首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of cranial bone requires the differentiation of osteoblasts from undifferentiated mesenchymal cells. The balance between osteoblast recruitment, proliferation, differentiation and apoptosis in sutures between cranial bones is essential for calvarial bone formation. The mechanisms that control human osteoblasts during normal calvarial bone formation and premature suture ossification (craniosynostosis) begin to be understood. Our studies of the human calvaria osteoblast phenotype and calvarial bone formation showed that premature fusion of the sutures in non-syndromic and syndromic (Apert syndrome) craniosynostoses results from precocious osteoblast differentiation. We showed that Fibroblast Growth Factor-2 (FGF-2), FGF receptor-2 (FGFR-2) and Bone Morphogenetic Protein-2 (BMP-2), three essential factors involved in skeletal development, regulate the proliferation, differentiation and apoptosis in human calvaria osteoblasts. Mechanisms that induce the differentiated osteoblast phenotype have also been identified in human calvaria osteoblasts. We demonstrated the implication of molecules (N-cadherin, Il-1) and signaling pathways (src, PKC) by which these local factors modulate human calvaria osteoblast differentiation and apoptosis. The identification of these essential signaling molecules provides new insights into the pathways controlling the differentiated osteoblast phenotype, and leads to a more comprehensive view in the mechanisms that control normal and premature cranial ossification in humans.  相似文献   

2.
For decades surgeons have exploited the ability of infants to reossify large calvarial defects. To demonstrate the role of dura mater-osteoblast communication during the process of calvarial reossification, the authors used a novel in vitro system that recapitulates the in vivo anatomic relationship of these cell populations. Primary cultures of osteoblast cells from 2-day-old Sprague-Dawley rat pups were grown on six-well plates, and cultures of immature, non-suture-associated dura mater cells from 6-day-old Sprague-Dawley rat pups were grown on Transwell inserts. When the osteoblast and dura mater cell cultures reached confluence, they were combined. This Transwell co-culture system permitted the two cell populations to grow together in the same well, but it prevented direct cell-to-cell contact. Therefore, the authors were able to determine, for the first time, whether paracrine signaling from immature, non-suture-associated dura mater could influence the biologic activity of osteoblasts.Osteoblasts co-cultured with dural cells proliferated significantly faster after 2 days (2.1 x 10(5) +/- 2.4 x 10(4) versus 1.4 x 10(5) +/- 2.2 x 10(4), p < or = 0.05) and 4 days (3.1 x 10(5) +/- 5 x 10(4) versus 2.2 x 10(5) +/- 4.0 x 10(4), p < or = 0.01) than did osteoblasts cultured alone. After 20 days, co-cultured osteoblasts expressed greater amounts of mRNA for several markers of osteoblast differentiation, including collagen I alpha I (4-fold), alkaline phosphatase (2.5-fold), osteopontin (3-fold), and osteocalcin (4-fold), than did osteoblasts cultured alone. After 30 days, co-cultured osteoblasts produced bone nodules that were significantly greater both in number (324 +/- 29 nodules versus 252 +/- 29 nodules per well, p , < or = 0.04) and total area of nodules (65 +/- 11 mm(2) versus 24 +/- 1.6 mm(2), p < or = 0.003) than osteoblasts cultured alone.To begin to understand how dural cells effect changes in osteoblast gene expression, the authors compared the expression of candidate genes, transforming growth factor beta 1 and fibroblast growth factor 2, in dural cells and osteoblasts before and after 5 days of culture. Interestingly, the dura mater produced marked amounts of these osteogenic cytokines compared with osteoblasts.The described co-culture system demonstrated that co-cultured osteoblasts proliferated more rapidly and experienced an increased rate and degree of cellular maturation than did osteoblasts cultured alone. The authors hypothesize that this effect was due to paracrine signaling (e.g., transforming growth factor beta 1 and fibroblast growth factor 2) from the dura mater, and they are investigating those mechanisms in ongoing experiments. Collectively these data verify that immature, non-suture-associated dura mater can influence the biologic activity of osteoblasts. Moreover, the production of cytokines derived from the dura mater (e.g., transforming growth factor beta 1 and fibroblast growth factor 2), and they may begin to explain why immature animals and infants with intact dura mater can reossify large calvarial defects.  相似文献   

