首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of intact Ehrlich ascite carcinoma cells and the supernatant obtained by preincubation and subsequent precipitation of cells, egg phosphatidylcholine is oxidized in liposomes to form malonic dialdehyde (MDA). Catalase and carbon dioxide markedly reduce, whereas sodium azide increases MDA accumulation during liposome incubation with the cells. EDTA, diethylthiocarbonate and alpha-tocopherol effectively inhibit, whereas ascorbate and cysteine strongly activate MDA synthesis in both cases. Superoxide dismutase has no appreciable effect on these processes. It is concluded that metal-containing catalysts and the H2O2 released by intact cells into the incubation medium induce lipid peroxidation in liposomes.  相似文献   

2.
The effect of radiation on the cyclic nucleotide content of mouse brain has been studied. High radiation doses have been found to increase cGMP and to decrease cAMP content of the brain. These alterations correlate with the processes of lipid peroxidation and formation of diene conjugates and malonic dialdehyde.  相似文献   

3.
Different nitric oxide donors and metabolites proved to have similar effects on the peroxidation in rat myocardium homogenate. PAPA-NONOate (synthetic nitric oxide donor), S-nitrosoglutathione, nitrite, and nitroxyl anion caused dose-dependent inhibition of the formation of malonic dialdehyde, a secondary product of lipid peroxidation. Dextran-bound dinitrosyl iron complexes and PAPA-NONOate were the most efficient inhibitors of lipid peroxidation. S-Nitrosoglutathione also inhibited the decline in coenzymes Q9 and Q10. Low-molecular-weight dinitrosyl iron complexes with cysteine accelerated lipid peroxidation, which could be caused by the release of iron ions upon their destruction. The antioxidant effect of nitric oxide donors appears to be due to the reduction of hemoprotein ferryl forms and the reaction of nitric oxide with lipid radicals.  相似文献   

4.
In the presence of rhodamine J the chemiluminescence intensity of monolayer liposomes induced by ferrous ions is increased by three orders. There is no accumulation of malonic dialdehyde. It is suggested that chemiluminescence activation is related to rhodamine J interaction with the products of lipid peroxidation whose molecules are in the excited state.  相似文献   

5.
To elucidate a possible role of membrane-bound aldehyde dehydrogenase in the detoxication of aldehydic products of lipid peroxidation, the substrate specificity of the highly purified microsomal enzyme was investigated. The aldehyde dehydrogenase was active with different aliphatic aldehydes including 4-hydroxyalkenals, but did not react with malonic dialdehyde. When Fe/ADP-ascorbate-induced lipid peroxidation of arachidonic acid was carried out in an in vitro system, the formation of products which react with microsomal aldehyde dehydrogenase was observed parallel with malonic dialdehyde accumulation.  相似文献   

6.
The interaction of superoxide radical anion (O2 ??) with active dicarbonyls (methylglyoxal, glyoxal, and malonic dialdehyde) was studied. It was demonstrated that glyoxal and methylglyoxal inhibited superoxide-dependent accumulation of formazan; however, malonic dialdehyde stimulated this process. The formation of O2 ?? in these experiments occurred during the decomposition of the SOTS-1 azo initiator. On the other hand, all of the studied dicarbonyls in this system of O2 ?? generation competed for superoxide with the TIR ON spin trap. These compounds also inhibited luminal-dependent chemiluminescence during the AIBN azo initiator-induced peroxidation of liposomes from the egg phosphatidylcholine. A mechanism for the antiradical and antioxidant effects of the studied dicarbonyls, assuming the production of free radical intermediates in their reactions with O2 ?? or its protonated form, is proposed.  相似文献   

7.
A mixture of isoflavones was obtained by acid hydrolysis of isoflavone glycosides isolated from the products of soybean processing by a successive extraction with aqueous acetone and methanol. Homogeneous isoflavones genistein and daidzein were isolated from the aglycone mixture by adsorption chromatography and identified by spectral and chromatographic methods. The effect of both isoflavones on lipid peroxidation of soy phospholipids in multilamellar vesicles was studied at various concentrations. These aglycones were found to inhibit the formation of lipid hydroperoxides and malonic dialdehyde at the concentrations as low as 1 mM.  相似文献   

8.
It is shown that tetraphenylporphyrin (TPP) and its complexes with metals decrease the rate of the diene conjugate formation. The above compounds increase the malonic dialdehyde accumulation. The effect of TPP and its complexes with metals is connected with stimulation of lipid peroxidation in biomembranes.  相似文献   

9.
A mixture of isoflavones was obtained by acid hydrolysis of isoflavone glycosides isolated from the products of soybean processing by successive extraction with aqueous acetone and methanol. The homogeneous isoflavones daidzein and genistein were isolated from the aglycone mixture by adsorption chromatography and identified by spectral and chromatographic methods. The effect of both isoflavones on lipid peroxidation of soy phospholipids in multilamellar vesicles was studied at various concentrations. These aglycones were found to inhibit the formation of lipid hydroperoxides and malonic dialdehyde at concentrations as low as 1 mM.  相似文献   

