首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人们一直致力于寻求提高蛋白质晶体质量的方法,利用电场诱导蛋白质结晶即是诸多方法中的一种。已有文献报道显示,电场对蛋白质结晶的影响是积极的。我们从直流电场、交流电场、内置电场、外置电场对蛋白质结晶的影响及相关结晶设备,电场中生长的蛋白质晶体质量的评估,电场中蛋白质结晶的原理及影响因素等方面,对已报道的电场中的蛋白质结晶研究工作进行了总结。  相似文献   

2.
Es'kov EK 《Biofizika》2006,51(1):153-155
The effect of high-intensity low-frequency electric field on the functioning of the heart of an insect was estimated from electrocardiogram. It was found that electric field causes a disturbance of the cardiac function. Its stressing activity is mainly related to the excitation of the insect by induced currents whose exciting action is enhanced by vibration in trichoid sensillas and antennas.  相似文献   

3.
This investigation studied the effect of 50 Hz electric and magnetic fields on the human heart. The electrocardiograms of 27 transmission-line workers and 26 male volunteers were recorded with a Holter recorder both in and outside the fields. The measurements took from half an hour to a few hours. The electric field strength varied from 0.14 to 10.21 kV/m and the magnetic flux density from 1.02 to 15.43 μT. Analysis of the ECG recordings showed that extrasystoles or arrhythmias were as frequent outside the field as in the field. In some cases a small decrease in heart rate was observed after field exposure. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The dynamics of potassium ions in a KcsA channel, located within a stochastically fluctuating medium, is modelled via the application of the molecular dynamics simulation method. We investigate the effect of presence and absence of an applied electric field, either constant or periodic, on the dynamics of the channel. It is found that the ions undergo a hopping motion when the channel is exposed to a constant electric field of strength 0.03 V/nm. Furthermore, an alternating electric field in the GHz range, normally present in the daily environment and encountered by most biological systems, is applied to the channel, showing that in this frequency range, the rigidity of the atomic bonds of the filter is increased, which in turn disturbs the ionic passage rate through the filter. Consequently, in this frequency range, the application of electric fields may affect the function of such channels.  相似文献   

5.
The effect of the external high voltage electric field pulses on the suspension of rat peritoneal phagocytes has been investigated using chemiluminescent and turbodimetric methods. Single electric field pulses were found to activate macrophages, which was accompanied by a "flash" of chemiluminescence. Subthreshold electric field strength up to 0.8 kV/cm failed to alter macrophage activity. Maximum activation was observed at 2.2 kV/cm; with higher electric field intensity the effect diminished to zero. Drastic changes in light-scattering suspension properties at high electric field intensity indicate irreversible alterations of the barrier function of phagocyte membranes.  相似文献   

6.
Recently, it has been reported that exposure to high-strength electric fields can influence electrocardiogram (ECG) patterns, heart rates, and blood pressures in various species of animals. Our studies were designed to evaluate these reported effects and to help clarify some of the disagreement present in the literature. Various cardiovascular variables were measured in Sprague-Dawley rats exposed or sham-exposed to 60-Hz electric fields at 80 or 100 kV/m for periods up to four months. No significant differences in heart rates, ECG patterns, blood pressures, or vascular reactivity were observed between exposed and sham-exposed rats after 8 hours, 40 hours, 1 month, or 4 months of exposure. Blood pressure and heart rate measurements, made during exposure to a 100-kV/m electric field for one hour, revealed no significant differences between exposed and sham-exposed groups. In addition, physiologic reserve capacity, measured in rats subjected to low temperature after exposure to 100 kV/m for one month, showed that electric-field exposure had no significant effect on physiological response to cold stress. Our studies cannot be directly compared to the work of other investigators because of differences in animal species and electric-field characteristics. However, our failure to detect any cardiovascular changes may have been the result of 1) eliminating secondary field effects such as shocks, audible noise, corona, and ozone; 2) minimizing steady-state microcurrents between the mouth of the animal and watering devices; and 3) minimizing electric-field-induced vibration of the electrodes and animal cages.  相似文献   