3.
Craniosynostosis (CS), the premature ossification of cranial sutures, is attributed to increased osteogenic potential of resident osteoblasts, yet the contribution of the surrounding extracellular matrix (ECM) on osteogenic differentiation is unclear. The osteoblast-secreted ECM provides binding sites for cellular adhesion and regulates the transport and signaling of osteoinductive factors secreted by the underlying dura mater. The binding affinity of each osteoinductive factor for the ECM may amplify or mute its relative effect, thus contributing to the rate of suture fusion. The purpose of this paper was to examine the role of ECM composition derived from calvarial osteoblasts on protein binding and its resultant effect on cell phenotype. We hypothesized that potent osteoinductive proteins present during sutural fusion (e.g., bone morphogenetic protein-2 (BMP-2) and transforming growth factor beta-1 (TGF-β1)) would exhibit distinct differences in binding when exposed to ECMs generated by human calvarial osteoblasts from unaffected control individuals (CI) or CS patients. Decellularized ECMs produced by osteoblasts from CI or CS patients were incubated in the presence of BMP-2 or TGF-β1, and the affinity of each protein was analyzed. The contribution of ECM composition to protein binding was interrogated by enzymatically modulating proteoglycan content within the ECM. BMP-2 had a similar binding affinity for each ECM, while TGF-β1 had a greater affinity for ECMs produced by osteoblasts from CI compared to CS patients. Enzymatic treatment of ECMs reduced protein binding. CS osteoblasts cultured on enzymatically-treated ECMs secreted by osteoblasts from CI patients in the presence of BMP-2 exhibited impaired osteogenic differentiation compared to cells on untreated ECMs. These data demonstrate the importance of protein binding to cell-secreted ECMs and confirm that protein-ECM interactions have an important role in directing osteoblastic differentiation of calvarial osteoblasts.  相似文献   

4.
Formation of the calvaria is a multi-staged process and is regulated by multiple genetic factors. Disruption of normal calvarial development usually causes craniosynostosis, a prevalent birth defect characterized by premature fusion of calvarial bone. Recent studies have identified mutations of KMT2D allele in patients with craniosynostosis, indicating a potential role for Kmt2d in calvarial development. KMT2D mutations have also been implicated in Kabuki syndrome, which features a distinct facial appearance, skeletal abnormality, growth retardation and intellectual disability. However, the expression pattern of Kmt2d has not been fully elucidated. In the present study we examined the expression pattern of Kmt2d at multiple stages of embryo development in mice, with a focus on the craniofacial tissues. Our in situ hybridization results showed that Kmt2d mRNA is expressed in the developing calvarial osteoblasts, epithelia and neural tissues. Such an expression pattern is in line with the phenotypes of Kabuki syndrome, suggesting that Kmt2d plays an intrinsic role in normal development and homeostasis of these craniofacial tissues.  相似文献   

5.
Apert syndrome is an autosomal dominant disease characterized by craniosynostosis and bony syndactyly associated with point mutations (S252W and P253R) in the fibroblast growth factor receptor (FGFR) 2 that cause FGFR2 activation. Here we investigated the role of the S252W mutation of FGFR2 on osteoblastic differentiation. Osteoblastic cells derived from digital bone in two Apert patients with the S252W mutation showed more prominent alkaline phosphatase activity, osteocalcin and osteopontin mRNA expression, and mineralized nodule formation compared with the control osteoblastic cells derived from two independent non-syndromic polydactyly patients. Stable clones of the human MG63 osteosarcoma cells (MG63-Ap and MG63-IIIc) overexpressing a splice variant form of FGFR2 with or without the S252W mutation (FGFR2IIIcS252W and FGFR2IIIc) showed a higher RUNX2 mRNA expression than parental MG63 cells. Furthermore MG63-Ap exhibited a higher osteopontin mRNA expression than did MG63-IIIc. The enhanced osteoblastic marker gene expression and mineralized nodule formation of the MG63-Ap was inhibited by the conditioned medium from the COS-1 cells overexpressing the soluble FGFR2IIIcS252W. Furthermore the FGF2-induced osteogenic response in the mouse calvarial organ culture system was blocked by the soluble FGFR2IIIcS252W. These results show that the S252W mutation in the FGFR2 gene enhances the osteoblast phenotype in human osteoblasts and that a soluble FGFR2 with the S252W mutation controls osteoblast differentiation induced by the S252W mutation through a dominant negative effect on FGFR2 signaling in Apert syndrome.  相似文献   

