首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
玉米根系水流导度差异的生理形态原因分析   总被引:3,自引:1,他引:2  
在人工气候室水培条件下,研究了水分胁迫对不同基因型玉米杂交种及其亲本根系水流导度(Lpr)变化的影响,并从生理和形态角度对其差异进行了分析。结果表明:表型抗旱的杂交种F1代(户单四号)整株根系水流导度最高,具有根系水流导度上的杂种优势现象。对其差异的生理和形态因素分析表明,F1代水流导度高与其高脯氨酸含量、低MDA含量和低质膜透忡有关。同时表明,根系的形态特征对根系的水流导度也存在一定的影响。  相似文献   

3.
Although deep roots can contribute substantially to whole-tree water use, little is known about deep root functioning because of limited access for in situ measurements. We used a cave system on the Edwards Plateau of central Texas to investigate the physiology of water transport in roots at 18-20 m depth for two common tree species, Quercus fusiformis and Bumelia lanuginosa. Using sap flow and water potential measurements on deep roots, we found that calculated root hydraulic conductivity (RHC) fluctuated diurnally for both species and decreased under shading for B. lanuginosa. To assess whether these dynamic changes in RHC were regulated during initial water absorption by fine roots, we used an ultra-low flowmeter and hydroxyl radical inhibition to measure in situ fine root hydraulic conductivity (FRHC) and aquaporin contribution to FRHC (AQPC), respectively. During the summer, FRHC and AQPC were found to cycle diurnally in both species, with peaks corresponding to the period of highest transpirational demand at midday. During whole-tree shade treatments, B. lanuginosa FRHC ceased diurnal cycling and decreased by 75 and 35% at midday and midnight, respectively, while AQPC decreased by 41 and 30% during both time periods. A controlled growth-chamber study using hydroponically grown saplings confirmed daily cycling and shade-induced reductions in FRHC and AQPC. Winter measurements showed that the evergreen Q. fusiformis maintained high FRHC and AQPC throughout the year, while the deciduous B. lanuginosa ceased diurnal cycling and exhibited its lowest annual values for both parameters in winter. Adjustments in FRHC and AQPC to changing canopy water demands may help the trees maintain the use of reliable water resources from depth and contribute to the success of these species in this semi-arid environment.  相似文献   

4.
The importance of aquaporins for root hydraulic conductance (LP) was investigated along roots of the desert succulent Agave deserti in wet, dry and rewetted soil. Water channel activity was inferred from HgCl2‐induced reductions of LP that were reversible by 2‐mercaptoethanol. Under wet conditions, HgCl2 reduced LP for the distal root region by 50% and for the root region near the shoot base by 36% but did not affect LP for the mid‐root region. For all root regions, LP decreased by 30–60% during 10 d in drying soil and was not further reduced by HgCl2. After soil rewetting, LP increased to pre‐drying values and was again reduced by HgCl2 for the distal and the basal root regions but not the mid‐root region. For the distal region, water channels in the epidermis/exodermis made a disproportionately large contribution to radial hydraulic conductance of the intact segment; for the basal region, water channel activity was highest in the cortex and endodermis. The role of water channels was greatest in tissues in which cells were metabolically active both in the distal root region, where new apical growth occurs in wet soil, and in the basal region, which is the most likely root region to intercept light rainfall.  相似文献   

5.
Aspen (Populus tremuloides Michx.) roots were treated with cycloheximide, a protein synthesis inhibitor, to examine the role of protein synthesis in root water transport and plant water relations. Within less than 30 min following root application, cycloheximide inhibited steady‐state root water flow rates and 1 h after the application of 1 mm cycloheximide, root hydraulic conductivity had decreased by 85% compared with control roots. However, stomatal conductance showed a significant inhibition only after 2 h following cycloheximide treatment. The reduction in root hydraulic conductivity was accompanied by an almost three‐fold increase in the apoplastic water flow ratio as determined by the trisodium 3‐hydroxy‐5,8,10‐pyrenesulphonate tracer dye. Cycloheximide‐treated roots showed a decrease in the immunostaining intensity of a 32 kDa microsomal protein band that immunoreacted with the AnthPIP1; 1 antibody suggesting a decrease in the membrane aquaporin expression. These changes occurred without severe metabolic disruptions as measured by root respiration. The results point to the importance of protein‐mediated transport in roots and the rapidity of response suggests that protein synthesis may be used as a principal regulatory mechanism in root water transport in aspen.  相似文献   

