首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The extended use of microarray technologies has enabled the generation and accumulation of gene expression datasets that contain expression levels of thousands of genes across tens or hundreds of different experimental conditions. One of the major challenges in the analysis of such datasets is to discover local structures composed by sets of genes that show coherent expression patterns across subsets of experimental conditions. These patterns may provide clues about the main biological processes associated to different physiological states.  相似文献   

2.

Background  

Identifying candidate genes in genetic networks is important for understanding regulation and biological function. Large gene expression datasets contain relevant information about genetic networks, but mining the data is not a trivial task. Algorithms that infer Bayesian networks from expression data are powerful tools for learning complex genetic networks, since they can incorporate prior knowledge and uncover higher-order dependencies among genes. However, these algorithms are computationally demanding, so novel techniques that allow targeted exploration for discovering new members of known pathways are essential.  相似文献   

3.

Background  

Gene set analysis (GSA) is a widely used strategy for gene expression data analysis based on pathway knowledge. GSA focuses on sets of related genes and has established major advantages over individual gene analyses, including greater robustness, sensitivity and biological relevance. However, previous GSA methods have limited usage as they cannot handle datasets of different sample sizes or experimental designs.  相似文献   

4.

Background  

Microarray technology has made it possible to simultaneously measure the expression levels of large numbers of genes in a short time. Gene expression data is information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. Clustering is an important tool for finding groups of genes with similar expression patterns in microarray data analysis. However, hard clustering methods, which assign each gene exactly to one cluster, are poorly suited to the analysis of microarray datasets because in such datasets the clusters of genes frequently overlap.  相似文献   

5.

Background  

The biomedical community is rapidly developing new methods of data analysis for microarray experiments, with the goal of establishing new standards to objectively process the massive datasets produced from functional genomic experiments. Each microarray experiment measures thousands of genes simultaneously producing an unprecedented amount of biological information across increasingly numerous experiments; however, in general, only a very small percentage of the genes present on any given array are identified as differentially regulated. The challenge then is to process this information objectively and efficiently in order to obtain knowledge of the biological system under study and by which to compare information gained across multiple experiments. In this context, systematic and objective mathematical approaches, which are simple to apply across a large number of experimental designs, become fundamental to correctly handle the mass of data and to understand the true complexity of the biological systems under study.  相似文献   

6.

Background  

Experimental techniques such as DNA microarray, serial analysis of gene expression (SAGE) and mass spectrometry proteomics, among others, are generating large amounts of data related to genes and proteins at different levels. As in any other experimental approach, it is necessary to analyze these data in the context of previously known information about the biological entities under study. The literature is a particularly valuable source of information for experiment validation and interpretation. Therefore, the development of automated text mining tools to assist in such interpretation is one of the main challenges in current bioinformatics research.  相似文献   

7.
8.
9.

Background  

Public repositories of microarray data contain an incredible amount of information that is potentially relevant to explore functional relationships among genes by meta-analysis of expression profiles. However, the widespread use of this resource by the scientific community is at the moment limited by the limited availability of effective tools of analysis. We here describe CLOE, a simple cDNA microarray data mining strategy based on meta-analysis of datasets from pairs of species. The method consists in ranking EST probes in the datasets of the two species according to the similarity of their expression profiles with that of two EST probes from orthologous genes, and extracting orthologous EST pairs from a given top interval of the ranked lists. The Gene Ontology annotation of the obtained candidate partners is then analyzed for keywords overrepresentation.  相似文献   

10.

Background  

Large-scale compilation of gene expression microarray datasets across diverse biological phenotypes provided a means of gathering a priori knowledge in the form of identification and annotation of bimodal genes in the human and mouse genomes. These switch-like genes consist of 15% of known human genes, and are enriched with genes coding for extracellular and membrane proteins. It is of interest to determine the prediction potential of bimodal genes for class discovery in large-scale datasets.  相似文献   

11.

Background  

Clustering the information content of large high-dimensional gene expression datasets has widespread application in "omics" biology. Unfortunately, the underlying structure of these natural datasets is often fuzzy, and the computational identification of data clusters generally requires knowledge about cluster number and geometry.  相似文献   

12.
13.

Background  

In microarray data analysis, factors such as data quality, biological variation, and the increasingly multi-layered nature of more complex biological systems complicates the modelling of regulatory networks that can represent and capture the interactions among genes. We believe that the use of multiple datasets derived from related biological systems leads to more robust models. Therefore, we developed a novel framework for modelling regulatory networks that involves training and evaluation on independent datasets. Our approach includes the following steps: (1) ordering the datasets based on their level of noise and informativeness; (2) selection of a Bayesian classifier with an appropriate level of complexity by evaluation of predictive performance on independent data sets; (3) comparing the different gene selections and the influence of increasing the model complexity; (4) functional analysis of the informative genes.  相似文献   

14.

Background  

One of the challenges in the analysis of microarray data is to integrate and compare the selected (e.g., differential) gene lists from multiple experiments for common or unique underlying biological themes. A common way to approach this problem is to extract common genes from these gene lists and then subject these genes to enrichment analysis to reveal the underlying biology. However, the capacity of this approach is largely restricted by the limited number of common genes shared by datasets from multiple experiments, which could be caused by the complexity of the biological system itself.  相似文献   

15.
16.

Background  

Independently derived expression profiles of the same biological condition often have few genes in common. In this study, we created populations of expression profiles from publicly available microarray datasets of cancer (breast, lymphoma and renal) samples linked to clinical information with an iterative machine learning algorithm. ROC curves were used to assess the prediction error of each profile for classification. We compared the prediction error of profiles correlated with molecular phenotype against profiles correlated with relapse-free status. Prediction error of profiles identified with supervised univariate feature selection algorithms were compared to profiles selected randomly from a) all genes on the microarray platform and b) a list of known disease-related genes (a priori selection). We also determined the relevance of expression profiles on test arrays from independent datasets, measured on either the same or different microarray platforms.  相似文献   

17.

Background  

Alternative splicing is an important gene regulation mechanism. It is estimated that about 74% of multi-exon human genes have alternative splicing. High throughput tandem (MS/MS) mass spectrometry provides valuable information for rapidly identifying potentially novel alternatively-spliced protein products from experimental datasets. However, the ability to identify alternative splicing events through tandem mass spectrometry depends on the database against which the spectra are searched.  相似文献   

18.

Background  

DNA microarrays, which determine the expression levels of tens of thousands of genes from a sample, are an important research tool. However, the volume of data they produce can be an obstacle to interpretation of the results. Clustering the genes on the basis of similarity of their expression profiles can simplify the data, and potentially provides an important source of biological inference, but these methods have not been tested systematically on datasets from complex human tissues. In this paper, four clustering methods, CRC, k-means, ISA and memISA, are used upon three brain expression datasets. The results are compared on speed, gene coverage and GO enrichment. The effects of combining the clusters produced by each method are also assessed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号