6.
The normal development of cranial primordia and orofacial structures involves fundamental processes in which growth, morphogenesis, and cell differentiation take place and interactions between extracellular matrix (ECM) components, growth factors and embryonic tissues are involved. Biochemical and molecular aspects of craniofacial development, such as the biological regulation of normal or premature cranial suture fusion, has just begun to be understood, thanks mainly to studies performed in the last decade. Several mutations has been identified in both syndromic and non-syndromic craniosynostosis patients throwing new light onto the etiology, classification and developmental pathology of these diseases. In the more common craniosynostosis syndromes and other skeletal growth disorders, the mutations were identified in the genes encoding fibroblast growth factor receptor types 1-3 (FGFR1, 2 and 3) where they are dominantly acting and affect specific and important protein binding domain. The unregulated FGF signaling during intramembranous ossification is associated to the Apert and Crouzon syndrome. The non syndromic cleft of the lip and/or palate (CLP) has a more complex genetic background if compared to craniosynostosis syndrome because of the number of involved genes and type of inheritance. Moreover, the influence of environmental factor makes difficult to clarify the primary causes of this malformation. ECM represents cell environment and results mainly composed by collagens, fibronectin, proteoglycans (PG) and hyaluronate (HA). Cooperative effects of ECM and growth factors regulate regional matrix production during the morphogenetic events, connective tissue remodelling and pathological states. In the present review we summarize the studies we performed in the last years to better clarify the role of ECM and growth factors in the etiology and pathogenesis of craniosynostosis and CLP diseases.  相似文献   

7.
Apert syndrome is characterized by craniosynostosis and syndactyly, and is predominantly caused by mutation of either S252W or P253W in the fibroblast growth factor receptor (FGFR) 2 gene. In this study, we characterized the effects of one of the mutations (S252W) using primary calvarial osteoblasts derived from transgenic mice, Ap-Tg and sAp-Tg, that expressed an Apert-type mutant FGFR2 (FGFR2IIIc-S252W; FGFR2IIIc-Ap), and the soluble form (extracellular domain only) of the mutant FGFR2 (sFGFR2IIIc-Ap), respectively. Compared to WT-derived osteoblasts, osteoblasts from Ap-Tg mouse showed a higher proliferative activity and enhanced differentiation, while those from sAp-Tg mouse exhibited reduced potential for proliferation and osteogenic differentiation. When transplanted with β-tricalcium phosphate (β-TCP) granules into immunodeficient mice, Ap-Tg-derived osteoblasts showed a higher bone forming capacity, whereas sAp-Tg-derived osteoblasts were completely deficient for this phenotype. Phosphorylation of extracellular signal-regulated kinase (ERK), MEK, PLCγ, and p38 was increased in Ap-Tg-derived osteoblasts, whereas phosphorylation of these signaling molecules was reduced in sAp-Tg-derived osteoblasts. Interestingly, when these experiments were carried out using osteoblasts from the mice generated by crossing Ap-Tg and sAp-Tg (Ap/sAp-Tg), which co-expressed FGFR2IIIc-Ap and sFGFR2IIIc-Ap, the results were comparable to those obtained from WT-derived osteoblasts. Taken together, these results indicate that osteoblasts expressing FGFR2IIIc-Ap proliferate and differentiate via highly activated MEK, ERK, and p38 pathways, while these pathways are suppressed in osteoblasts expressing sFGFR2IIIc-Ap. Our findings also suggest that altered FGFR2IIIc signaling in osteoblasts is mostly responsible for the phenotypes seen in Apert syndrome, therefore these osteoblast cell lines are useful tools for investigating the pathogenesis of Apert syndrome.  相似文献   

8.
Recent work has demonstrated that fusion of the calvarial sutures is mediated by locally elaborated soluble growth factors, including the transforming growth factor-betas (TGF-betas), leading some to speculate that external biomechanical forces play little role in suture development. Clinical evidence has long suggested, however, that fetal head constraint may play a critical role in the pathogenesis of many cases of nonsyndromic craniosynostosis. The purpose of these experiments was to test the hypothesis that intrauterine constraint leads to an alteration in normal patterns of TGF-beta expression and that these alterations are associated with craniosynostosis. Fetal constraint was induced by allowing C57Bl/6 murine fetuses to grow for 2.5 days beyond the normal 20-day gestation by performing uterine cerclage on the eighteenth day. Cranial suture morphology was examined in hematoxylin and eosin-stained sections and in cleared whole-mount specimens, double stained with alizarin red S and Alcian blue. Expression patterns of TGF-beta1 and TGF-beta3 were examined by immunohistochemical techniques. Gross and microscopic examination of the cranial sutures of 17 constrained fetuses revealed changes that ranged from narrowing to complete osseous obliteration of the coronal and squamosal sutures. All sutures of 14 nonconstrained control pups remained patent. Fetal head constraint was associated with increased TGF-beta1 immunoreactivity within the new bone and the underlying dura when compared with nonconstrained age-matched controls. TGF-beta3 immunoreactivity was associated with the dura underlying patent, nonconstrained sutures, whereas constraint-induced synostosis was characterized by down-regulation of dural TGF-beta3 expression. These experiments confirm the ability of intrauterine constraint to induce premature fusion of the cranial sutures and provide evidence that intrauterine head constraint induces the expression of osteogenic growth factors in fetal calvarial bone and the underlying dura.  相似文献   

