首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
We have investigated the effects of fluctuations in deoxynucleoside triphosphate (dNTP) pool size on DNA repair and, conversely, the effect of DNA repair on dNTP pool size. In confluent normal human skin fibroblasts, dNTP pool size was quantitated by the formation of [3H]TTP from [3H]thymidine; DNA repair was examined by repair replication in cultures irradiated with UV light. As defined by HPLC analysis, the [3H]TTP pool was formed within 30 min of the addition of [3H]thymidine and remained relatively constant for the next 6 h. Addition of 2–10 mM hydroxyurea (HU) caused a gradual 2–4-fold increase in the [3H]TTP pool as HU inhibited DNA synthesis but not TTP production. No difference was seen between the [3H]TTP pool size in cells exposed to 20 M/m2 and unrradiated controls, although DNA-repair synthesis was readily quantitated in the former. This result was observed even though the repair replication protocol caused an 8–10-fold reduction in the size of the [3H]TTP pool relative to the initial studies. In the UV excision-repair studies the precense of hydroxyurea did not alter the specific activity of [3H] thymidine 5'-monophospahte incorporated into parental DNA due to repaier replication. These results suggest that fluctuations in the deoxynucleoside triphosphate pools do not limit the extent of excision-repair sythesis in human cells and demonstrate that DNA nucleotide excision-repair synthesis does not significantly diminish the size of the [3H]TTP pool.  相似文献   

2.
Mitochondrial DNA (m-DNA) content and factors which might control its concentration were investigated in the renoprival kidney at various times after unilateral nephrectomy. On the basis of mitochondrial protein, m-DNA increased 30% in the renoprival kidney at 24 hr and returned to normal by 48 hr. The total tissue content of m-DNA was also increased at 24 hr. The specific activity of [3H]thymidine incorporated into m-DNA in vivo was decreased markedly at 24 hr after mononephrectomy; at the same time there was a threefold increase of [3H]thymidine incorporation into total cellular DNA. The incorporation into m-DNA was above normal at 48 hr. The mitochondrial specific DNase was decreased 60% at 24 and 36 hr post-mononephrectomy. There was no significant difference in the total radioactivity or total optical density at 260 nm of the acid soluble extract from mitochondria isolated at various times after mononephrectomy. The incorporation of [3H]thymidine into TMP and TDP in the renoprival kidney was not different from normal but there was a decrease in the incorporation into TTP. It is suggested that the increase in mitochondrial DNA could be due to a decrease in the rate of degradation rather than an increase in synthesis.  相似文献   

3.
Neurons of the mouse were labeled with [3H]thymidine during their prenatal period of proliferation. The 3H activity of the Purkinje cell nuclei was then studied autoradiographically 8, 25, 55, and 90 days after birth. The measured grain number per nucleus decreased by about 14% between the 8th and 25th postnatal days and then remained constant up to 90 days. There was no significant decrease of the 3H activity of the Purkinje cell nuclei after correction of the measured grain number per nucleus for increasing nuclear volume of the growing Purkinje cells and for the influence of [3H]β self-absorption in the material of the sections. Injection of a high dose of [3H]thymidine into young adult mice did not result in 3H labeling of either Purkinje or other neurons in other brain regions. The results agree with the concept of metabolic stability of nuclear DNA. "Metabolic" DNA could not be observed in these experiments.  相似文献   

4.
We have investigated the effects of fluctuations in deoxynucleoside triphosphate (dNTP) pool size on DNA repair and, conversely, the effect of DNA repair on dNTP pool size. In confluent normal human skin fibroblasts, dNTP pool size was quantitated by the formation of [3H]TTP from [3H]thymidine; DNA repair was examined by repair replication in cultures irradiated with UV light. As defined by HPLC analysis, the [3H]TTP pool was formed within 30 min of the addition of [3H]thymidine and remained relatively constant for the next 6 h. Addition of 2-10 mM hydroxyurea (HU) caused a gradual 2-4-fold increase in the [3H]TTP pool as HU inhibited DNA synthesis but not TTP production. No difference was seen between the [3H]TTP pool size in cells exposed to 20 J/m2 and unirradiated controls, although DNA-repair synthesis was readily quantitated in the former. This result was observed even though the repair replication protocol caused an 8-10-fold reduction in the size of the [3H]TTP pool relative to the initial studies. In the UV excision-repair studies the presence of hydroxyurea did not alter the specific activity of [3H] thymidine 5'-monophosphate incorporated into parental DNA due to repair replication. These results suggest that fluctuations in the deoxynucleoside triphosphate pools do not limit the extent of excision-repair synthesis in human cells and demonstrate that DNA nucleotide excision-repair synthesis does not significantly diminish the size of the [3H]TTP pool.  相似文献   

