首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The notothenioid fishes Trematomus pennellii, T. newnesi, and T. bernacchii had 5–15% skeletal lipid, as percent dry weight, and this comprised 6–8% of the total body lipid. Trematomus hansoni and Pagothenia borchgrevinki had 2–4% skeletal lipid, which comprised 1% of total body lipid. Triacylglycerol was the major lipid class present in all tissues of all fish analyzed (up to 89% of total lipid), with minor components including sterol, phospholipid and wax esters. Monounsaturated fatty acids comprised 38.3–58.0% of the total fatty acids, and included primarily oleic [18 : 1(n-9)] and palmitoleic [16 : 1(n-7)] acids. Polyunsaturated fatty acids comprised 19.1–40.0% of the total fatty acids and included primarily eicosapentaenoic acid [20 : 5(n-3)] and docosahexaenoic acid [22 : 6(n-3)]. These five notothenioid fishes, which include benthic, benthopelagic, and cryopelagic species, are lower in lipid than other important Southern Ocean fishes (such as the Patagonian toothfish) and are estimated to be negatively buoyant. These data will be of use to research groups presently using signature lipid methodology. Accepted: 5 April 1999  相似文献   

2.
Summary The composition of lipid classes and their component fatty acid are described for copepodite stages III, IV, V, and adult females of Calanus glacialis sampled from Arctic waters of the Barents Sea during summer. Was esters were the principal component of the lipid in all copepodite stages examined, averaging 73% over all the stages. The proportion of triacylglycerols varied from 1.5% to 10.5% of total lipid among copepodite stages. The lipids of adult females contained lower levels of wax esters and higher levels of triacylglycerols than copepodite stages III, IV and V. Fatty alcohols of wax esters from copepods sampled in June and July were dominated by 20:1 (n-9) and 22:1 (n-11) alcohols with the proportion of 20:1 (n-9) increasing from stages III to adult female. 14:0 and 16:0 alcohols were the principal fatty alcohols of wax esters of a sample comprising mainly of copepodites stage III taken in August. 16:1 (n-7), 20:1 (n-9) and 20:5 (n-3) were the major fatty acids in the was esters of animals captured in June and July whereas 18:1 (n-9) predominated in the August sample. The polar lipids of the copepodite stage III from August also contained lower levels of polyunsaturated fatty acids than from all stages of copepods from June and July. The data are discussed in relation to life cycle strategies and trophic aspects of Calanus glacialis in the Arctic pelagic community of the Barents Sea.  相似文献   

3.
Ju  Se-Jong  Scolardi  K.  Daly  K. L.  Harvey  H. Rodger 《Polar Biology》2004,27(12):782-792
To better understand the trophic role of ctenophores in Antarctica during austral fall and winter, a major species of cydippid ctenophore, Callianira antarctica, was collected during April/May (fall) and August/September (winter) 2002 in the vicinity of Marguerite Bay. Lipid content, lipid classes, fatty acids, fatty alcohols and sterols were analyzed in animals, together with lipid biomarkers in krill and copepod species representing potential ctenophore prey. Lipid content in ctenophores collected in winter was slightly higher than from animals in fall (4.8 and 3.5% of dry weight, respectively). Polar lipids were the dominant lipid class in ctenophores, accounting for over half of the lipid content, with significant amounts of free fatty alcohols (more than 10% of total lipid content) detected. Lipid-class composition, however, differed significantly between seasons, with significant amounts of neutral lipid (wax esters and triacylglycerols) only detected in animals from fall. Although the dominant lipid classes in ctenophores varied between fall and winter, individual lipids (i.e., fatty acids, alcohols and sterols) showed only minor changes between seasons. Specifically, long-chain polyunsaturated fatty acids [20:5(n-3) and 22:6(n-3)] found in high abundance in larval krill were also elevated in ctenophores collected in winter. Very high amounts of monounsaturated fatty alcohols, particularly 20:1(n-9) and 22:1(n-11), known to be important components of wax esters in calanoid copepods, were also observed. Multivariate analysis using the suite of lipids found indicated that copepods are an important diet item for ctenophores in the study area. Results further suggest that C. antarctica feed actively year-round, with larval krill providing a food resource during austral winter.  相似文献   

