首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea   总被引:6,自引:0,他引:6  
Abstract: Hyperthermophilic archaea exhibit a unique pattern of DNA topoisomerase activities. They have a peculiar enzyme, reverse gyrase, which introduces positive superturns into DNA at the expense of ATP. This enzyme has been found in all hyperthermophiles tested so far (including Bacteria) but never in mesophiles. Reverse gyrases are formed by the association of a helicase-like domain and a 5'-type I DNA topoisomerase. These two domains might be located on the same polypeptide. However, in the methanogenic archaeon Methanopyrus kandleri , the topoisomerase domain is divided between two subunits. Besides reverse gyrase, Archaea contain other type I DNA topoisomerases; in particular, M. kandleri harbors the only known procaryotic 3'-type I DNA topoisomerase (Topo V). Hyperthermophilic archaea also exhibit specific type II DNA topoisomerases (Topo II), i.e. whereas mesophilic Bacteria have a Topo II that produces negative supercoiling (DNA gyrase), the Topo II from Sulfolobus and Pyrococcus lack gyrase activity and are the smallest enzymes of this type known so far. This peculiar pattern of DNA topoisomerases in hyperthermophilic archaea is paralleled by a unique DNA topology, i.e. whereas DNA isolated from Bacteria and Eucarya is negatively supercoiled, plasmidic DNA from hyperthermophilic archaea are from relaxed to positively supercoiled. The possible evolutionary implications of these findings are discussed in this review. We speculate that gyrase activity in mesophiles and reverse gyrase activity in hyperthermophiles might have originated in the course of procaryote evolution to balance the effect of temperature changes on DNA structure.  相似文献   

2.
It was discovered 12 years ago that type IIA topoisomerases can simplify DNA topology—the steady-state fractions of knots and links created by the enzymes are many times lower than the corresponding equilibrium fractions. Though this property of the enzymes made clear biological sense, it was not clear how small enzymes could selectively change the topology of very large DNA molecules, since topology is a global property and cannot be determined by a local DNA–protein interaction. A few models, suggested to explain the phenomenon, are analyzed in this review. We also consider experimental data that both support and contravene these models.  相似文献   

3.
4.
5.
Travers A 《Current biology : CB》2006,16(19):R838-R840
The DNA in repressive loops is often tightly bent. DNA flexibility imposes significant constraints on their topology suggesting that they may exist as perturbations in plectonemic DNA.  相似文献   

6.
Investigation into arthritis, as well as numerous bone phenotypes found in mice lacking immune-related genes, has highlighted the importance of the interplay between the bone and immune systems, which has led to the emergence and evolution of the field of osteoimmunology. RANKL stimulates osteoclastogenesis through nuclear factor of activated T cells (NFAT) c1, which is also a crucial regulator of immunity. In rheumatoid arthritis, bone destruction is caused by the enhanced activity of osteoclasts, which is mainly dependent on interleukin-17-producing helper T cells (TH17). The scope of osteoimmunology has been extended to encompass a wide range of molecular and cellular interactions. The framework of osteoimmunology will provide a scientific basis for future therapeutic approaches to diseases related to both of these systems.  相似文献   

7.
DNA topoisomerases   总被引:1,自引:0,他引:1  
  相似文献   

8.
DNA topoisomerases   总被引:2,自引:0,他引:2  
  相似文献   

9.
DNA topoisomerases and DNA repair   总被引:5,自引:0,他引:5  
DNA topoisomerases are enzymes that can modify, and may regulate, the topological state of DNA through concerted breaking and rejoining of the DNA strands. They have been believed to be directly involved in DNA excision repair, and perhaps to be required for the control of repair as well. The vicissitudes of this hypothesis provide a noteworthy example of the dangers of interpreting cellular phenomena without genetic information and vice versa.  相似文献   

