首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The stimulatory and inhibitory activities in the crude preparation of protein kinase modulator from dog heart were separated by Sephadex G-100 gel filtration, and the stimulatory modulator was further purified by DEAE-cellulose chromatography. The isolated stimulatory modulator, as the crude modulator preparation, stimulated the activity of the purified guanosine 3':5'-monophosphate (cGMP)-dependent protein kinases of both mammalian and arthropod origins in the presence of cGMP. The cGMP-dependent protein kinases were not activated by cGMP in the absence of either the isolated stimulatory modulator or the crude modulator. The stimulatory modulator, unlike the crude modulator had no effect on the activity of adenosine 3':5'-monophosphate (cAMP)-dependent protein kinase. The stimulatory modulator was a protein since its activity was destroyed by trypsin but was resistant to hydrolysis by DNase, RNase, phospholipase C, and lysozyme. The isolated inhibitory modulator, presumably the same as the protein inhibitor of cAMP-dependent protein kinase reported by Walsh et al. (Wash. D.A., Ashby, C.D., Gonzalez, C., Calkins, D., Fischer. E.H., and Krebs, E.G. (1971) J. Biol. Chem. 246, 1977-1985), depressed the cAMP-stimulated activity of cAMP-dependent protein kinase as did the crude preparation of protein kinase modulator. The isolated inhibitory modulator, unlike the crude preparation, was without effect on cGMP-dependent protein kinase. The present findings provide evidence to support that in mammals there are separate proteins for the stimulatory and the inhibitory activities of protein kinase modulator, in contrast to the modulator from an arthropod tissue (lobster tail muscle, Donnelly et al. (Donnelly, T.E., Jr., Kuo, J.F., Reyes, P.L., Liu, Y.P., and Greengard, P. (1973) J. Biol. Chem. 248, 190-198) which has been shown to possess both activities.  相似文献   

2.
The crude protein kinase modulator preparations obtained from several rat tissues (aorta, brain, heart, liver, lung, skeletal muscle, small intestine and testis) were separated into their stimulatory and inhibitory modulator components by Sephadex G-100 gel filtration. The isolated stimulatory modulator augmented the activity of guanosine 3′:5′-monophosphate-dependent protein kinase of both mammalian and arthropod origins; it had no effect, however, on the activity of adenosine 3′:5′-monophosphate-dependent protein kinase. The isolated inhibitory modulator, on the other hand, depressed the activity of cyclic AMP-dependent protein kinase; it was without effect on the activity of cyclic GMP-dependent protein kinase. The present findings indicate that in the mammal, apparently in contrast to the arthropoda, separate proteins are responsible for the stimulatory and the inhibitory activities of protein kinase modulator, and that the two classes of cyclic nucleotide-dependent protein kinases are regulated in an opposing manner by these two types of modulators.  相似文献   

3.
4.
Guanosine 3',5'-monophosphate-dependent protein kinase (cyclic GMP-dependent protein kinase) and adenosine 3',5'-monophosphate-dependent protein kinase (cyclic AMP-dependent protein kinase) exhibited a high degree of cyclic nucleotide specificity when hormone-sensitive triacylglycerol lipase, phosphorylase kinase, and cardiac troponin were used as substrates. The concentration of cyclic GMP required to activate half-maximally cyclic dependent protein kinase was 1000- to 100-fold less than that of cyclic AMP with these substrates. The opposite was true with cyclic AMP-dependent protein kinase where 1000- to 100-fold less cyclic AMP than cyclic GMP was required for half-maximal enzyme activation. This contrasts with the lower degree of cyclic nucleotide specificity of cyclic GMP-dependent protein kinase of 25-fold when histone H2b was used as a substrate for phosphorylation. Cyclic IMP resembled cyclic AMP in effectiveness in stimulating cyclic GMP-dependent protein kinase but was intermediate between cyclic AMP and cyclic GMP in stimulating cyclic AMP-dependent protein kinase. The effect of cyclic IMP on cyclic GMP-dependent protein kinase was confirmed in studies of autophosphorylation of cyclic GMP-dependent protein kinase where both cyclic AMP and cyclic IMP enhanced autophosphorylation. The high degree of cyclic nucleotide specificity observed suggests that cyclic AMP and cyclic GMP activate only their specific kinase and that crossover to the opposite kinase is unlikely to occur at reported cellular concentrations of cyclic nucleotides.  相似文献   