4.
Kattner  G.  Albers  C.  Graeve  M.  Schnack-Schiel  S. B. 《Polar Biology》2003,26(10):666-671
The fatty acid and alcohol compositions of the Antarctic copepods Oithona similis, Oncaea curvata, Oncaea antarctica and the Arctic Oncaea borealis were determined to provide the first data on their lipid biochemistry and to expand the present knowledge on their feeding modes and life-cycle strategies. All these tiny species contained high amounts of wax esters (on average 51.4–86.3% of total lipid), except females of Oithona similis (15.2%). The fatty-acid composition was clearly dominated by 18:1(n-9), especially in the wax-ester-rich Oncaea curvata (79.7% of total fatty acids). In all species, 16:0 and the polyunsaturated fatty acids 20:5(n-3) and 22:6(n-3), which are structural components of all membranes, occurred in significant proportions. The dominant fatty alcohols were 14:0 and 16:0. In Oncaea antarctica and Oncaea borealis, the 20:1(n-9) and 22:1(n-11) alcohols and, to a lesser extent, the corresponding fatty acids were also found in high proportions. This indicates carnivorous feeding, although de novo biosynthesis cannot be excluded. The variable composition might be due to a wider range of food items and parasitic feeding. Typical trophic marker fatty acids for phytoplankton ingestion occurred only in small amounts, which suggests that the species were feeding on particles such as detritus or aggregates and not on living phytoplankton. From the compositional data of fatty acids and alcohols, it can be concluded that feeding behaviour of all species is omnivorous and/or carnivorous.  相似文献   

5.
Summary The lipid-rich pelagic teleost Maurolicus muelleri has large lipid depots located subcutaneously, intramuscularly and around the digestive tract. The lipid is contained within conventional adipocytes and is composed largely of triacylglycerols rich in 20:1 (n-9) and lipid-rich mesopelagic teleost Benthosema glaciale, except that the lipid is predominantly wax esters whose fatty alcohols and fatty acids are both rich in 20:1 (n-9) and 22:1 (n-11) moieties. An origin for the lipids of both species in the wax esters of calanoid copepods is indicated. The anatomical distribution of the lipids in these teleosts and their intracellular location point to their being fundamentally an energy store. The twin roles of neutral lipids in providing metabolic energy and buoyancy are discussed.  相似文献   

6.
Antarctic notothenioid fishes represent a rare example of a marine species flock. They evolved special adaptations to the extreme environment of the Southern Ocean including antifreeze glycoproteins. Although lacking a swim bladder, notothenioids have diversified from their benthic ancestor into a wide array of water column niches, such as epibenthic, semipelagic, cryopelagic and pelagic habitats. Applying stable carbon (C) and nitrogen (N) isotope analyses to gain information on feeding ecology and foraging habitats, we tested whether ecological diversification along the benthic–pelagic axis followed a single directional trend in notothenioids, or whether it evolved independently in several lineages. Population samples of 25 different notothenioid species were collected around the Antarctic Peninsula, the South Orkneys and the South Sandwich Islands. The C and N stable isotope signatures span a broad range (mean δ13C and δ15N values between ?25.4‰ and ?21.9‰ and between 8.5‰ and 13.8‰, respectively), and pairwise niche overlap between four notothenioid families was highly significant. Analysis of isotopic disparity‐through‐time on the basis of Bayesian inference and maximum‐likelihood phylogenies, performed on a concatenated mitochondrial (cyt b) and nuclear gene (myh6, Ptr and tbr1) data set (3148 bp), showed that ecological diversification into overlapping feeding niches has occurred multiple times in parallel in different notothenioid families. This convergent diversification in habitat and trophic ecology is a sign of interspecific competition and characteristic for adaptive radiations.  相似文献   