5.
The primary pathway of TTP synthesis in the heart requires thymidine salvage by mitochondrial thymidine kinase 2 (TK2). However, the compartmentalization of this pathway and the transport of thymidine nucleotides are not well understood. We investigated the metabolism of [3H]thymidine or [3H]TMP as precursors of [3H]TTP in isolated intact or broken mitochondria from the rat heart. The results demonstrated that [3H]thymidine was readily metabolized by the mitochondrial salvage enzymes to TTP in intact mitochondria. The equivalent addition of [3H]TMP produced far less [3H]TTP than the amount observed with [3H]thymidine as the precursor. Using zidovudine to inhibit TK2, the synthesis of [3H]TTP from [3H]TMP was effectively blocked, demonstrating that synthesis of [3H]TTP from [3H]TMP arose solely from the dephosphorysynthase pathway that includes deoxyuridine triphosphatelation of [3H]TMP to [3H]thymidine. To determine the role of the membrane in TMP metabolism, mitochondrial membranes were disrupted by freezing and thawing. In broken mitochondria, [3H]thymidine was readily converted to [3H]TMP, but further phosphorylation was prevented even though the energy charge was well maintained by addition of oligomycin A, phosphocreatine, and creatine phosphokinase. The failure to synthesize TTP in broken mitochondria was not related to a loss of membrane potential or inhibition of the electron transport chain, as confirmed by addition of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone and potassium cyanide, respectively, in intact mitochondria. In summary, these data, taken together, suggest that the thymidine salvage pathway is compartmentalized so that TMP kinase prefers TMP synthesized by TK2 over medium TMP and that this is disrupted in broken mitochondria.  相似文献   

6.
Treatment of Physarum polycephalum with cycloheximide during the DNA synthesis period resulted in a reduction in the incorporation of [3H]thymidine into DNA. This effect was caused by both a reduction in the specific activity of TTP and by an inhibition of progeny strand elongation within replication units. No effect of the drug on the initiation of synthesis of replication units or on the ligation of DNA fragments was detected.  相似文献   

7.
Fifty adult newts were used in this investigation; in 44 animals, the intestine was transected perpendicular to its longitudinal axis approximately midway between pylorus and rectum. The free ends of the intestine were held in apposition with a single suture and replaced into the coelom. The animals were injected intraperitoneally with [3H]thymidine from 0 to 35 days after transection of the intestine and killed 6 hr later. In nontransected, control intestines, the only tissue that incorporated [3H]thymidine was the mucosal epithelium. In transected intestines, only the mucosal epithelium labeled in animals which had been injected with [3H]thymidine from 0 to 4 days after the intestine was incised. Later on, serosal cells and smooth muscle cells of the intestinal stump underwent morphological alteration, initiated the incorporation of [3H]thymidine into DNA, and began replication. At 6 days after transection, serosal cells adjacent to the plane of transection were incorporating [3H]thymidine and, at 12 days, smooth muscle cells at the transected surface were labeling. It seems probable that they both furnished cells to the intestinal blastema; the lining epithelium of the mucosa, however, did not appear to contribute to the blastema proper.  相似文献   

8.
The feeding of a high-fat diet to adult rats was shown to increase the incorporation of [3H]thymidine into DNA of the adipocyte and stromal fractions. After only 2 days on a high-fat diet there was a marked increase in the incorporation of label. When a 2-week period was interposed between [3H]thymidine administration and determination of DNA specific activity, the greatest increase in incorporation of label was found after 1 week on the diet, when incorporation increased 6-fold or more in both adipocytes and stroma and subsequently decreased to stabilize at a level two or three times that of chow-fed rats in the adipocyte fraction. Rats labeled when young and later placed on a high-fat diet showed a decrease in DNA specific activity in both adipocytes and stroma, confirming that cellular proliferation had occurred in both fractions. The specific activities of both stromal and adipocyte DNA were very similar at all time points studied. An attempt to increase the difference in specific activities by waiting many weeks after [3H]thymidine injection before isolating DNA was not successful. This may be because the total amount of DNA in the stromal and adipocyte fractions increases in parallel on the diet. The significance of these findings in terms of the normal turnover of adipose tissue DNA and the responsiveness to diet is discussed.  相似文献   

