首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.

Background  

A necessary step for a genome level analysis of the cellular metabolism is the in silico reconstruction of the metabolic network from genome sequences. The available methods are mainly based on the annotation of genome sequences including two successive steps, the prediction of coding sequences (CDS) and their function assignment. The annotation process takes time. The available methods often encounter difficulties when dealing with unfinished error-containing genomic sequence.  相似文献   

2.

Background  

A growing number of realistic in silico models of metabolic functions are being formulated and can serve as 'dry lab' platforms to prototype and simulate experiments before they are performed. For example, dual perturbation experiments that vary both genetic and environmental parameters can readily be simulated in silico. Genetic and environmental perturbations were applied to a cell-scale model of the human erythrocyte and subsequently investigated.  相似文献   

3.

Background  

With an accumulation of in silico data obtained by simulating large-scale biological networks, a new interest of research is emerging for elucidating how living organism functions over time in cells.  相似文献   

4.

Background  

Compared to other model organisms and despite the clinical relevance of the pathogenic yeast Candida albicans, no comprehensive analysis has been done to provide experimental support of its in silico-based genome annotation.  相似文献   

5.

Background  

The binding between antigenic peptides (epitopes) and the MHC molecule is a key step in the cellular immune response. Accurate in silico prediction of epitope-MHC binding affinity can greatly expedite epitope screening by reducing costs and experimental effort.  相似文献   

6.

Background  

Two complete genome sequences are available for Vitis vinifera Pinot noir. Based on the sequence and gene predictions produced by the IASMA, we performed an in silico detection of putative microRNA genes and of their targets, and collected the most reliable microRNA predictions in a web database. The application is available at .  相似文献   

7.
8.

Background  

DNA-based watermarks are helpful tools to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. In silico analyses showed that in coding regions synonymous codons can be used to insert encrypted information into the genome of living organisms by using the DNA-Crypt algorithm.  相似文献   

9.

Background  

Several in silico methods exist that were developed to predict protein interactions from the copious amount of genomic and proteomic data. One of these methods is Domain Fusion, which has proven to be effective in predicting functional links between proteins.  相似文献   

10.

Background  

Peptide ligands have tremendous therapeutic potential as efficacious drugs. Currently, more than 40 peptides are available in the market for a drug. However, since costly and time-consuming synthesis procedures represent a problem for high-throughput screening, novel procedures to reduce the time and labor involved in screening peptide ligands are required. We propose the novel approach of 'in silico panning' which consists of a two-stage screening, involving affinity selection by docking simulation and evolution of the peptide ligand using genetic algorithms (GAs). In silico panning was successfully applied to the selection of peptide inhibitor for water-soluble quinoprotein glucose dehydrogenase (PQQGDH).  相似文献   

11.

Background  

In silico candidate gene prioritisation (CGP) aids the discovery of gene functions by ranking genes according to an objective relevance score. While several CGP methods have been described for identifying human disease genes, corresponding methods for prokaryotic gene function discovery are lacking. Here we present two prokaryotic CGP methods, based on phylogenetic profiles, to assist with this task.  相似文献   

12.

Background  

Modern-day proteins were selected during long evolutionary history as descendants of ancient life forms. In silico reconstruction of such ancestral protein sequences facilitates our understanding of evolutionary processes, protein classification and biological function. Additionally, reconstructed ancestral protein sequences could serve to fill in sequence space thus aiding remote homology inference.  相似文献   

13.

Background  

Taxon specific hybridization probes in combination with a variety of commonly used hybridization formats nowadays are standard tools in microbial identification. A frequently applied technology, fluorescence in situ hybridization (FISH), besides single cell identification, allows the localization and functional studies of the microbial community composition. Careful in silico design and evaluation of potential oligonucleotide probe targets is therefore crucial for performing successful hybridization experiments.  相似文献   

14.

Background  

An in silico analysis of the mitochondrial protein import apparatus from a variety of species; including Chlamydomonas reinhardtii, Chlorella variabilis, Ectocarpus siliculosus, Cyanidioschyzon merolae, Physcomitrella patens, Selaginella moellendorffii, Picea glauca, Oryza sativa and Arabidopsis thaliana was undertaken to determine if components differed within and between plant and non-plant species.  相似文献   

15.

Background  

The knowledge about proteins with specific interaction capacity to the protein partners is very important for the modeling of cell signaling networks. However, the experimentally-derived data are sufficiently not complete for the reconstruction of signaling pathways. This problem can be solved by the network enrichment with predicted protein interactions. The previously published in silico method PAAS was applied for prediction of interactions between protein kinases and their substrates.  相似文献   

16.
17.

Background  

In silico genome-scale metabolic models enable the analysis of the characteristics of metabolic systems of organisms. In this study, we reconstructed a genome-scale metabolic model of Corynebacterium glutamicum on the basis of genome sequence annotation and physiological data. The metabolic characteristics were analyzed using flux balance analysis (FBA), and the results of FBA were validated using data from culture experiments performed at different oxygen uptake rates.  相似文献   

18.

Background  

In silico analysis has shown that all bacterial genomes contain a low percentage of ORFs with undetected frameshifts and in-frame stop codons. These interrupted coding sequences (ICDSs) may really be present in the organism or may result from misannotation based on sequencing errors. The reality or otherwise of these sequences has major implications for all subsequent functional characterization steps, including module prediction, comparative genomics and high-throughput proteomic projects.  相似文献   

19.
Functionally relevant microsatellites in sugarcane unigenes   总被引:1,自引:0,他引:1  

Background  

Unigene sequences constitute a rich source of functionally relevant microsatellites. The present study was undertaken to mine the microsatellites in the available unigene sequences of sugarcane for understanding their constitution in the expressed genic component of its complex polyploid/aneuploid genome, assessing their functional significance in silico, determining the extent of allelic diversity at the microsatellite loci and for evaluating their utility in large-scale genotyping applications in sugarcane.  相似文献   

20.

Background  

DNA melting curve analysis using double-stranded DNA-specific dyes such as SYTO9 produce complex and reproducible melting profiles, resulting in the detection of multiple melting peaks from a single amplicon and allowing the discrimination of different species. We compare the melting curves of several Naegleria and Cryptosporidium amplicons generated in vitro with in silico DNA melting simulations using the programs POLAND and MELTSIM., then test the utility of these programs for assay design using a genetic marker for toxin production in cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号