7.
The hyperiid amphipods Themisto libellula and T. abyssorum are important components of Arctic pelagic ecosystems. Both species are carnivorous and prey on mesozooplankton. They represent a substantial food source for marine vertebrates and are a key link between zooplankton secondary production and higher trophic levels. We present data on the total lipid content, lipid class and fatty acid composition of T. libellula and T. abyssorum from northern Fram Strait and the central Arctic Ocean. Both species had moderate to high lipid contents of 14-42% of body dry mass. In T. abyssorum, total lipid content was correlated to body mass, while T. libellula showed sex-related differences in lipid content. Despite their smaller body size, females of T. libellula had higher lipid contents than males. Wax esters represented the major lipid class in both species with 41-43% of total lipid, while triacylglycerols contributed 23-32%. The fatty acid composition was dominated by the long-chain polyunsaturated moieties 20:5(n-3) and 22:6(n-3), short-chain saturated compounds (16:0 and 14:0) and monounsaturated fatty acids of varying length, i.e. 16:1(n-7), 20:1(n-9), 18:1(n-9) and 22:1(n-11). Species-specific and geographic variations in the fatty acid and alcohol patterns were apparently linked to differences in diet and life-cycle. High amounts of the fatty acids and alcohols 20:1(n-9) and 22:1(n-11) in T. libellula indicate predation on herbivorous Calanus copepodids. In addition, elevated levels of 20:5(n-3) in T. libellula indicate a close connection with ice-algal production and the importance of cryo-pelagic coupling processes (i.e. exchange processes between the sea ice and the pelagic communities) for the nutrition of this high-Arctic epipelagic species. In contrast, T. abyssorum is characterised by lower amounts of 20:5(n-3) and its biomarker ratios indicate a higher trophic level. This observation is consistent with the subarctic-boreal origin of T. abyssorum and its occurrence in deeper layers of the Arctic Ocean, where it may feed on omnivorous and/or carnivorous prey.  相似文献   

8.
Four Paraeuchaeta species and three aetideids were frequently encountered along 51°30′S in the Atlantic sector of the Southern Ocean. Paraeuchaeta antarctica was most abundant close to the Antarctic Polar Front. Within the genera Paraeuchaeta and Gaetanus, congeners usually partitioned the water column. Euchaetidae had high lipid (≤37% dry mass, DM in adult females) and wax ester contents (≤22% DM). Fatty acid composition of Paraeuchaeta spp. was dominated by monounsaturated moieties, especially 16:1(n-7) and 18:1(n-9), while fatty alcohols were mainly saturated. Surprisingly, only the bathypelagic P. barbata contained moderate amounts of 20:1(n-9) and 22:1(n-11) fatty acids (≤14%) and high levels of the respective fatty alcohols (≤50%), generally considered trophic biomarkers for calanid copepods as prey. Thus, herbivorous calanid copepods seem to be a readily available prey source at bathypelagic depths, indicating that their seasonal vertical migration provides a “trophic shortcut” from primary production at the surface to the interior of the ocean. Aetideidae also contained substantial levels of total lipid (14–36% DM), but wax esters contributed only up to 12% DM in copepodite stages C5 of Gaetanus spp., whereas other stages of Gaetanus and Aetideopsis minor only contained ≤6% DM of wax esters. The fatty acid compositions of Aetideidae were more balanced with 16:0, 18:1(n-9), 20:5(n-3), and 22:6(n-3) as important components, indicating a generally omnivorous feeding behaviour.  相似文献   

9.
Signature lipid analyses were used to identify the natural prey of the pelagic phyllosoma larvae of the spiny lobster Jasus edwardsii. Lipid class, fatty acid and sterol composition were determined for associated potential prey items and for phyllosomes captured between 50 and 90 km offshore from the northeastern coast of New Zealand. Phospholipid was the dominant lipid class in all potential prey items and the transparent phyllosomes. The levels of other lipid classes varied between potential prey items, with the next most abundant classes being triacylglycerols, free fatty acids and sterols. A limited number of the potential prey items also contained wax ester. Major fatty acids in all potential prey items were generally 22:6ω3 (docosahexaenoic acid), 16:0, 18:1ω9c, and 20:5ω3 (eicosapentaenoic acid). Multivariate analyses of fatty acid and sterol content of the samples grouped the phyllosoma samples together regardless of their developmental stage or their collection location. However, the phyllosomes were not associated with any of the general groupings of pelagic ascidians, amphipods, chaetognaths, pteropods, euphausiids, fish, copepods or particulate matter that were formed by the statistical analyses. Although the sterol profiles of the potential prey items showed considerable variation, the phyllosomes contained predominately cholesterol, suggesting that other dietary sterols are converted to cholesterol or metabolised by the phyllosomes. Therefore, the use of sterols for tracing the prey of J. edwardsii phyllosoma appears to be limited. Our results suggest that phyllosomes are opportunistic predators that feed on a variety of prey and are preferentially retaining specific diet-derived fatty acids.  相似文献   