7.
It is already known that electrostatic, magnetostatic, extremely low-frequency electric fields, and pulsed electric field could be utilized in cancer treatment. The healing effect depends on frequency and amplitude of electric field. In the present work, a simple theoretical model is developed to estimate the intensity of electrostatic field that damages a living cell during division. By this model, it is shown that magnification of electric field in the bottleneck of dividing cell is enough to break chemical bounds between molecules by an avalanche process. Our model shows that the externally applied electric field of 4?V/cm intensity is able to hurt a cancer cell at the dividing stage.  相似文献   

8.
Molecular dynamics simulations of liquid water were performed at 258K and a density of 1.0?g/cm3 under various applied external electric field, ranging 0~1010?V/m. The influence of external field on structural and dynamical properties of water was investigated. The simple point charge (SPC) model is used for water molecules. An enhancement of the water hydrogen bond structure with increasing strength of the electric field has been deduced from the radial distribution functions and the analysis of hydrogen bonds structure. With increasing field strength, water system has a more perfect structure, which is similar to ice structure. However, the electrofreezing phenomenon of liquid water has not been detected since the self-diffusion coefficient was very large. The self-diffusion coefficient decreases remarkably with increasing strength of electric field and the self-diffusion coefficient is anisotropic.  相似文献   

9.
Theoretical consideration has been given in two horses to the properties of the electric field created by the equine heart acting as a simple electric generator. The principles of the vectorial theory have been applied to test the validity of application of the dipole concept. The cardiac electric forces, althrough complex in the immediate region of the heart, appear at the body surface in a similar form to those arising from a relatively immobile, single equivalent dipole. The potential value of the technique of vectorcardiography in cardiological investigations is briefly discussed.  相似文献   

10.
Tumor-treating fields (TTFields) are low-intensity and intermediate-frequency alternating electric fields that have been found to inhibit tumor cell growth. While effective, the mechanism by which TTFields affect cell growth is not yet clearly understood. Although numerous mathematical studies on the effects of electromagnetic fields on single cells exist, the effect of TTFields on single cells have been analyzed less frequently. The goal of this study is to explore through a mathematical analysis the effects of TTFields on single cells, with particular emphasis on the thermal effect. We examine herein two single-cell models, a simplified spheroidal model and a simulation of a U-87 MG glioblastoma cell model obtained from microscopic images. A finite element method is used to analyze the electric field distribution, electromagnetic loss, and thermal field distribution. The results further prove that the electric field in the cytoplasm is too weak and its thermal damage can be excluded as a mechanism for cell death in TTFields. Bioelectromagnetics. 2020;41:438–446. © 2020 Bioelectromagnetics Society.  相似文献   

11.
A chicken tendon explant model system has been developed to investigate the effects of extremely-low-frequency (ELF), low-amplitude, unipolar, square wave pulsed electric fields on fibroplasia in vitro. An electric field parameter set consisting of 1-Hz, 1-ms duration pulses, with a time-averaged current density of 7 mA/m2 (peak current density 7 A/m2) induced maximal (32%) increase in fibroblast proliferation in tendon explants exposed for 4 days. Exposure to the same field at an average current density of 1.8 mA/m2 had no effect on fibroblast proliferation, whereas exposure to current densities on greater than 10 mA/m2 inhibited proliferation and relative collagen synthesis, without affecting noncollagen protein synthesis. Fibroplasia was significantly increased in explants oriented parallel to applied electric fields having current densities of 3.5 or 7 mA/m2, but there was no detectable effect on explants oriented perpendicular to the same electric field. Fibroblast proliferation and relative collagen synthesis were inversely proportional to donor age for chickens in the 3- to 16-week age group used in this study. For these dependent variables (proliferation and relative collagen synthesis), there was no interaction between donor age and ELF electric field exposure.  相似文献   