9.
Incorporation of [3H]thymidine into DNA and of [35S]sulfate into sulfatides of oligodendroglial cells isolated from brain slices incubated with the radioactive precursor was studied in normal and malnourished rats at different ages. The pattern and the values of incorporation of [3H]thymidine into DNA were similar in both groups of animals. The maximum value of incorporation was observed at 7 days of age decreasing rapidly thereafter and leveling off between 18–21 days. In both groups of animals labeling of sulfatides attained a maximum at 18 days of age, showing similar values of incorporation up to that age. However, at 21 days of age; the values corresponding to malnourished rats were found to be 40% lower in comparison to controls. The results suggest that (a) proliferation of oligodendroglial cells stops at similar ages in normal and malnourished rats, (b) expression of sulfatide synthesis by oligodendroglial cells is similar in both groups of animals up to 18 days, and (c) the starved rats seem to be unable to maintain normal synthesis of these galactolipids throughout the entire period of active myelinogenesis.  相似文献   

10.
In cultures of a murine mastocytoma, endogenous synthesis of thymidine phosphates, as determined by the incorporation of [3H]deoxyuridine into DNA, was reduced within 15 min to less than 3% of control values by the addition of amethopterin (10 µM) in combination with hypoxanthine and glycine. If [3H]thymidine and unlabeled thymidine were added simultaneously with amethopterin, the increase with time of radioactivity in cellular DNA was linear at least between 30 and 90 min, while radioactivity in the acid-soluble nucleotide fraction remained constant during this time interval, indicating that intracellular thymidine nucleotides had the same specific activity as exogenously supplied [3H]thymidine. This permitted calculation of the amount of thymidine incorporated per hour into DNA of 106 cells. In conjunction with the base composition of mouse DNA, these results were used to calculate rates of DNA synthesis. Cell proliferation rate, cell cycle time, and the duration of the S period were not affected to any appreciable extent by the addition of amethopterin and thymidine. Rates of DNA synthesis, as derived from thymidine incorporation rates, were in good agreement with those derived from the measured mean DNA content of exponentially multiplying cells and rates of cell proliferation.  相似文献   

11.
OBJECTIVE: To monitor liver regeneration following partial hepatectomy, liver cell proliferation can be measured by assaying in vivo [3H]thymidine incorporation into liver cell DNA. We hypothesized that [3H]thymidine incorporation into whole liver tissue parallels [3H]thymidine incorporation into liver cell DNA, both in high proliferating and low proliferating liver. STUDY DESIGN: Liver cell proliferation in rats after partial hepatectomy or a sham operation was studied by measuring incorporation of [3H]thymidine into various fractions of liver tissue on days 1, 2, 3, 4 and 10 after surgery. RESULTS: [3H]thymidine incorporation into whole liver tissue and in the protein fraction correlated well with DNA-specific [3H]thymidine incorporation into regenerating (r > .80, P < .0001) and nonregenerating liver (r > .69, P < .005). [3H]thymidine incorporation into DNA was < 5% of the total amount of administered [3H]thymidine in both sham-operated and hepatectomized rats. Significant differences in [3H]thymidine incorporation into partially hepatectomized livers as compared to sham-operated rat livers were found on days 1 and 2 (whole liver tissue and protein fraction) or day 1 (DNA) after surgery. CONCLUSION: [3H]thymidine incorporation into whole liver tissue is a simple technique that can be used for the study of liver cell proliferation after partial hepatectomy in rats.  相似文献   

12.
[3H] DNA fromEscherichia coli and [3H] thymidine were applied, in sterile conditions, on isolated barley embryos and on roots excised from these embryos, both cultivated in the liquid medium and on halves of barley seeds, through the endosperm bridge. In embryos and roots, the labelled compounds were applied in 1.5% sucrose + 0.2 SSC alone, or together with either unlabelled thymidine or DEAE-dextran. Similar labelling indices were found after [3H] thymidine and [3H] DNA treatment which shows that the activity of [3H] DNA is utilized during the S phase. After application of [3H] thymidine, only cell nuclei in S phase were labelled. After the application of [3H] DNA an extranuclear label, in addition to the labelling of nuclei in the S phase, was observed in some experimental variants. The density of label above labelled nuclei after [3H] DNA treatment sharply decreased when unlabelled thymidine or DEAE-dextran was added, while the density of label above nuclei labelled by [3H] thymidine decreased when unlabelled thymidine but not DEAE-dextran was added. The labelling of nuclei with the label from [3H] DNA is the result of degradation of exogenous DNA reutilization of low molecular weight products. Extranuclear labelling is most probably due to the polymerous or partly degraded DNA.  相似文献   