6.
Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well‐watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well‐watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co‐locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response.  相似文献   

7.
以矮化红富士苹果幼苗为试验材料,采用交替滴灌(ADI)、固定滴灌(FDI)和常规滴灌(CDI)3种滴灌方式和3种灌水量对苹果幼苗的生理特性和水分利用效率进行了研究,以阐明根系分区交替灌溉下苹果幼苗生理特性和节水机理.结果表明:与CDI方式相比,当灌水定额由20 mm增大到30 mm时,ADI方式提高了苹果幼苗根干重、根系导水率、叶水势和净光合速率,降低了其蒸腾速率、棵间蒸发量和蒸散量,从而使得ADI方式下的叶片水分利用效率、总水分利用效率和灌溉水分利用效率较CDI方式大大提高;3种滴灌方式的根系导水率均存在显著的季节变化,并以8月份最大,12月份最小;与CDI方式相比, ADI和FDI方式在节水达33.3%时的平均根系导水率仅分别降低了5.81%和14.7%,但水分利用效率、灌溉水利用效率分别较CDI方式高出16.31%和14.48%、40.52%和27.65%.可见,局部根区灌溉方式能促进苹果幼苗生长和光合作用,并主要通过提高根系导水率的途径来提高水分利用效率.  相似文献   

8.
采用砂培法在甜瓜不同生育时期用不同浓度咸水灌溉条件下,研究甜瓜叶片膜脂过氧化和保护酶活性的变化.结果表明,甜瓜叶片丙二醛(MDA)含量随咸水浓度的增加和处理时间的延长而增加,并且处理时期越早其含量越低;叶片细胞膜伤害率(MIP)在持续处理中随浓度增加而上升,而在其它处理中呈先下降再上升的趋势;各处理的CAT活性均高于对照,随咸水浓度的增加,CAT活性表现出先上升后下降的趋势,而SOD和POD活性基本上都是持续下降的趋势.研究发现,甜瓜在不同生育期所适宜灌溉咸水的最大浓度不同,其中伸蔓期约为7 g/L,开花坐果期和果实发育期约为5 g/L;不同保护酶的活性在咸水灌溉条件下变化规律不一致,不能有效反映甜瓜对咸水灌溉的适应程度.  相似文献   

9.
The water permeability (hydraulic conductivity; Lp) of turgid, intact internodes of Chara corallina decreased exponentially as the concentration of osmolytes applied in the medium increased. Membranes were permeable to osmolytes and therefore they could be applied on both sides of the plasma membrane at concentrations of up to 2.0 m (5.0 MPa of osmotic pressure). Organic solutes of different molecular size (molecular weight, MW) and reflection coefficients (σs) were used [heavy water HDO, MW: 19, σs: 0.004; acetone, MW: 58, σs: 0.15; dimethyl formamide (DMF), MW: 73, σs: 0.76; ethylene glycol monomethyl ether (EGMME), MW: 76, σs: 0.59; diethylene glycol monomethyl ether (DEGMME), MW: 120, σs: 0.78 and triethylene glycol monoethyl ether (TEGMEE), MW: 178, σs: 0.80]. The larger the molecular size of the osmolyte, the more efficient it was in reducing cell Lp at a given concentration. The residual cell Lp decreased with increasing size of osmolytes. The findings are in agreement with a cohesion/tension model of the osmotic dehydration of water channels (aquaporins; AQPs), which predicts both reversible exponential dehydration curves and the dependence on the size of osmolytes which are more or less excluded from AQPs (Ye, Wiera & Steudle, Journal of Experimental Botany 55, 449–461, 2004). In the presence of big osmolytes, dehydration curves were best described by the sum of two exponentials (as predicted from the theory in the presence of two different types of AQPs with differing pore diameters and volumes). AQPs with big diameters could not be closed in the presence of osmolytes of small molecular size, even at very high concentrations. The cohesion/tension theory allowed pore volumes of AQPs to be evaluated, which was 2.3 ± 0.2 nm3 for the narrow pore and between 5.5 ± 0.8 and 6.1 ± 0.8 nm3 for the wider pores. The existence of different types of pores was also evident from differences in the residual Lp. Alternatively, pore volumes were estimated from ratios between osmotic (Pf) and diffusional (Pd) water flow, yielding the number of water molecules (N) in the pores. N-values ranged between 35 and 60, which referred to volumes of 0.51 and 0.88 nm3/pore. Values of pore volumes obtained by either method were bigger than those reported in the literature for other AQPs. Absolute values of pore volumes and differences obtained by the two methods are discussed in terms of an inclusion of mouth parts of AQPs during osmotic dehydration. It is concluded that the mouth part contributed to the absolute values of pore volumes depending on the size of osmolytes. However, this can not explain the finding of the existence of two different types or groups of AQPs in the plasma membrane of Chara.  相似文献   