9.

Background

Craniosynostosis, the premature fusion of calvarial sutures, is a common craniofacial abnormality. Causative mutations in more than 10 genes have been identified, involving fibroblast growth factor, transforming growth factor beta, and Eph/ephrin signalling pathways. Mutations affect each human calvarial suture (coronal, sagittal, metopic, and lambdoid) differently, suggesting different gene expression patterns exist in each human suture. To better understand the molecular control of human suture morphogenesis we used microarray analysis to identify genes differentially expressed during suture fusion in children with craniosynostosis. Expression differences were also analysed between each unfused suture type, between sutures from syndromic and non-syndromic craniosynostosis patients, and between unfused sutures from individuals with and without craniosynostosis.

Results

We identified genes with increased expression in unfused sutures compared to fusing/fused sutures that may be pivotal to the maintenance of suture patency or in controlling early osteoblast differentiation (i.e. RBP4, GPC3, C1QTNF3, IL11RA, PTN, POSTN). In addition, we have identified genes with increased expression in fusing/fused suture tissue that we suggest could have a role in premature suture fusion (i.e. WIF1, ANXA3, CYFIP2). Proteins of two of these genes, glypican 3 and retinol binding protein 4, were investigated by immunohistochemistry and localised to the suture mesenchyme and osteogenic fronts of developing human calvaria, respectively, suggesting novel roles for these proteins in the maintenance of suture patency or in controlling early osteoblast differentiation. We show that there is limited difference in whole genome expression between sutures isolated from patients with syndromic and non-syndromic craniosynostosis and confirmed this by quantitative RT-PCR. Furthermore, distinct expression profiles for each unfused suture type were noted, with the metopic suture being most disparate. Finally, although calvarial bones are generally thought to grow without a cartilage precursor, we show histologically and by identification of cartilage-specific gene expression that cartilage may be involved in the morphogenesis of lambdoid and posterior sagittal sutures.

Conclusion

This study has provided further insight into the complex signalling network which controls human calvarial suture morphogenesis and craniosynostosis. Identified genes are candidates for targeted therapeutic development and to screen for craniosynostosis-causing mutations.  相似文献   

10.
Limited in vivo data exist on the dysmorphology of the cranial base in nonsyndromic craniosynostosis. Few studies have documented the effect of calvarial surgery for synostosis on endocranial morphology. Previous work has suggested that the dysmorphology of the endocranial base is diagnostically specific for metopic, sagittal, and unicoronal sutures. The purpose of this study was to further evaluate the endocranial base in infants with nonsyndromic craniosynostosis by testing the hypothesis that the dysmorphology is, to some degree, a secondary deformation rather than a primary malformation. Three questions were addressed: (1) Can individuals reliably identify affected suture-specific endocranial-base morphology using standard templates? (2) Does calvarial surgery in infancy for craniosynostosis affect the perception of endocranial-base morphology? and (3) Does calvarial surgery in infancy for nonsyndromic craniosynostosis normalize the endocranial base?In this study, three-dimensional volumetric reconstructions from archived computed tomography digital data were processed using the ANALYZE imaging software. Dysmorphology was assessed by nine independent, blinded skilled observers who reviewed two separate sets of images of endocranial bases. Both sets contained images from the same patients: one set contained preoperative images, and the other contained images of the endocranial base 1 year after calvarial surgery. Observers were asked to sort each set into four suture-specific diagnostic groups: normal, unicoronal, metopic, and sagittal. Each set contained 10 patients with unicoronal synostosis, 10 with metopic synostosis, 10 with sagittal synostosis, and four normal patients. Seventy-eight percent of the total number of preoperative images were correctly sorted into the suture-specific diagnostic group, whereas only 55 percent of the total number of postoperative images were correctly matched. With regard to the individual sutures, the results were as follows (data are presented as preoperative accuracy versus postoperative accuracy): metopic, 76 percent versus 44 percent; sagittal, 58 percent versus 34 percent; unicoronal, 100 percent versus 79 percent; and normal, 83 percent versus 72 percent. Although 36 of 306 total images per group (12 percent) actually represented normal patients, the observers called 72 of 306 normal (24 percent) in the preoperative set versus 110 of 306 normal (36 percent) in the postoperative set. In conclusion, (1) the endocranial dysmorphology of nonsyndromic craniosynostosis is recognizably specific to the affected suture; (2) calvarial surgery for nonsyndromic craniosynostosis normalizes the endocranial base qualitatively with regard to the diminished ability of raters to identify the primary pathology; and (3) the documented postoperative changes in endocranial base morphology after calvarial surgery for nonsyndromic craniosynostosis in infancy indicates that a major component of that dysmorphology is a secondary deformity rather than a primary malformation.  相似文献   