13.
We recently purified luteinizing hormone (LH)-isoforms with renotropic activity from ovine pituitaries based on the stimulation of [3H] thymidine incorporation into renal DNA of castrated-hypophysectomized rats. In this study, we examined the hormonal interactions between ovine growth hormone (GH) and this LH-isoform in renal DNA synthesis. A single injection of LH-isoform (40 micrograms) significantly increased [3H] thymidine incorporation, but an injection of GH (200 micrograms) did not, during experimental periods of up to 26 hours. Repetitive ovine GH treatment (5 days) did not change basal [3H] thymidine incorporation, either, although its biological activity was evidenced by an increase in insulin-like growth factor-I (IGF-I). Stimulated [3H] thymidine incorporation by LH-isoform (100 micrograms) was significantly suppressed by an injection of GH (200 micrograms) and was, to a greater extent, by repetitive treatment with GH (200 micrograms/day, for 3 or 5 consecutive days). These results demonstrated one example of the effect of complex hormonal interactions on kidney growth.  相似文献   

14.
Human peripheral lymphocytes were activated by ConA in serum-free culture medium, supplemented by BSA. Incorporation of [3H]thymidine into DNA, of [3H]uridine into RNA and of oleate or acetate into membrane phospholipids was investigated. DNA synthesis could be completely inhibited by αMM or by anti-ConA-IgG. Fab and F(ab)2 fragments of the anti-ConA were equally active. When αMM or anti-ConA was added to cultures at different times after stimulation with ConA, incorporation of [3H]thymidine into DNA (measured after 72 h) could be prevented up to 6–8 h completely and up to 20–30 h partially. Incorporation of [3H]uridine into RNA could be arrested at any time of the culture up to 40 h at the level it had reached but did not reverse to the level of unstimulated cells for a long time. In contrast, incorporation of oleate into lecithin returned to the level of unstimulated cells within 2–3 h after removal of ConA. This suggests that the activation of the phospholipid turnover in stimulated cells is a direct consequence of the presence of the mitogen at the membrane and thus may be a critical initial event in lymphocyte activation.  相似文献   

15.
Incorporation of [3H]TTP into DNA by pea chloroplast extractswas highly dependent on the age of the tissue from which plastidswere prepared. Catalytic activity was greatest in samples from6- to 9-d-old plants; preparations from more mature tissueswere much less effective. Moreover, activity was 3 to 10 timesgreater in younger tissues regardless of whether chlorophyll,protein or plastid number was used as the index of comparison.Enzymes from the first (oldest), second, third, and fourth (youngest)leaves of the same plants were also studied. Again, activitywas 4 to 10 times greater in samples from the youngest tissues.When plastid extracts from older leaves were mixed with thosefrom younger tissues, they did not reduce synthesis. Thus, thedecline in activity does not appear to be due to the productionof an inhibitor during plant development. One explanation forthese data is that enzymes of ctDNA replication, such as DNApolymerase, vary in activity during leaf development; thereforechanges in enzyme levels may be an important factor in controllingchloroplast DNA replication during development. We have alsoexamined the incorporation of [3H]TTP into DNA by isolated intactpea chloroplasts; in general, labelled TTP was less readilyincorporated into chloroplast DNA than was [3H]thymidine. Key words: Chloroplast DNA replication, chloroplast DNA polymerase  相似文献   

16.
A direct comparison of [3H]thymidine incorporation with DNA synthesis was made by using an exponentially growing estuarine bacterial isolate and the naturally occurring bacterial populations in a eutrophic subtropical estuary and in oligotrophic offshore waters. Simultaneous measurements of [3H]thymidine incorporation into DNA, fluorometrically determined DNA content, and direct counts were made over time. DNA synthesis estimated from thymidine incorporation values was compared with fluorometrically determined changes in DNA content. Even after isotope dilution, nonspecific macromolecular labeling, and efficiency of DNA recovery were accounted for, [3H]thymidine incorporation consistently underestimated DNA synthesized by six- to eightfold. These results indicate that although the relationship of [3H]thymidine incorporation to DNA synthesis appears consistent, there are significant sources of thymine bases incorporated into DNA which cannot be accounted for by standard [3H]thymidine incorporation and isotope dilution assays.  相似文献   