12.
While electric fields at intermediate frequencies are not widely utilized for industrial technologies, surprisingly, certain toys emit the highest electric fields found in our living environment. These toys, plasma balls, are devices that use high voltage to create ionized light discharges. In this study, we assessed exposure to electric fields and contact/induced current from a recreational plasma ball device. The electric field strength was measured as a function of distance from the device, and the contact/induced current was measured with a current clamp in different exposure situations with point or grasping contact. The characteristic spectra of the electric field and contact current were measured, and both the multiple frequency rule and weighting of the spectra were applied according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998 and 2010 guidelines. The results indicate that the recommended reference levels for the general public are exceeded at distances <1.2 m, and that the contact currents in the hand may be twice higher than recommended by the general public guidelines.  相似文献   

13.
目的寻找一种高效快捷有效地降解猪血红蛋白(Hb)新方法。方法在波型为双向方波,电极间距离为1.2 cm,脉冲频率为200 kHz的脉冲电场下,利用胰蛋白酶在温度为37℃,水解时间为4 h条件下水解猪血红蛋白。结果在脉冲电场作用下,胰蛋白酶水解血红蛋白获得的降解产物,利用高效凝胶色谱、紫外可见扫描及SDS-PAGE蛋白质电泳检测,发现其吸收峰或色带明显多于单一利用胰蛋白酶降解血红蛋白所得降解产物的吸收峰或色带。结论当脉冲电场通过血红蛋白时,血红蛋白内部的分子结构便产生斯塔克效应(Stark effect),引起血红蛋白分子剧烈振动,从而改变其分子结构振辐、吸收峰和偶极矩,并分别引起斯塔克频率、偶极矩、极化率的改变、使血红蛋白分子结构的极化跃迁和超极化,因此,在脉冲电场作用下,促进了血红蛋白酶解反应。  相似文献   

14.
在综合评价电场强度及处理时间对作物生物效应影响时,如何确定生物效应指标之间的权重一直是困扰生物信息综合评价的核心问题。比如叶绿素增长1mg·L–1的价值相当于多少厘米根长的增加,这是一个难以回答的问题。同时,通过指标加权合成的方法获得综合评价的结果也存在信息丢失的缺陷。针对电场条件对作物生物效应的影响,利用数据包络分析的基本思想,给出了用于综合评价电场强度及处理时间对作物生物效应影响的非参数综合分析方法和相应的数学模型,该方法不仅可以克服上述缺点,而且还为分析不同外部条件对作物综合生物效应的影响程度提供了一种有效的分析工具。应用该方法综合评价了不同电场强度和不同处理时间对小麦(Triticumaestivum)种子幼苗株高和根长的影响。结果表明:不同电场强度和处理时间对小麦幼苗生长产生不同影响,在0.5–6.0kV·cm–1场强范围内,随电场强度增加,生理指标呈现振荡性变化,当处理时间为5分钟时,1.0和2.0kV·cm–1场强为最佳处理条件;处理时间为10分钟时,2.5kV·cm–1场强为最佳处理条件。  相似文献   

15.
The biological effects of extremely low-frequency electric fields (ELF) on living organisms have been explored in many studies, but the results are controversial and only a few studies investigated the influence of the intensity of the applied field on seedling growth. Here we assess the effects of a 50 Hz sinusoidal electric field on the early growth of Vigna radiata seedlings while varying the field intensity. Experiments performed in a dark, constant-climate chamber on several thousands of seedlings show that the field produces an inhibitory effect at a low field intensity and an enhancing one at a higher intensity. The maximum negative effect occurs at about 450 V/m, which is an intensity much lower than the exposure limits currently in force in the safety regulations.  相似文献   

16.
Directed cell migration in tissues mediates various physiological processes and is guided by complex cellular factors such as chemoattractant gradients and electric fields. Direct current (DC) electric fields can be generated in physiological settings and the electric field guided migration of various cell types (i.e., electrotaxis) has been demonstrated both in vitro and in vivo. Although several mechanisms have been proposed for electrotaxis, there are so far very few quantitative models. Furthermore, because chemoattractant gradients and electric fields co-exist in tissues, it is important to understand how chemotaxis and electrotaxis interact for mediating cell migration and trafficking. In this study, we developed a mathematical model to investigate the role of electromigration of cell surface chemoattractant receptors in mediating electrochemical sensing and migration of cells. Our results show that electromigration of chemoattractant receptors enables cell electrotactic sensing and migration in the presence of a uniform chemoattractant field. Furthermore, in the physiologically-relevant range of receptor electromigration rates, application of electric fields overcomes chemical guiding signals for directional sensing and migration of cells in co-existing competing electric fields and chemoattractant gradients.  相似文献   