10.
Relation of lipid peroxidation to loss of cations trapped in liposomes   总被引:2,自引:0,他引:2  
Lipid peroxidation and alterations in cation loss have been induced in liposomes by ferrous ion, ascorbic acid, reduced and oxidized glutathione, and gamma radiation. Modifications of these effects by tocopherol and 2,6-di-tert-butyl-4-methylphenol (BHT) were studied when these antioxidants were either incorporated in the membrane or were added to already formed liposomes prior to the addition of the chemical agent or to irradiation. Lipid peroxidation, as indicated by the thiobarbituric acid test for malonic dialdehyde, did not correlate with alterations in cation loss. The largest amounts of lipid peroxidation induced by ascorbic acid and glutathione were associated with decreased cation loss. Inhibition of Fe(2+)- and radiation-induced lipid peroxidation by antioxidants did not inhibit the associated increase in cation loss. Tocopherol was a more effective antioxidant than BHT when it was incorporated in the membrane, whereas BHT was more effective when it was added to the liposomes after formation.  相似文献   

11.
Solutions of the ferrous sulfate, of the albumin and of the suspension of liposomes were irradiated by mixed gamma-neutron radiation (fission spectrum neutrons, contribution of gamma-component to the absorbed dose up to 20%) at the pulse reactor BARS-6 with single-pulse (duration 100 micros) or continuous radiation (duration 60 min). It was shown, that after the pulse irradiation the concentration of the malonic dialdehyde in liposomes was in 3-4 times higher than after the continuous radiation at equal absorbed doses (p < 0.05). On the contrary, the irradiation of the liposomes suspension as well as of the solutions of the ferrous sulfate and of the albumin in a mode of single-pulse or of continuous mode did not reveal the statistically significant differences in the production of Fe3+ ions and of peroxides of the albumin for two mode of the radiation action.  相似文献   

12.
Intracellular content of hydrogen peroxide and of the product of lipid peroxidation malonic dialdehyde as well as activity of antioxidant enzymes catalase, ascorbate peroxidase, and superoxide dismutase were studied in cells of morphogenic and derived from them non-morphogenic calluses of tatar buckwheat Fagopyrum tataricum L. Non-morphogenic calluses were characterized by significantly higher content of hydrogen peroxide and malonic dialdehyde, low catalase activity, and high activity of superoxide dismutase compared to morphogenic cultures. The results may indicate that cells of non-morphogenic calluses are in the state of continuous oxidative stress. Nevertheless, proliferative activity of non-morphogenic cultures and the biomass increase significantly exceeded these parameters in morphogenic calluses. An analogy is drawn between animal cancer cells and non-morphogenic plant calluses.  相似文献   

13.
The influence of dibunol, phenazepam used alone and combined on rat conflict behavior and rat blood and brain malonic dialdehyde content was studied. It was shown that dibunol exerts an unmarked anticonflict action that can be removed by bicuculline. Combined administration of dibunol and phenazepam potentiates appreciably the anticonflict effect. This permits reducing the doses of the drugs. The anxiolytic effect of dibunol alone and combined with phenazepam is attended by a decrease in the content of malonic dialdehyde in rat blood and brain, evidence of the reduction of the lipid peroxidation intensity.  相似文献   

14.
Iron is involved in the formation of oxidants capable of damaging membranes, protein, and DNA. Using 137Cs gamma radiation, we investigated the release of iron from ferritin and concomitant lipid peroxidation by radiolytically generated reducing radicals, superoxide and the carbon dioxide anion radical. Both radicals released iron from ferritin with similar efficiencies and iron mobilization from ferritin required an iron chelator. Radiolytically generated superoxide anion resulted in peroxidation of phospholipid liposomes as measured by malondialdehyde formation only when ferritin was included as an iron source and the released iron was found to be chelated by the phospholipid liposomes.  相似文献   

15.
The effect of lysophosphatidylcholine (LPC) on the lipid peroxidation process (LPO) in liposomes of rat liver phosphatidylcholine initiated by irradiation of 137Cs source was studied. The formation of diene conjugates (DC) is shown to increase dramatically on incorporation of more than 10% LPC into liposomes. The dependence of DC proportion on the irradiation dose is practically linear in the range of 0 to 5 kGy. The DC concentration in the liposomes without LPC grows at least to dose of 3.3 kGy and is unchanged on further irradiation. The malonic dialdehide accumulation follows the similar dependence. The LPC effect is neutralized by the incorporation of cholesterol into liposomes. The product of free radical fragmentation of LPC, palmitoxyacetone, practically has no influence on the DC concentration. The reasons of LPC effect on the irradiation initiated LPO in liposomes is discussed.  相似文献   

16.
The investigations aimed at evaluating free superoxide radicals generation and the degree of blood platelets cell membrane lipids peroxidation on the base of superoxide dismutase activity and malonic dialdehyde level in patients with ischaemic heart disease. The obtained results have shown that blood platelets superoxide dismutase activity is markedly lower in patients with ischaemic heart disease than in healthy individuals whereas malonic dialdehyde levels are markedly higher.  相似文献   