10.
Responses to salinity of grapevine plants with split root systems   总被引:3,自引:0,他引:3  
  相似文献   

11.
Apical root meristems and segments of root elongation zone were sampled from 4- to 5-day-old Zea mays L. seedlings. The vacuolar ATPase and pyrophosphatase, the tonoplast marker enzymes, and the tonoplast -, -, and -aquaporins were visualized by means of indirect immunofluorescent microscopy with the use of the respective antibodies. Following cell plasmolysis (700 mM mannitol, 2.5 h), the vacuolar ATPase and pyrophosphatase were detected in cell wall pores where plasmodesmata remained detached from the plasmolyzed protoplasts. This finding provides further evidence for existence of the vacuolar symplast in the elongation zone of maize root, which may ensure intercellular continuity of plant tissues. The pulsed NMR method was used to study the self-diffusion of water molecules. The diffusive decay in the root elongation zone was nonexponential, and it was transformed to three exponential terms with characteristic coefficients of self-diffusion; two of these coefficients (D 2 and D 3) characterize the water self-diffusion in the cytoplasmic and vacuolar symplasts of root, respectively. The root apical meristem was also investigated with NMR technique by virtue of paramagnetic doping of the apoplast. This approach allowed selective studying of water diffusion within the symplast compartments. Partial dehydration with PEG-6000, 12 and 20%, for 2.5 h and chemical stressors (ABA and salicylic acid, 0.1 mM, 24 h) were applied to modify water permeability of plasmodesmata and tonoplast aquaporins. The transcellular water permeability increased in the root meristem under the action of all stress factors. In the root elongation zone exposed to partial dehydration, the water exchange in the apoplast became the dominant component. Other stress factors affected water relations in different manners. ABA elevated the water permeability of the vacuolar symplast, in contrast to salicylic acid that decreased water conductance of both the cytoplasmic and vacuolar symplasts.  相似文献   

12.
The role of aquaporins in root water uptake   总被引:42,自引:0,他引:42  
Javot H  Maurel C 《Annals of botany》2002,90(3):301-313
The capacity of roots to take up water is determined in part by the resistance of living tissues to radial water flow. Both the apoplastic and cell-to-cell paths mediate water transport in these tissues but the contribution of cell membranes to the latter path has long been difficult to estimate. Aquaporins are water channel proteins that are expressed in various membrane compartments of plant cells, including the plasma and vacuolar membranes. Plant aquaporins are encoded by a large multigene family, with 35 members in Arabidopsis thaliana, and many of these aquaporins show a cell-specific expression pattern in the root. Mercury acts as an efficient blocker of most aquaporins and has been used to demonstrate the significant contribution of water channels to overall root water transport. Aquaporin-rich membranes may be needed to facilitate intense water flow across root tissues and may represent critical points where an efficient and spatially restricted control of water uptake can be exerted. Roots, in particular, show a remarkable capacity to alter their water permeability over the short term (i.e. in a few hours to less than 2-3 d) in response to many stimuli, such as day/night cycles, nutrient deficiency or stress. Recent data suggest that these rapid changes can be mostly accounted for by changes in cell membrane permeability and are mediated by aquaporins. Although the processes that allow perception of environmental changes by root cells and subsequent aquaporin regulation are nearly unknown, the study of root aquaporins provides an interesting model to understand the regulation of water transport in plants and sheds light on the basic mechanisms of water uptake by roots.  相似文献   

13.
14.
Changes in the root diameter were measured in wheat, Triticum aestivum L., using a sensor of small displacements in osmotic experiments, and the hydraulic conductivity (L p) of the root was calculated by the method of initial flows. The L p decreased by two to three times during 30-min exposure in 0.1–9 mM H2O2. In 150 mM NaCl, changes in L p exhibited two-phase kinetics: an initial increase in L p by two and a half to three times, followed by a decrease to 1.6–50% of the control level within the subsequent 24 h. After one-day-long exposure of the roots in a solution containing 150 mM NaCl and 100 mg/l catalase, L p did not differ from the control level. Root pretreatment with salicylate, which promotes the formation of H2O2, prevented the initial increase in L p in 150 mM NaCl, probably, due to a drastic L p decrease. The activity of guaiacol peroxidase in the roots increased by three times within the 20-min exposure of the roots to the salt solution. The data suggest that hydrogen peroxide can mediate the L p decrease during the first day of salinity stress.  相似文献   