5.
Kinetic studies on the activity of purified cGMP-dependent protein kinase and catalytic subunit of cAMP-dependent protein kinase have been carried out using a protein termed G-substrate (see preceding paper) as the phosphate acceptor. Each enzyme catalyzed the phosphorylation of 2.0-2.1 mol of 32P/mol of G-substrate, with phosphorylation occurring primarily at threonine residues. When phosphorylation was carried out in the simultaneous presence of the two enzymes, the stoichiometry increased only slightly, to a value of 2.4, suggesting that both enzymes phosphorylated the same two sites. Initial rate studies on the phosphorylation of G-substrate by cGMP-dependent protein kinase yielded a Km of 0.21 microM and a Vmax of 2.2 mumol/min/mg. Similar studies with the cAMP-dependent protein kinase yielded a Km of 5.8 microM and a Vmax of 2.3 mumol/min/mg. cGMP-dependent protein kinase thus exhibited a high degree of specificity towards this substrate which was apparently based on selective substrate binding rather than catalytic efficacy. The activity of cGMP-dependent protein kinase towards G-substrate was maximal at pH 7.5-8.0 and a Mg2+ concentration of 1-3 mM. Activity declined sharply at high ionic strength (greater than 20 mM KCl).  相似文献   

6.
Mimicry of selective cytochalasin A (CA) inhibition of cellulase synthesis in the water mold Achlya by the non-penetrating thiol reagent, p-chloromercuribenzene sulphonate suggests that CA may act as a non-permeant sulphydryl reagent, and that inhibition of cellulase synthesis may be exerted via relatively superficial thiol groups in the plasma membrane.  相似文献   

7.
Homogeneous cGMP-dependent protein kinase catalyzes the rapid incorporation of phosphate, specifically into the inhibitory subunit of purified cardiac troponin with a maximal incorporation of 1 mol of phosphate/mol of troponin. When troponin was incubated in the presence of both cGMP- and cAMP-dependent protein kinases, a maximal incorporation of 1 mol of phosphate/mol of troponin was observed which suggested phosphorylation of the same site by the two kinases. Both cyclic nucleotide-dependent kinases had similar Km values for troponin, but the Vmax value for the phosphorylation reaction catalyzed by cAMP-dependent protein kinase was 12-fold greater than the value obtained for cGMP-dependent protein kinase.  相似文献   

8.
Adenosine 3':5'-monophosphate-dependent protein kinase partially purified from silkworm pupae shows identical functional activities with those of mammalian protein kinases; the insect and mammalian kinases are completely exchangeable in the phosphorylation of muscle glycogen phosphorylase kinase and glycogen synthetase resulting in the activation and inactivation of the respective enzymes. In contrast, guanosine 3':5'-monophosphate-dependent protein kinase obtained from the same organism is totally inactive in this role and phosphorylates different, mainly seryl and some threonyl, residues of acceptor proteins. Substrates of the latter kinase intimately involved in the regulation of biological processes have remained unknown.  相似文献   

9.
The guanosine 3':5'-monophosphate-dependent protein kinase from bovine lung was purified to apparent homogeneity by affinity chromography using 8-2-aminoethylthio-cGMP coupled to Sepharose 4B. The kinase activity was purified approximately 6000-fold with an overall recovery of approximately 20%. The product isolated by affinity chromatography contained both cGMP-binding and cGMP-dependent histone kinase activity, indicating that the enzyme was not dissociated into regulatory and catalytic components by the immobilized cGMP derivative. The enzyme had a molecular weight of approximately 165,000 and a sedimentation coefficient of 7.8 S. The purified kinase displayed several characteristics similar to that of the partially purified enzyme including specificity for cGMP and stimulation by high concentrations of magnesium. On sodium dodecyl sulfate gels, only one major polypeptide chain was present having a molecular weight of approximately 81,000. This subunit bound 1 mol of cGMP and exhibited cGMP-dependent protein kinase activity. It is proposed that the native enzyme consists of two identical subunits (Mr=81,000), each of which binds cGMP and catalyzes protein phosphorylation.  相似文献   