10.
The Ross Sea, a large, high-latitude (72–78°S) embayment of the Antarctic continental shelf, averages 500 m deep, with troughs to 1,200 m and the shelf break at 700 m. It is covered by pack ice for 9 months of the year. The fish fauna of about 80 species includes primarily 4 families and 53 species of the endemic perciform suborder Notothenioidei. This review focuses on the diet and role in the food web of notothenioids and top-level bird and mammal predators, and also includes new information on the diets of artedidraconids and bathydraconids. Although principally a benthic group, notothenioids have diversified to form an adaptive radiation that includes pelagic and semipelagic species. In the southern Ross Sea, notothenioids dominate the fish fauna at levels of abundance and biomass >90% and are, therefore, inordinately important in the food web. Antarctic krill (Euphausia superba) and mesopelagic fishes are virtually absent from the shelf waters of the Ross Sea. Of the four notothenioid families, nototheniids show the most ecological and dietary diversification, with pelagic, cryopelagic, epibenthic and benthic species. Neutrally buoyant Pleuragramma antarcticum constitutes >90% of both the abundance and biomass of the midwater fish fauna. Most benthic nototheniids are opportunistic and feed on seasonally or locally abundant zooplanktonic prey. Artedidraconids are benthic sit-and-wait predators. Larger bathydraconids are benthic predators on fish while smaller species feed mainly on benthic crustaceans. Channichthyids are less dependent on the bottom for food than other notothenioids. Some species combine benthic and pelagic life styles; others are predominantly pelagic and all consume euphausiids and/or fish. South polar skuas, Antarctic petrels, Adélie and emperor penguins, Weddell seals and minke and killer whales are the higher vertebrate components of the food web, and all prey on notothenioids to some extent. Based on the frequency of occurrence of prey items in the stomachs of fish, bird and mammal predators, P. antarcticum and ice krill E. crystallorophias are the key species in the food web of the Ross Sea. P. antarcticum is a component of the diet of at least 11 species of nototheniid, bathydraconid and channichthyid fish and, at frequencies of occurrence from 71 to 100%, is especially important for Dissostichus mawsoni, Gvozdarus svetovidovi and some channichthyids. At least 16 species of notothenioids serve as prey for bird and mammal predators, but P. antarcticum is the most important and is a major component of the diet of south polar skua, Adélie and emperor penguins and Weddell seals, at frequencies of occurrence from 26 to 100%. E. crystallorophias is consumed by some nototheniid and channichthyid fish and can be of importance in the diet of emperor and Adélie penguins, although in the latter case, this is dependent on location and time of year.Unlike the linear phytoplanktonE. superbaconsumers of the E. superba food chain hypothesized for much of the Southern Ocean, the food web of the Ross Sea shelf is non-linear, with complex prey-predator interactions. Notothenioid fish play a key role: as predators, they occupy most of the trophic niches available in the ecosystem, relying on benthic, zooplanktonic and nektonic organisms; as prey, they are important food resources for each other and for most top predators living and foraging on the shelf. They also constitute the major link between lower (invertebrates) and higher (birds and mammals) levels of the food web. This is especially true for P. antarcticum. Along with E. crystallorophias, its ecological role in the Ross Sea is equivalent to that of myctophids and E. superba elsewhere in the Southern Ocean.  相似文献   

11.
The radiation of notothenioid fishes (Perciformes) in Antarctic waters was likely the result of an absence of competition in the isolated Antarctic waters and key traits such as the production of antifreeze glycoprotein and buoyancy modifications. Although notothenioids lack a swim bladder, the buoyancy of Antarctic species, ranging from neutrally buoyant to relatively heavy, corresponds to diverse life styles. The buoyancy of South American notothenioids has not been studied. Static buoyancy was measured in adult notothenioids (n = 263, from six species of the sub-order Notothenioidei, families Bovichtidae, Eleginopidae, Nototheniidae, and Harpagiferidae) from the Beagle Channel. Measurements were expressed as percentage buoyancy (%B). Buoyancy ranged from 3.88 to 6.96% (median, 4.0–6.7%), and therefore, all species could be considered benthic consistent with previous studies that found that neutral buoyancy in notothenioids is rare. Harpagifer bispinis, Patagonotothen cornucola, and Cottoperca gobio were significantly less buoyant than Paranotothenia magellanica. The buoyancy values of most species were concordant with known habitat preferences. These data, especially the data of C. gobio (sister lineage of all other nototehnioids) and E. maclovinus (sister lineage of the Antarctic clade of notothenioids), could be useful for understanding the diversification of this feature during the notothenioid radiation.  相似文献   