17.
The level of certain parameters of lipid peroxidation and the activity of lysosome hydrolases were studied on the shock model in rats. It was established that the traumatic shock in the experiment is accompanied by the growth of the level of over-oxidation products (malonic dialdehyde, diene conjugates), the rate of erythrocyte hemolysis as well as by an increase in the hydrolase activity. Administration of ionol (60 mg/kg) inhibits the higher activity of radical-free lipid oxidation, decreases the damage of membrane structure and the metabolism disturbance.  相似文献   

18.
Production of reactive oxygen species (ROS) during apoptosis is associated with peroxidation of phospholipids particularly of phosphatidylserine (PS). The mechanism(s) underlying preferential PS oxidation are not well understood. We hypothesized that cytochrome c (cyt c) released from mitochondria into cytosol acts as a catalyst that utilizes ROS generated by disrupted mitochondrial electron transport for PS oxidation. Selectivity of PS oxidation is achieved via specific interactions of positively charged cyt c with negatively charged PS. To test the hypothesis we employed temporary transfection of Jurkat cells with a pro-apoptotic peptide, DP1, a conjugate consisting of a protein transduction domain, PTD-5, and an antimicrobial domain, KLA [(KLAKLAK)2], known to selectively disrupt mitochondria. We report that treatment of Jurkat cells with DP1 yielded rapid and effective release of cyt c from mitochondria and its accumulation in cytosol accompanied by production of H2O2. Remarkably, this resulted in selective peroxidation of PS while more abundant phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) remained nonoxidized. Neither PTD-5 alone nor KLA alone exerted any effect on PS peroxidation. Redox catalytic involvement of cyt c in PS oxidation was further supported by our data demonstrating that: (i) specific interactions of cyt c with PS resulted in the formation of EPR-detectable protein-centered tyrosyl radicals of cyt c upon its interaction with H2O2 in the presence of PS-containing liposomes, and (ii) integration of cyt c into cytochrome c null (Cyt c -/-) cells or HL-60 cells specifically stimulates PS oxidation in the presence of H2O2 or t-BuOOH, respectively. We further demonstrated that DP1 elicited externalization of PS on the surface of Jurkat cells and enhanced their recognition and phagocytosis by J774A.1 macrophages. Our results are compatible with the hypothesis that catalysis of selective PS oxidation during apoptosis by cytosolic cyt c is important for PS-dependent signaling pathways such as PS externalization and recognition by macrophage receptors.  相似文献   

19.
1. The effect of chronic ethanol treatment on the level of lipid peroxidation in rat liver homogenate and subcellular fractions was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that after chronic ethanol treatment the level of Fe/ADP-ascorbate-induced lipid peroxidation was decreased in the whole and "postnuclear" liver homogenates. Dilution of the homogenates prevented depressive effect of ethanol on lipid peroxidation. 3. Chronic ethanol treatment did not affect the intensity of the Fe/ADP-ascorbate-induced process in rat liver mitochondria and microsomes. 4. Peroxidative alteration of the liver lipids in vivo was evaluated by measurement of conjugated dienes (absorbance at 233 nm). It was shown that ethanol did not increase the level of u.v. absorption of lipids from mitochondria and microsomes. Chronic alcohol treatment did not influence the steady-state concentration of malonic dialdehyde in the whole liver homogenate. 5. The data obtained indicate that cytosol from the ethanol treated rat liver contains a factor(s) which prevents Fe/ADP-ascorbate-dependent lipid peroxidation in biological membranes.  相似文献   

20.
Peroxidation of membrane phospholipids is an important determinant of membrane function. Previously we studied the kinetics of peroxidation of the polyunsaturated fatty acid (PUFA) residues in model membranes (liposomes) made by sonication of palmitoyllinoleoylphosphatidylcholine (PLPC). Since most biomembranes are negatively-charged, we have now studied the effect of negative surface charge on the kinetics of peroxidation of liposomes made of PLPC and 9% of one of the negatively-charged phospholipids phosphatidylserine (PS) or phosphatidic acid (PA). Peroxidation was initiated by either CuCl2 or AAPH and continuously monitored spectrophotometrically. The following results were obtained: (i) The negative charge had only a slight effect on AAPH-induced peroxidation, but accelerated markedly copper-induced peroxidation of the liposomes, probably by increasing the binding of copper to the membrane surface. (ii) Ascorbic acid (AA) inhibited AAPH-induced but promoted copper-induced peroxidation in all the studied liposomes, probably by enhancing the production of free radicals upon reduction of Cu(II) to Cu(I). (iii) alpha-tocopherol (Toc) inhibited AAPH-induced peroxidation in all the studied liposomes, whereas the effect of tocopherol on copper-induced peroxidation varied from being pro-oxidative in PA-containing liposomes, to being extremely anti-oxidative in PS-containing liposomes, even at very low tocopherol concentrations. The significance of the latter unusual protective effect, which we attribute to recycling of tocopherol by a PS-Cu complex, requires further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号