17.
The phosphorylation of thymidine, deoxycytidine, deoxyadenosine and deoxyguanosine was studied during the embryogenesis of the sea urchin Hemicentrotus pulcherrimus. [3H]Thymidine was taken up, phosphorylated and accumulated mostly as [3H]thymidine triphosphate in the early cleavage stage embryos. As the embryos developed, the formation of [3H]thymidine triphosphate decreased and most of the [3H]thymidine taken up by the blastulae remained be phosphorylated. When [3H]deoxycytidine was added to the cleaving embryos, the resultant labeled pool consisted of almost equal amounts of [3H]deoxycytidine monophosphate and [3H]deoxycytidine triphosphate. The formation of [3H]deoxycytidine monophosphate increased up to 10 hr following fertilization and then decreased, while the formation of [3H]deoxycytidine triphosphate decreased for 10 hr following fertilization and then gradually increased. [3H]Deoxyadenosine was rapidly phosphorylated to monophosphate derivative in the cleavage stage embryos. The formation of [3H]deoxyadenosine triphosphate increased rapidly after cleavage stage with a concomitant decrease of [3H]deoxyadenosine monophosphate. The activity of phosphorylation in [3H]deoxyguanosine to triphosphate derivative increased rapidly reaching a plateau 10 hr after fertilization. At this point, 80 % of the [3H]deoxyguanosine was recovered as [3H]deoxyguanosine triphosphate. Based on the above results, it was concluded that the profile of production of each deoxyribonucleoside triphosphate changed during the embryogenesis of the sea urchin, and the in vivo rate-limiting step of phosphorylation of the individual deoxyribonucleoside was assumed to be different.  相似文献   

18.
The validity of using the incorporation of [3H]thymidine into DNA as an indicator of epidermal keratinocyte proliferation in vitro has been investigated. Other parameters of cell proliferation, direct count of cell number and measurement of DNA content, consistently fail to correlate with changes in [3H]thymidine incorporation into DNA in primary and first passage cultures of rabbit and human epidermal keratinocytes. Maximum incorporation of [3H]thymidine precedes the active growth period by three days. Incorporation declines markedly during the proliferative period. Thymidine kinase activity decreases during the proliferative growth phase. Incorporation of another pyrimidine nucleotide precursor, [14C]aspartic acid, suggests that in epidermal keratinocytes in vitro the extent of utilization of the salvage and the de novo pathways may be inversely related. In such cases [3H]thymidine incorporation into TCA precipitable material fails to reflect accurately cell proliferation.  相似文献   

19.
In vivo and in vitro (tissue slices) incorporation of labeled precursors into DNA, RNA, and proteins was measured in mitochondria obtained from cerebral hemispheres, cerebellum, and brain stem of rats at different days of postnatal development. To compare the synthesis of macromolecules in mitochondria with that in other subcellular fractions, the incorporation of labeled precursors into DNA, RNA, and proteins extracted from nuclei and into RNA and proteins extracted from microsomes and cytoplasmic soluble fractions was also measured.The results obtained showed that the incorporation of [3H]thymidine into DNA and of [14C]leucine into proteins of nuclei and mitochondria from the various brain regions examined decreased during postnatal development, however, at 30 days of age the specific radioactivity of mitochondrial DNA was higher than that of nuclear DNA. [3H]Uridine incorporation into RNA decreased from 10 to 30 days of age in nuclei while in mitochondria it was quite similar at both ages. This result may be due to a faster turnover of mitochondrial RNA compared to that of mitochondrial DNA and proteins. The results obtained suggest an active biosynthesis of macromolecules in brain mitochondria and might indicate an intense biogenesis of these organelles in rat brain during postnatal development.Preliminary reports of these results were presented at the XI FEBS Meeting, Copenhagen, August 14–19, 1977, Poster number A2-2-155-3, and at III Meeting of Italian Biochem. Soc., Siena, October 3–5, 1977, Abstract C6.  相似文献   

20.
The molar proportions and relative rates of synthesis of histones in normal and hypophysectomized rat testis seminiferous epithelial cells were determined. After hypophysectomy the molar proportions of histones H1, H2B and (H2A + protein A24) in seminiferous epithelial cells of rat testis increased while their corresponding variants TH1-x, TH2B-x and X2 decreased, but the molar proportions of major-class histones (i.e., sum of subfractions) remained relatively constant and similar to the proportions in somatic cells. The apparent molar proportions of the labeled histones, determined immediately after 2-h periods of [3H]leucine incorporation, were much higher relative to H4 than the proportions of total histones determined by dye binding. The values, however, approached the molar proportions of total histones when rats were killed 11 days after the [3H]leucine injection. Two-dimensional gel electrophoresis confirmed that the high initial molar proportions relative to H4 by [3H]leucine incorporation were not due to the possible contamination by highly-labeled non-histone proteins. The specific activity of histone H4 relative to the specific activity of DNA, determined immediately after 3-h periods of [3H]leucine and [14C]thymidine incorporations was similar to the value when rats were killed 13 days after the injections. It is proposed that histones of seminiferous epithelial cells are synthesized disproportionally relative to H4 and in excess of the quantities required for polynucleosome assembly. The excess histones are subsequently displaced or degraded slowly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号