12.
Zooplankton samples were collected in January 1993 off Dronning Maud Land along a transect from open waters to the marginal ice zone close to the Antarctic ice shelf. Thysanoessa macrura was caught in open waters while Calanoides acutus and Calanus propinquus were mainly sampled between ice floes in the marginal ice zone. The “ice-krill”Euphausia crystallorophias was found over the shelf directly associated with ice floes. T. macrura had a lipid content up to 36% of its dry weight with the dominant lipid class, wax ester, accounting for 45–50% of the total lipid. The predominance of 18:1 fatty alcohols is the striking characteristic of the wax esters. Small specimens of E. crystallorophias had lipid levels up to 26% of their dry weight with, unexpectedly, triacylglycerols being the dominant lipid (up to 41% of total lipid). The small levels of wax esters in these animals (3–6% of total lipid) had phytol as a major constituent. Large specimens of E. crystallorophias had up to 34% of their dry weight as lipid, with wax esters (47% of total lipid) dominated by 16:0 and 14:0 fatty alcohols as the major lipid. Calanus propinquus had lipid levels of up to 34% of their dry weight, with triacylglycerols (up to 63% of total lipid) being the dominant lipid. High levels of 22:1 (n-9) fatty acid were present in the triacylglycerols. Calanoides acutus had lipid levels up to 35% of the dry weight with wax esters accounting for up to 83% of total lipid. High levels of (n-3) polyunsaturated fatty acids were recorded with 20:5(n-3), 22:6(n-3) and 18:4(n-3) being the dominant moieties. On the basis of their lipid compositions we deduce that: (1) Calanoides acutus is the strictest herbivore among the four species studied, heavily utilizing the typical spring bloom; (2) T. macrura is essentially omnivorous, probably utilizing the less defined bloom situations found in oceanic waters; (3) E. crystallorophias is an omnivore well adapted to utilize both a bloom situation and to feed on ice algae and micro-zooplankton associated with the ice; (4) Calanus propinquus seems to be the most opportunistic feeder of the four species studied, probably grazing heavily on phytoplankton during a bloom and, during the rest of the year, feeding on whatever material is available, including particulates, flagellates and other ice-associated algae. We conclude that the different biochemical pathways generating large oil reserves of different compositions, enabling species to utilize different ecological niches, are major determinants of biodiversity in polar zooplankton. Accepted: 22 June 1998  相似文献   

13.
Comprehensive data are presented on the total lipid contents of five species of notothenioid fish collected during summer 1991 in the Weddell Sea and the Lazarev Sea south of 69°S. The species were selected based on their different modes of life, benthic, benthopelagic and pelagic, to examine how the life style — among other factors — affects the proximate composition of these high-Antarctic fishes. Lipid contents of whole specimens showed an extremely wide range from 3.1 to 67.5% of dry weight (%DW), with corresponding carbon/nitrogen (C/N) ratios between 3.4 and 11.3. Lowest lipid contents were found in the benthic species Bathydraco marri and Dolloidraco longedorsalis with means of 11.0 and 11.9 %DW. The benthopelagic Trematomus lepidorhinus had an intermediate mean lipid content of 20.8 %DW, and the pelagic species Pleuragramma antarcticum and Aethotaxis mitopteryx were richest in lipid with means of 47.0 %DW and 60.8 %DW. There was a pronounced ontogenetic lipid accumulation with increasing size discernible in the lipid-rich species, especially in P. antarcticum. No clear relationship was found between lipid content and sex or maturity in A. mitopteryx and T. lepidorhinus, only the males of B. marri had higher lipid contents than the females. Lipid contents and water contents were inversely correlated. In conclusion, the mode of life of these species was clearly reflected by their lipid contents and lipids seem to have an important function, particularly as buoyancy aids in the pelagic species, which like all notothenioids lack a swim-bladder.  相似文献   