11.
12.
Coordinated growth of the skull and brain are vital to normal human development. Craniosynostosis, the premature fusion of the calvarial bones of the skull, is a relatively common pediatric disease, occurring in 1 in 2500 births, and requires significant surgical management, especially in syndromic cases. Syndromic craniosynostosis is caused by a variety of genetic lesions, most commonly by activating mutations of FGFRs 1-3, and inactivating mutations of TWIST1. In a mouse model of TWIST1 haploinsufficiency, cell mixing between the neural crest-derived frontal bone and mesoderm-derived parietal bone accompanies coronal suture fusion during embryonic development. However, the relevance of lineage mixing in craniosynostosis induced by activating FGFR mutations is unknown. Here, we demonstrate a novel mechanism of suture fusion in the Apert Fgfr2(S252W) mouse model. Using Cre/lox recombination we simultaneously induce expression of Fgfr2(S252W) and β-galactosidase in either the neural crest or mesoderm of the skull. We show that mutation of the mesoderm alone is necessary and sufficient to cause craniosynostosis, while mutation of the neural crest is neither. The lineage border is not disrupted by aberrant cell migration during fusion. Instead, the suture mesenchyme itself remains intact and is induced to undergo osteogenesis. We eliminate postulated roles for dura mater or skull base changes in craniosynostosis. The viability of conditionally mutant mice also allows post-natal assessment of other aspects of Apert syndrome.  相似文献   

13.
14.
目的:观察P物质(substance P,SP)在BMSCs来源的成骨细胞与内皮细胞体外联合培养中的作用,研究P物质作用于种子细胞的最适浓度指导组织工程骨修复骨缺损。方法:采用新生新西兰大白兔胎兔(雌雄不限)密度梯度离心法分离骨髓间充质干细胞行体外培养和连续传代,获得较纯的BMSCs。取生长状态良好的第3代BMSCs行成骨诱导培养及成血管内皮细胞诱导培养并鉴定。将诱导7 d的两种细胞按2:1比例混合培养,待细胞传至2代加入不同浓度的SP作为实验组,以正常未加SP的细胞培养基为对照组。培养后1、3、5、7 d采用CCK-8法测定细胞增殖并绘制生长曲线,观察细胞生长数量,测定碱性磷酸酶活性及观察细胞周期分布。结果:浓度范围从1×10-12-1×10-6mol/L的SP对联合共培养的成骨细胞增殖和活性都有促进作用,在浓度为1×10-8mol/L对联合共培养的成骨细胞增殖和活性的作用功效最强。结论:在体外直接联合共培养的体系中,SP对新种子细胞促进效果明显,其在1×10-8mol/L对联合共培养的成骨细胞增殖和活性作用最强。  相似文献   

15.
李富航  靳宇飞  毕龙  裴国献 《生物磁学》2014,(19):3615-3618
目的:观察P物质(substanceP,SP)在BMSCs来源的成骨细胞与内皮细胞体外联合培养中的作用,研究P物质作用于种子细胞的最适浓度指导组织工程骨修复骨缺损。方法:采用新生新西兰大白兔胎兔(雌雄不限)密度梯度离心法分离骨髓间充质干细胞行体外培养和连续传代,获得较纯的BMSCs。取生长状态良好的第3代BMSCs行成骨诱导培养及成血管内皮细胞诱导培养并鉴定。将诱导7d的两种细胞按2:1比例混合培养,待细胞传至2代加入不同浓度的sP作为实验组,以正常未加sP的细胞培养基为对照组。培养后1、3、5、7d采用CCK-8法测定细胞增殖并绘制生长曲线,观察细胞生长数量,测定碱性磷酸酶活性及观察细胞周期分布。结果:浓度范围从1×10^-12-1×10^-6mol/L的sP对联合共培养的成骨细胞增殖和活性都有促进作用,在浓度为1×10^-8mol/L对联合共培养的成骨细胞增殖和活性的作用功效最强。结论:在体外直接联合共培养的体系中,SP对新种子细胞促进效果明显,其在1×10^-8mol/L对联合共培养的成骨细胞增殖和活性作用最强。  相似文献   