15.
Understanding how water-use regulation relates to biomass accumulation is imperative for improving crop production in water-limited environments. Here, we examine how the vulnerability of xylem to water stress-induced cavitation and the coordination between water transport capacity and assimilation (A) influences diurnal water-use efficiency (WUE) and dry-matter production in Lolium perenne L. - a commercial forage grass. Plants were exposed to a range of water stresses, causing up to 90% leaf death, by withholding water and then rewatering to observe the recovery process. Leaf hydraulic conductance (K(leaf) ) declined to 50% of maximum at a leaf water potential (ψ(leaf) ) of -1 MPa, whereas complete stomatal closure occurred well after this point, at -2.35 MPa, providing no protection against hydraulic dysfunction. Instantaneous A remained maximal until >70% of hydraulic conductivity had been lost. Post-stress rewatering showed that 95% loss of K(leaf) could be incurred before the recovery of gas exchange exceeded 1 d, with a rapid transition to leaf death after this point. Plants exposed to sustained soil water deficits through restricted nightly watering regimes did not suffer cumulative losses in K(leaf) ; instead, ψ(leaf) and gas exchange recovered diurnally. The effect was improved WUE during the day and optimal ψ(leaf) during the night for the maintenance of growth.  相似文献   

16.
The drought‐sensitivity of oilseed rape (OSR, Brassica napus cv. SW Landmark) was investigated, using the more widely studied crop species wheat (Triticum aestivum cv. Tybalt) as a benchmark. The water relations of OSR and wheat were compared in lysimeter and controlled environment experiments to test the hypothesis that the growth of OSR is restricted to a greater extent by soil drying than wheat and to determine whether the greater sensitivity results from differences in root or shoot traits. Plants were grown, with or without irrigation, in 1.2 m tall lysimeters packed with a sandy clay loam soil. The experiment was conducted in an open‐sided glasshouse to encourage air flow and to resemble a field environment as far as possible; plant population densities were equivalent to commercial crops. Irrigated OSR (evapo)transpired more water than wheat (498 vs. 355 mm), but had a comparable water use efficiency (WUE; 4.1 vs. 4.4 g DW mm?1 H2O). Oilseed rape showed a greater reduction in above‐ground growth (52% vs. 21%) and a smaller increase in WUE (27% vs. 45%) when water was withheld. Oilseed rape also responded to soil drying at a lower soil moisture deficit than wheat; transpiration rates fell below the potential of irrigated plants when plant available water remaining in the soil profile declined from 54 to 23% compared to 38 to 9% for wheat. The root hydraulic conductivity of young OSR plants, measured on root surface area basis, was about twice that of wheat, and was comparable on a root length basis. The results show that OSR was more sensitive to a restricted water supply than the benchmark species wheat and that the greater sensitivity resulted from differences in shoot, rather than root, characteristics. The root system of OSR was at least as efficient as wheat at extracting water from soil.  相似文献   

17.
Studies have suggested that increased root hydraulic conductivity in mycorrhizal roots could be the result of increased cell‐to‐cell water flux via aquaporins. This study aimed to elucidate if the key effect of the regulation of maize aquaporins by the arbuscular mycorrhizal (AM) symbiosis is the enhancement of root cell water transport capacity. Thus, water permeability coefficient (Pf) and cell hydraulic conductivity (Lpc) were measured in root protoplast and intact cortex cells of AM and non‐AM plants subjected or not to water stress. Results showed that cells from droughted‐AM roots maintained Pf and Lpc values of nonstressed plants, whereas in non‐AM roots, these values declined drastically as a consequence of water deficit. Interestingly, the phosphorylation status of PIP2 aquaporins increased in AM plants subjected to water deficit, and Pf values higher than 12 μm s?1 were found only in protoplasts from AM roots, revealing the higher water permeability of AM root cells. In parallel, the AM symbiosis increased stomatal conductance, net photosynthesis, and related parameters, showing a higher photosynthetic capacity in these plants. This study demonstrates a better performance of AM root cells in water transport under water deficit, which is connected to the shoot physiological performance in terms of photosynthetic capacity.  相似文献   