14.
Arctic benthic organisms of various taxa (Anthozoa, Polychaeta, Pantopoda, Crustacea, Echinodermata) were collected on the shelves off northeast Greenland, Spitsbergen and the western Barents Sea. Their fatty acid compositions were generally characterised by the predominance of the polyunsaturated fatty acids 20:5(n-3) and 22:6(n-3) together with the saturated fatty acid 16:0, which reflect the dominance of phospholipids. The fatty acid compositions of most benthic specimens were influenced by fatty acids of dietary origin. High amounts of the fatty acid 16:1(n-7), typical of diatoms, were found in different taxa from the northeast Greenland shelf. The 18:4(n-3) fatty acid, often typical of non-diatom input, was only dominant in Ophiopholis aculeata from the Spitsbergen shelf. In some taxa small amounts of wax esters were detected with alcohol moieties similar to those of the dominant Arctic copepods. The occurrence of intact wax esters, as well as the wax ester typical fatty acids 20:1(n-9) and 22:1(n-11), also suggested ingestion of large herbivorous copepods. An unusual fatty acid composition was found for most brittle stars, due to a ratio of the 18:1(n-9) and (n-7) fatty acid isomers below 1 with lowest ratios of 0.1. A similar low ratio was also detected in the polychaete Onuphis conchylega. The extremely low portions of the 18:1(n-9) fatty acid are striking, since carnivores are generally characterised by high levels of this fatty acid. A clear gradient from low 18:1(n-9) to (n-7) ratios in suspension feeders, via predatory decapods, to higher ratios in the scavenging amphipods was a major characteristic of the benthic species. Our investigations showed that lipid analyses can give important hints on trophic relationships of benthic species and may serve as means to establish the intensity of pelagic-benthic coupling.  相似文献   

15.
Ingram T  Mahler DL 《Molecular ecology》2011,20(22):4590-4591
Antarctic notothenioid fishes provide a fascinating evolutionary laboratory for the study of adaptive radiation, as their diversification is linked to both isolation in an extreme environment and a key innovation that allows them to exploit it. In this issue of Molecular Ecology, Rutschmann et al. (2011) evaluate how dietary niche differences have evolved in notothenioids: rarely, or repeatedly in multiple lineages. The authors use stable isotopes to measure species’ use of benthic vs. pelagic resources and map resource use onto a molecular phylogeny. Their findings indicate that pelagic diets have evolved in multiple lineages in at least two families, indicating that dietary niche diversification has occurred repeatedly and in parallel.  相似文献   

16.
Antarctic notothenioid fishes possess high oxidative capacities, large amounts of intracellular lipid combined with biological membranes enriched in polyunsaturated fatty acids, all of which could make these animals susceptible to oxidative injury, particularly in the form of lipid peroxidation. The central objective in this study was to examine capacities for oxidative metabolism and total antioxidant defense in Antarctic and non-Antarctic notothenioids in order to test the hypothesis that the cold-bodied Antarctic fishes possess elevated activities of citrate synthase (CS), matched by a more robust antioxidant (AOX) defense, than non-Antarctic species. CS activities and total AOX capacities were measured in brain and heart of 4 Antarctic species and 2 non-Antarctic species collected on the 2004 ICEFISH cruise. While no statistical differences are found among Antarctic and non-Antarctic fishes in either CS or AOX capacities, AOX capacity in both tissues expands with CS activity among individuals measured when all species are combined. There is also a 4.5-fold greater AOX capacity, when normalized to CS activity, in brain than in heart indicating the requirement for extra AOX defense in a tissue well known for its particularly high levels of phospholipids more prone to lipid peroxidation.  相似文献   