16.
Fibroblast growth factors (FGF) play a critical role in bone growth and development affecting both chondrogenesis and osteogenesis. During the process of intramembranous ossification, which leads to the formation of the flat bones of the skull, unregulated FGF signaling can produce premature suture closure or craniosynostosis and other craniofacial deformities. Indeed, many human craniosynostosis disorders have been linked to activating mutations in FGF receptors (FGFR) 1 and 2, but the precise effects of FGF on the proliferation, maturation and differentiation of the target osteoblastic cells are still unclear. In this report, we studied the effects of FGF treatment on primary murine calvarial osteoblast, and on OB1, a newly established osteoblastic cell line. We show that FGF signaling has a dual effect on osteoblast proliferation and differentiation. FGFs activate the endogenous FGFRs leading to the formation of a Grb2/FRS2/Shp2 complex and activation of MAP kinase. However, immature osteoblasts respond to FGF treatment with increased proliferation, whereas in differentiating cells FGF does not induce DNA synthesis but causes apoptosis. When either primary or OB1 osteoblasts are induced to differentiate, FGF signaling inhibits expression of alkaline phosphatase, and blocks mineralization. To study the effect of craniosynostosis-linked mutations in osteoblasts, we introduced FGFR2 carrying either the C342Y (Crouzon syndrome) or the S252W (Apert syndrome) mutation in OB1 cells. Both mutations inhibited differentiation, while dramatically inducing apoptosis. Furthermore, we could also show that overexpression of FGF2 in transgenic mice leads to increased apoptosis in their calvaria. These data provide the first biochemical analysis of FGF signaling in osteoblasts, and show that FGF can act as a cell death inducer with distinct effects in proliferating and differentiating osteoblasts.  相似文献   

17.
18.
19.
20.
The ability of immature animals and newborns to orchestrate successful calvarial reossification is well described. This capacity is markedly attenuated in mature animals and in humans greater than 2 years of age. Previous studies have implicated the dura mater as critical to successful calvarial reossification. The authors have previously reported that immature, but not mature, dural tissues are capable of elaborating a high expression of osteogenic growth factors and extracellular matrix molecules. These findings led to the hypothesis that a differential expression of osteogenic growth factors and extracellular matrix molecules by immature and mature dural tissues may be responsible for the clinically observed phenotypes (i.e., immature animals reossify calvarial defects; mature animals do not). This study continues to explore the hypothesis through an analysis of transforming growth factor (TGF)-beta3, collagen type III, and alkaline phosphatase mRNA expression. Northern blot analysis of total RNA isolated from freshly harvested immature (n = 60) and mature (n = 10) dural tissues demonstrated a greater than three-fold, 18-fold, and nine-fold increase in TGF-beta3, collagen type III, and alkaline phosphatase mRNA expression, respectively, in immature dural tissues as compared with mature dural tissues. Additionally, dural cell cultures derived from immature (n = 60) and mature dura mater (n = 10) were stained for alkaline phosphatase activity to identify the presence of osteoblast-like cells. Alkaline phosphatase staining of immature dural cells revealed a significant increase in the number of alkaline phosphatase-positive cells as compared with mature dural tissues (p < 0.001). In addition to providing osteogenic humoral factors (i.e., growth factors and extracellular matrix molecules), this finding suggests that immature, but not mature, dura mater may provide cellular elements (i.e., osteoblasts) that augment successful calvarial reossification. These studies support the hypothesis that elaboration of osteogenic growth factors (i.e., TGF-beta33) and extracellular matrix molecules (i.e., collagen type III and alkaline phosphatase) by immature, but not mature, dural tissues may be critical for successful calvarial reossification. In addition, these studies suggest for the first time that immature dural tissues may provide cellular elements (i.e., osteoblasts) to augment this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号