10.
Guanosine 3':5'-monophosphate(cyclic GMP)-dependent protein kinase which catalyzes the phosphorylation of histone was purified about 200-fold from the soluble fraction of pig lung by pH 5.5 precipitation, DEAE-cellulose column chromatography, and Sephadex G-200 gel filtration. The apparent Ka values for guanosine 3':5'-monophosphate and adenosine 3':5'-monophosphate were determined to be about 17 and 360 nM, respectively. Mg2+ was essential for the activity exhibiting biphasic stimulation behavior and neither Mn2+ nor Ca2+ could substitute for Mg2+. However, these divalent ions markedly inhibited the protein kinase activity stimulated by cyclic GMP in the presence of Mg2+.  相似文献   

11.
12.
Guanosine 3',5'-monophosphate (cyclic GMP)-dependent protein kinase partially purified from silkworm pupae reacts preferentially with H1, H2A, and H2B histones but not with H3 AND H4 histones. However, the latter can serve as substrates in the presence of a stimulatory modulator as described by Kuo and Kuo (J. Biol. Chem. 251, 4283-4286 (1976)). With H2B histone as substrate high Mg2+ concentrations (50-100 mM) are necessary for the maximum rate of reaction. Although effects of the modulator and Mg2+ vary significantly with the histone fractions employed, analysis on the phosphorylation of histone fractions provides evidence that cyclic GMP-dependent protein kinase possesses an intrinsic activity that is similar to that of adenosine 3',5'-monophosphate-dependent protein kinase.  相似文献   

13.
Guanosine 3',5'-monophosphate (cyclic GMP)-dependent protein kinase purified from silkworm pupae reacts with rat liver ribosomal proteins when a stimulatory modulator (Kuo, W.N. & Kuo, J.F. 1976) J. Biol. Chem. 251, 4283-4286) is added to the reaction mixture. Judging from autoradiogram of the radioactive proteins separated by electrophoresis on sodium dodecyl sulfate-polyacrylamide slab gel, the protein kinase utilizes the same proteins as those phosphorylated by adenosine 3',5'-monophosphate (cyclic AMP)-dependent protein kinase. Fingerprint maps of the tryptic phosphopeptides of radioactive ribosomal proteins, which are phosphorylated by these two classes of protein kinases, are very similar. These results suggest that cyclic GMP-dependent protein kinase possesses an intrinsic activity that is similar to that of cyclic AMP-dependent protein kinase.  相似文献   

14.
15.
[3H]Dihydroalprenolol bound to a single population of high affinity sites in rat myocardial membranes when the concentration of the radioligand was below 5 nM. These sites displayed characteristics which would be expected of binding to the β-receptor. Kinetic- and Scatchard-derived dissociation constants were 0.6 and 2.0 nM, respectively. Binding was to a limited number of sites, 60 fmols/mg protein. Scatchard analysis using radioligand concentrations in excess of 5 nM resulted in concave upward plots suggestive of more than one population of binding sites. The lower affinity sites (labeled at high radioligand concentration) were non-stereospecific in nature and became a progressively larger fraction of “specific binding” as the concentration of dihydroalprenolol was increased above 5 nM.  相似文献   