10.
Eukaryotic topoisomerases recognize DNA topology and preferentially react with positively or negatively supercoiled molecules over relaxed substrates. To elucidate the mechanism of this recognition, we examined the interaction of topoisomerases with DNA by electron microscopy. Under all conditions employed, approximately 90% of the bound type I or II enzyme was observed at points of helix--helix juxtaposition on negatively supercoiled plasmids which contained as few as four crossovers. Recognition was independent of torsional stress, as enzyme molecules were also found at crossovers on linear DNA. Since juxtaposed helices are more prevalent in supercoiled compared with relaxed nucleic acids, we propose that eukaryotic topoisomerases I and II recognize underwound or overwound substrates by interacting preferentially with DNA crossovers. This may represent a general mechanism for the recognition of DNA topology by proteins.  相似文献   

11.
DNA topoisomerases play an important role in regulating DNA structure, thus affecting many aspects of chromosome function inside cells. Recent progress in this field raises exciting questions regarding the distinct and critical functions of multiple topoisomerases, and the roles of DNA topoisomerases in the processes of chromosome condensation, decondensation, and segregation.  相似文献   

12.
Type IIA topoisomerases modify DNA topology by passing one segment of duplex DNA (transfer or T–segment) through a transient double-strand break in a second segment of DNA (gate or G–segment) in an ATP-dependent reaction. Type IIA topoisomerases decatenate, unknot and relax supercoiled DNA to levels below equilibrium, resulting in global topology simplification. The mechanism underlying this non-equilibrium topology simplification remains speculative. The bend angle model postulates that non-equilibrium topology simplification scales with the bend angle imposed on the G–segment DNA by the binding of a type IIA topoisomerase. To test this bend angle model, we used atomic force microscopy and single-molecule Förster resonance energy transfer to measure the extent of bending imposed on DNA by three type IIA topoisomerases that span the range of topology simplification activity. We found that Escherichia coli topoisomerase IV, yeast topoisomerase II and human topoisomerase IIα each bend DNA to a similar degree. These data suggest that DNA bending is not the sole determinant of non-equilibrium topology simplification. Rather, they suggest a fundamental and conserved role for DNA bending in the enzymatic cycle of type IIA topoisomerases.  相似文献   

13.
14.
15.
Inhibitors of DNA topoisomerases   总被引:47,自引:0,他引:47  
K Drlica  R J Franco 《Biochemistry》1988,27(7):2253-2259
  相似文献   

16.
Homeobox genes are widely considered the major protagonists of embryonic development and tissue formation. For the past decades, it was established that the deregulation of these genes is intimately related to developmental abnormalities and a broad range of diseases in adults. Since the proper regulation and expression of homeobox genes are necessary for a successful developmental program and tissue function, their relation to DNA repair mechanisms become a necessary discussion. However, important as it is, studies focused on the interplay between homeobox genes and DNA repair are scarce, and there is no critical discussion on the subject. Hence, in this work, I aim to provide the first review of the current knowledge of the interplay between homeobox genes and DNA repair mechanisms, and offer future perspectives on this, yet, young ground for new researches. Critical discussion is conducted, together with a careful assessment of each reviewed topic.  相似文献   

17.
18.
19.
Methylation of cytosine in CpG dinucleotides and histone lysine and arginine residues is a chromatin modification that critically contributes to the regulation of genome integrity, replication, and accessibility. A strong correlation exists between the genome‐wide distribution of DNA and histone methylation, suggesting an intimate relationship between these epigenetic marks. Indeed, accumulating literature reveals complex mechanisms underlying the molecular crosstalk between DNA and histone methylation. These in vitro and in vivo discoveries are further supported by the finding that genes encoding DNA‐ and histone‐modifying enzymes are often mutated in overlapping human diseases. Here, we summarize recent advances in understanding how DNA and histone methylation cooperate to maintain the cellular epigenomic landscape. We will also discuss the potential implication of these insights for understanding the etiology of, and developing biomarkers and therapies for, human congenital disorders and cancers that are driven by chromatin abnormalities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号