17.
目的:探讨高压电场对A549细胞中ABCG2和V-ATPase表达量的影响;探讨高压电场对A549细胞耐药性的影响。方法:MTT法测细胞生长曲线,明确能导致细胞可逆性电穿孔的最高电场强度。慢病毒构建ABCG2和V-ATPase低表达的A549细胞系,并用电场处理,用q-RT-PCR和Western-blot法检测处理前后ABCG2和V-ATPase的m RNA和蛋白表达量的变化。最适强度的高压电场处理各组细胞,在处理前后的细胞中分别加入阿霉素,用高效液相色谱法检测各组细胞中阿霉素浓度。结果:当电场强度为1500 V/cm时,肿瘤细胞增殖最慢;电场强度为1500 V/cm时,肿瘤细胞中ABCG2和V-ATPase的m RNA和蛋白的表达量分别降至对照组的58%和61%,具有统计学差异;1500 V/cm强度的电场可以提高肿瘤细胞内阿霉素的浓度3-4倍。结论:高压电场可以显著降低肿瘤细胞中V-ATPase和ABCG2的m RNA和蛋白的表达量并降低肿瘤细胞的耐药性。  相似文献   

18.
Plasma levels of dosulepine and heart electric field   总被引:2,自引:0,他引:2  
Antidepressants, particularly tricyclic (TCA) antidepressants, may have cardiotoxic effects, such as cardiac arrhythmias, especially in patients with cardiovascular diseases. For most of TCA, no exact correlation between dosage, plasma levels and changes of ECG parameters of standard ECG has been found. So far, no relationship between dosulepine plasma levels and heart electric field parameters has been studied. We selected 18 female outpatient subjects diagnosed with recurrent depressive disorders, currently in the remission phase (HAMD < 10), without any cardiovascular disease. Patients were treated with daily dosulepine doses of 25-125 mg for 4-8 weeks. 30 heart electric field parameters were analyzed by Cardiag 128.1 diagnostic system as part of BSPM (Body Surface Potential Mapping). Acquired data were correlated with dosulepine plasma levels by means of Spearman's rank order correlation test. Four ECG parameters showed a significant correlation with dosulepine plasma levels: QRS axis deviation in frontal plane (p=0.01), DIAM 40 max (p<0.05), QRS-STT angle in transversal and left sagittal plane (p<0.05). The demonstrated changes confirmed dosulepine influence on the early myocardium depolarization phase and the correlation of this effect with dosulepine dose (its plasma concentration). The higher the dosulepine level, the more marked are the changes of the QRS-STT angle in transversal and sagittal planes and the changes in the QRS axis deviation in frontal plane. Repeatedly recorded changes in the heart electric field were dosulepine-specific and dependent on its plasma levels.  相似文献   

19.
It has been shown that rats, given the choice, will spend more time out of a 60-Hz electric field than in it at field strengths ? 75 kV/m. This paper describes research to examine the relevance of these data to a different species, the pig. Miniature pigs that had been exposed to a 60-Hz electric field at 30 kV/m for 20 h/day, 7 days/week for as long as 6 months, were tested for their preference for the presence or absence of the field during a 23.5-h period. Similar to earlier results with rats, miniature pigs spent more time out of the electric field than in it during the sleeping period.  相似文献   

20.
犬脊髓损伤治疗动物模型   总被引:3,自引:0,他引:3  
目的 建立犬脊髓损伤治疗动物模型 ,为实验研究提供直接的病例材料。方法 人工损伤犬脊髓 ,使用直流电场刺激使脊髓损伤恢复。结果 人工犬脊髓损伤模型建立 ,直流电场刺激治疗可恢复神经功能。结论直流电场刺激在不同时期对犬脊髓再生及功能恢复均有明显促进作用 ,能促进脊髓再生 ,使脊髓通路更快更完善的建立  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号