16.
17.
Guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase (protein kinase G) partially purified from silkworm pupae was selectively activated by cyclic GMP at lower concentrations. Nevertheless, the enzyme seemed to differ from adenosine 3':5'-monophosphate-dependent protein kinase (protein kinase A) with respect to the mode of response to cyclic nucleotides. The catalytic activity and cyclic GMP-binding activity were not dissociated by cyclic GMP in a manner similar to that described for protein kinase A. The enzyme was not inhibited by regulatory subunit of protein kinase A nor by protein inhibitor. A sulfhydryl compound such as 2-mercaptoethanol or glutathione was essential for the activation by cyclic GMP, and an extraordinary high concentration of either Mg2+ (100 mM) or Mn2+ (25 mM) was needed for maximal stimulation by cyclic GMP. A polyamine such as spermine, spermidine, or putrescine could substitute partly for the cation. Kinetic analysis indicated that Km for ATP was decreased whereas Ka for cyclic GMP was increased significantly at high concentrations of the cation. The effect of the cation to decrease Km for ATP was not evident in the absence of a sulfhydryl compound. These characteristics of protein kinase G described above were not observed for protein kinase A which was obtained from the same organism.  相似文献   

18.
Incubation of purified cyclic guanosine 3':5'-monophospate-dependent protein kinase with [gamma-32P]ATP and Mg2+ led to formation of one 32P-labeled protein, Mr = 75,000, which corresponded to the single protein band detected after polyacrylamide gel electrophoresis in sodium dodecyl sulfate. When electrophoresis was performed without detergent, the labeled protein coincided with the position of cGMP-dependent protein kinase activity. Phosphorylation was enhanced severalfold by either histone or cAMP and was inhibited by the addition of cGMP. Low concentrations of cGMP blocked the stimulatory effects of cAMP or histone (or both). Since neither cAMP-dependent protein kinase nor cGMP-dependent phosphoprotein phosphatase activities were detected in the purified enzyme, we concluded that the cGMP-dependent protein kinase is a substrate for its own phosphotransferase activity and that other protein substrates (histone) and cyclic nucleotides modulate the process of self-phosphorylation.  相似文献   

19.
Guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase was purified from the guinea pig fetal lung, a tissue shown to be the richest in this enzyme in all mammalian sources examined, and its general properties studied. The enzyme was purified 150-fold from crude extract by steps of pH 5.4 isoelectric precipitation, Sephadex G-200 filtration, hydroxylapatite treatment and DEAE-cellulose chromatography. The purified enzyme, free from contamination with adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase, had a specific activity at least equivalent to 600-fold purification of the enzyme from the adult lung. The pulmonary enzyme exhibited an absolute requirement of protein kinase modulator (prepared from various mammalian tissues with an exception of skeletal muscle) for its activity. Inhibitor protein of cyclic AMP-dependent protein kinase purified from rabbit skeletal muscle could not stimulate nor inhibit the cyclic GMP target enzyme, indicating the factors from mammalian sources regulating the two classes of protein kinases may not be the same. The enzyme had Ka values of 1.3 times 10(-8) and 3.3 times 10(-8) M for 8-bromo cyclic GMP and cyclic GMP, respectively, compared to 3.0 times 10(-6) M for cyclic AMP. Cyclic GMP lowered the Km of the enzyme for ATP from 6.3 times 10(-5) M in its absence to 2.1 times 10(-5) M in its presence, accompanied by an approximate doubling of the Vmax. The molecular weight of the enzyme (assayed by its catalytic and cyclic GMP-binding abilities) was estimated to be 123,000, corresponding to a sedimendation coefficient of 7.06 S, by means of sucrose density gradient ultracentrifugation. The cyclic GMP-dependent enzyme required Mg2+ and Co2+ for its activity with optimal concentrations of about 30 and 0.7 mM, respectively. The maximal activity seen in the presence of Mg2+, however, was nearly twice as high as that seen in the presence of Co2+. Histones were generally effective substrates for the enzyme, whereas protamine, casein, phosvitin, phosphorylase kinase, and activator protein of phosphodiesterase were not. The cyclic GMP-dependent enzyme exhibited a greater affinity for histones than did the cyclic AMP-dependent enzyme in the presence of Mg2+.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号