献   

17.
Cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus contain high specific activity (11 U/mg) of lysine aminopeptidase (KAP), as measured by the hydrolysis of L-lysyl-p-nitroanilide (Lys-pNA). The enzyme was purified by multistep chromatography. KAP is a homotetramer (38.2 kDa per subunit) and, as purified, contains 2.0 +/- 0.48 zinc atoms per subunit. Surprisingly, its activity was stimulated fourfold by the addition of Co2+ ions (0.2 mM). Optimal KAP activity with Lys-pNA as the substrate occurred at pH 8.0 and a temperature of 100 degrees C. The enzyme had a narrow substrate specificity with di-, tri-, and tetrapeptides, and it hydrolyzed only basic N-terminal residues at high rates. Mass spectroscopy analysis of the purified enzyme was used to identify, in the P. furiosus genome database, a gene (PF1861) that encodes a product corresponding to 346 amino acids. The recombinant protein containing a polyhistidine tag at the N terminus was produced in Escherichia coli and purified using affinity chromatography. Its properties, including molecular mass, metal ion dependence, and pH and temperature optima for catalysis, were indistinguishable from those of the native form, although the thermostability of the recombinant form was dramatically lower than that of the native enzyme (half-life of approximately 6 h at 100 degrees C). Based on its amino acid sequence, KAP is part of the M18 family of peptidases and represents the first prokaryotic member of this family. KAP is also the first lysine-specific aminopeptidase to be purified from an archaeon.  相似文献   

18.
The major aminopeptidase from human post-mortem brain (occipital cortex) was purified to homogeneity (as judged by polyacrylamide gel electrophoresis) by anion-exchange chromatography (two steps) and gel filtration (two steps). The molecular weight of the enzyme was estimated as 105,000 from gel filtration. Maximum activity was obtained in the presence of 0.5 mM Ca2+ and 1 mM 2-mercaptoethanol at pH 7.3. Enzyme activity was lost on freezing and thawing or on lyophilization. The enzyme was inhibited by metal-ion chelating agents, sulphydryl blocking agents, bestatin, and puromycin. A series of amino acyl-7-amido-4-methylcoumarins was hydrolysed by the enzyme, with the alanyl derivative being hydrolysed most rapidly (Km 170 microM). Specificity studies with a series of alanine dipeptides suggested that a hydrophobic second residue favoured hydrolysis. Several naturally occurring neuropeptides, including Leu5-enkephalin (Km 180 microM), cholecystokinin octapeptide, and Arg8-vasopressin, were hydrolysed by the aminopeptidase. In a series of opioid peptides, increasing chain length led to decreased susceptibility to hydrolysis. Sulphation of the Tyr1 residue of Leu5-enkephalin and the Tyr2 residue of cholecystokinin octapeptide made the peptides more resistant to hydrolysis.  相似文献   

19.
Ye M  English AM 《Biochemistry》2006,45(42):12723-12732
In addition to its superoxide dismutase (SOD) activity, Cu,Zn-superoxide dismutase (CuZnSOD) catalyzes the reductive decomposition of S-nitroso-L-glutathione (GSNO) in the presence of thiols such as L-glutathione (GSH). The GSNO-reductase activity but not the superoxide dismutase (SOD) activity of CuZnSOD is inhibited by the commonly used polyaminocarboxylate metal ion chelators, EDTA and DTPA. The basis for this selective inhibition is systematically investigated here. Incubation with EDTA or DTPA caused a time-dependent decrease in the 680 nm d-d absorption of Cu(II)ZnSOD but no loss in SOD activity or in the level of metal loading of the enzyme as determined by ICP-MS. The chelators also protected the SOD activity against inhibition by the arginine-specific reagent, phenylglyoxal. Measurements of both the time course of SNO absorption decay at 333 nm and oxymyoglobin scavenging of the NO that is released confirmed that the chelators inhibit CuZnSOD catalysis of GSNO reductive decomposition by GSH. The decreased GSNO-reductase activity is correlated with decreased rates of Cu(II)ZnSOD reduction by GSH in the presence of the chelators as monitored spectrophotometrically at 680 nm. The aggregate data suggest binding of the chelators to CuZnSOD, which was detected by isothermal titration calorimetry (ITC). Dissociation constants of 0.08 +/- 0.02 and 8.3 +/- 0.2 microM were calculated from the ITC thermograms for the binding of a single EDTA and DTPA, respectively, to the CuZnSOD homodimer. No association was detected under the same conditions with the metal-free enzyme (EESOD). Thus, EDTA and DTPA must bind to the solvent-exposed active-site copper of one subunit without removing the metal. This induces a conformational change at the second active site that inhibits the GSNO-reductase but not the SOD activity of the enzyme.  相似文献   

20.
R Mineyama  K Saito 《Microbios》1991,67(274):37-52
Dipeptidyl peptidase IV (DAP IV) was purified from Streptococcus salivarius HHT by anion-exchange chromatography, gel filtration and affinity chromatography after lysis of cell walls with N-acetylmuramidase. DAP IV was purified 114-fold with a yield of 16.6% from total activity of the crude extract. The purified enzyme was shown to be homogeneous by disc gel electrophoresis. The molecular weight of the enzyme was estimated to be about 109,000 by gel filtration and 47,000 by sodium dodecylsulphate SDS-polyacrylamide gel electrophoresis, suggesting that the native enzyme is a dimeric form. The optimum pH for the reaction was 8.7 in Gly-NaOH buffer, and the isoelectric point of the enzyme was pH 4.2. The enzyme hydrolysed specifically N-terminal X-Pro from X-Pro-p-nitroanilides. The enzyme activity was hardly affected by various cations, sulphydryl-blocking reagents and metal chelators. The enzyme activity was markedly inhibited by 1 mM diisopropylfluoride, and the desialysed enzyme was attacked by proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号