18.
黄土高原地区春小麦对有限灌溉的反应及其生理生态基础   总被引:3,自引:1,他引:2  
鄢Xun  王俊 《西北植物学报》2001,21(4):791-795
从对黄土高原地区有限灌溉条件下作物生理生态反应的众多研究中得出:(1)水分轻度亏缺时,作物可通过根信号物质ABA调节叶片的气孔导度。非水力根信号作用太强,可因降低光合作用而减少干物质生产和影响干物质分配模式而影响产量和水分利用效率,故削弱非水力根信号的作用将有利于提高产量。(2)浅层根系占根系总量比值越高,对干旱越敏感,表现为根信号能力增强;深层根系所占比例越高,越有利于土壤深层水分利用,并可削弱根信号,同理,给土壤中下层补水或采用播种前灌溉,可因为减少了无效蒸发,且削弱根信号而提高水分利用率。(3)本地区有限灌溉的最佳时期由于降水变率较高而变得较为复杂,不同降水年型,最佳灌溉时期差异很大,对有限灌溉进行科学管理还需要做更多的研究工作。  相似文献   

19.
树木叶片的水力效率和安全性会对水分条件的改变做出一定的响应, 进而影响树木的生长和分布, 然而叶导水率(Kleaf)和叶水力脆弱性(P50)对不同水分条件的响应模式及其影响因素尚不清楚。该研究选取了晋西北关帝山和黑茶山两种水分条件下的8种树种, 测量其水力性状、叶片导管和形态性状, 比较两地不同树种的KleafP50的变化, 分析叶片水力效率和安全性之间的权衡关系, 并探讨叶片水力性状在不同树种及水分条件下的响应模式及其驱动因素。结果表明: 对同一树种而言, 湿润的关帝山叶最大导水率(Kmax)和P50均高于干旱的黑茶山; 对同一地区而言, 从在高水分条件下生长的树种到在易干旱环境生长的树种, KmaxP50均逐渐下降。KmaxP50、膨压丧失点水势(TLP)之间均存在显著相关关系。两地叶片P50与导管密度、导管塌陷预测值((t/b)3)、叶片厚度、比叶质量显著正相关, 与导管直径、叶面积显著负相关, 不同树种的KleafP50与叶导管性状的关系大于叶形态性状。同一树种的关帝山到黑茶山P50变化量(δP50)与比叶质量和叶干物质含量在两地的变化量显著正相关, 同一树种δP50与叶形态性状变化量的关系大于与叶导管性状的。以上结果表明: 随着水分条件变差, 叶片水力效率降低, 水力安全性提高, 不同树种叶片水力效率与安全性之间存在一定的权衡关系, 不同树种叶水力性状的差别受叶导管性状影响的程度大于受叶形态性状的影响, 同一树种叶水力安全性对水分条件变化的响应主要依靠叶形态性状的驱动, 树木在提高自身叶水力安全的同时增加了叶构建的碳投资。  相似文献   

20.
Changes in Root Hydraulic Conductivity During Wheat Evolution   总被引:5,自引:0,他引:5  
A better understanding of the mechanisms of water uptake by plant roots should be vital for improving drought resistance and water use efficiency (WUE). In the present study, we have demonstrated correlations between root system hydraulic conductivity and root characteristics during evolution using six wheat evolution genotypes (solution culture) with different ploidy chromosome sets (Triticum boeoticum Bioss., T. monococcum L.: 2n=2x=14;T. dicoccides Koern., T. dicoccon (Schrank) Schuebl.:2n=4x=28;T. vulgare Vill., T. aestivum L. cv. Xiaoyan No. 6:2n=6x=42). The experimental results showed that significant correlations were found between root system hydraulic conductivity and root characteristics of the materials with the increase in ploidy chromosomes (2x→6x) during wheat evolution. Hydraulic conductivity of the wheat root system at the whole-plant level was increased with chromosome ploidy during evolution, which was positively correlated with hydraulic conductivity of single roots, whole plant biomass,root average diameter, and root growth (length, area), whereas the root/shoot ratio had an inverse correlation with the hydraulic conductivity of root system with increasing chromosome ploidy during wheat evolution. Therefore, it is concluded that that the water uptake ability of wheat roots was strengthened from wild to modern cultivated species during evolution, which will provide scientific evidence for genetic breeding to improve the WUE of wheat by genetic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号