17.
Triacylglycerols were the major lipid and wax esters a minor lipid in the Arctic autochthonous, sympagic amphipod, Gammarus wilkitzkii, from less than 1 year old to 3 years old in the Marginal Ice Zone around Svalbard. The fatty acids of the triacylglycerols, especially in young G. wilkitzkii, were mainly characteristic of diatoms and, to a lesser extent, flagellates. Small amounts of 20:1n-9 and 22:1n-11 fatty acids characteristic of calanoid copepods were also present in the triacylglycerols in young G. wilkitzkii from the Marginal Ice Zone and the amounts of both of these fatty acids increased in the triacylglycerols as the animals matured. G. wilkitzkii in open waters in Kongsfjord had minor amounts of triacylglycerols rich in 20:1n-9 and 22:1n-11 and major amounts of wax esters characteristic of calanoid copepods. We conclude that young G. wilkitzkii in the Marginal Ice Zone feed predominantly on ice algae and that they consume increasing amounts of calanoid copepods as they mature, albeit with ice algae remaining a prominent component of their diet. In open waters, young G. wilkitzkii consume mainly calanoid copepods.  相似文献   

18.
The marine copepod Calanus finmarchicus constitutes the substantial amount of biomass in the Arctic and Northern seas. It is unique in that this small crustacean accumulates a high level of wax esters as carbon storage which is mainly comprised of 20:1n−9 and 22:1n−11 alcohols (Alc) linked with various kinds of fatty acids, including n−3 polyunsaturated fatty acids. The absence of 20:1n−9 Alc and 22:1n−11 Alc in diatoms and dinoflagellates, the primary food sources of copepods, suggests the existence of de novo biosynthesis of fatty alcohols in C. finmarchinus. Here, we report identification of three genes, CfFAR1, CfFAR2, and CfFAR3, coding for fatty acyl-CoA reductases involved in the conversion of various fatty acyl-CoAs to their corresponding alcohols. Functional characterization of these genes in yeast indicated that CfFAR1 could use a wide range of saturated fatty acids from C18 to C26 as substrates, CfFAR2 had a narrow range of substrates with only very-long-chain saturated fatty acid 24:0 and 26:0, while CfFAR3 was active towards both saturated (16:0 and 18:0) and unsaturated (18:1 and 20:1) fatty acids producing corresponding alcohols. This finding suggested that these three fatty acyl-CoA reductases are likely responsible for de novo synthesis of a series of fatty alcohol moieties of wax esters in C. finmarchicus.  相似文献   

19.
Newly isolated Acinetobacter (NRRL B-14920, B-14921, B-14923) and coryneform (NRRL B-14922) strains accumulated oleyl oleate and homologous liquid wax esters (C30:2–C36:2) in culture broths. Diunsaturated oleyl oleate preponderated in 75 mg liquid wax esters (280 mg lipid extract) recovered from 100-ml cultures of Acinetobacter B-14920 supplemented with 810 mg oleic acid–oleyl alcohol. With soybean oil instead of oleic acid, wax esters (260 mg) were increased to approximately 50% of the lipid extract. Production of wax esters by cultures supplemented with combined fatty (C8–C18) alcohols and acids suggests a coordinated synthesis whereby the exogenous alcohol remains unaltered, and the fatty acid is partially oxidized with removal of C2 units before esterification. Consequently, C8–C18 primary alcohols control chain lengths of the wax esters. Exogenous fatty acids are presumed to enter an intracellular oxidation pool from which is produced a homologous series of liquid wax esters.  相似文献   

20.
The lipid biochemistry of calanoid copepods   总被引:8,自引:2,他引:6  
Sargent  J. R.  Falk-Petersen  S. 《Hydrobiologia》1988,167(1):101-114
Calanus species, particularly those in high latitudes, can accumulate large oil reserves consisting predominantly of wax esters. These wax esters consist predominantly of 16:0, 20:1 (n–9) and 22:1 (n–11) fatty alcohols, mainly formed de novo by the animals from non-lipid dietary precursors, esterified with various fatty acids that are often polyunsaturated fatty acids and largely of dietary, phytoplanktonic origin. Wax ester formation is maximal in copepodite stages IV and V. The lipids are elaborated not primarily for buoyancy regulation but as a source of metabolic energy during overwintering, particularly for reproduction. Large quantities of wax esters are utilised for gonadal development when stage V copepodites mature to females. Development of stage V copepodites to males is not accompanied by wax ester utilisation but males consume large amounts of these lipids in physical activity during reproduction. The role of wax esters in the life history of calanoids is illustrated with particular reference to a comparison of Calanus finmarchicus and Metridia longa in Balsfjord, northern Norway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号