首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

The study of protein-small molecule interactions is vital for understanding protein function and for practical applications in drug discovery. To benefit from the rapidly increasing structural data, it is essential to improve the tools that enable large scale binding site prediction with greater emphasis on their biological validity.  相似文献   

2.
Survivin is one of the most tumor-specific genes in the human genome and is an attractive target for cancer therapy. However, small-molecule ligands for survivin have not yet been described. Thus, an interrogation of survivin which could potentially both validate a small-molecule therapy approach, and determine the biochemical nature of any of survivin's functions has not been possible. Here we describe the discovery and characterization of a small molecule binding site on the survivin surface distinct from the Smac peptide-binding site. The new site is located at the dimer interface and exhibits many of the features of highly druggable, biologically relevant protein binding sites. A variety of small hydrophobic compounds were found that bind with moderate affinity to this binding site, from which one lead was developed into a group of compounds with nanomolar affinity. Additionally, a subset of these compounds are adequately water-soluble and cell-permeable. Thus, the structural studies and small molecules described here provide tools that can be used to probe the biochemical role(s) of survivin, and may ultimately serve as a basis for the development of small molecule therapeutics acting via direct or allosteric disruption of binding events related to this poorly understood target.  相似文献   

3.
Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex‐PSIM, a previously reported surface‐based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ~60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the podorly characterized proteins. Proteins 2014; 82:679–694. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Drugs may interact with double stranded DNA via a variety of binding modes, each mode giving rise to a specific pharmacological function. Here we demonstrate the ability of single molecule force spectroscopy to discriminate between different interaction modes by measuring the mechanical properties of DNA and their modulation upon the binding of small molecules. Due to the unique topology of double stranded DNA and due to its base pair stacking pattern, DNA undergoes several well-characterised structural transitions upon stretching. We show that small molecule binding markedly affects these transitions in ways characteristic to the binding mode and that these effects can be detected at the level of an individual molecule. The minor groove binder berenil, the crosslinker cisplatin and the intercalator ethidium bromide are compared.  相似文献   

5.
6.
We report on the integration of pharmacological data and homology information for a large scale analysis of small molecule binding to related targets. Differences in small molecule binding have been assessed for curated pairs of human to rat orthologs and also for recently diverged human paralogs. Our analysis shows that in general, small molecule binding is conserved for pairs of human to rat orthologs. Using statistical tests, we identified a small number of cases where small molecule binding is different between human and rat, some of which had previously been reported in the literature. Knowledge of species specific pharmacology can be advantageous for drug discovery, where rats are frequently used as a model system. For human paralogs, we demonstrate a global correlation between sequence identity and the binding of small molecules with equivalent affinity. Our findings provide an initial general model relating small molecule binding and sequence divergence, containing the foundations for a general model to anticipate and predict within-target-family selectivity.  相似文献   

7.
DNase I and MPE.Fe (II) footprinting both employ partial cleavage of ligand-protected DNA restriction fragments and Maxam-Gilbert sequencing gel methods of analysis. One method utilizes the enzyme, DNase I, as the DNA cleaving agent while the other employs the synthetic molecule, methidium-propyl-EDTA (MPE). For actinomycin D, chromomycin A3 and distamycin A, DNase I footprinting reports larger binding site sizes than MPE.Fe (II). DNase I footprinting appears more sensitive for weakly bound sites. MPE.Fe (II) footprinting appears more accurate in determining the actual size and location of the binding sites for small molecules on DNA, especially in cases where several small molecules are closely spaced on the DNA. MPE.Fe (II) and DNase I report the same sequence and binding site size for lac repressor protein on operator DNA.  相似文献   

8.
9.
Shrivastava I  LaLonde JM 《Biochemistry》2011,50(19):4173-4183
HIV cell entry and infection are driven by binding events to the CD4 and chemokine receptors with associated conformational change of the viral glycoprotein, gp120. Scyllatoxin miniprotein CD4 mimetics and a small molecule inhibitor of CD4 binding, NBD-556, also effectively induce gp120 conformational change. In this study we examine the fluctuation profile of gp120 in context of CD4, a miniprotein mimetic, and NBD-556 with the aim of understanding the effect of ligand binding on gp120 conformational dynamics. Analysis of molecular dynamics trajectories indicate that NBD-556 binding in the Phe 43 cavity enhances the overall mobility of gp120, especially in the outer domain in comparison to CD4 or miniprotein bound complex. Interactions with the more flexible bridging sheet strengthen upon NBD-556 binding and may contribute to gp120 restructuring. The enhanced mobility of D368, E370, and I371 with NBD-556 bound in the Phe 43 cavity suggests that interactions with α3-helix in the outer domain are not optimal, providing further insights into gp120--small molecule interactions that may impact small molecule designs.  相似文献   

10.
p38 mitogen-activated protein kinase (MAPK) (p38/p38-alpha/CSBP2/RK) has been implicated in the regulation of many proinflammatory pathways. Because of this, it has received much attention as a potential drug target for controlling diseases such as rheumatoid arthritis, endotoxic shock, inflammatory bowel disease, osteoporosis, and many others. A number of small molecule inhibitors of this kinase have been described, and in this paper we have used surface plasmon resonance to directly measure and quantitate their binding to p38. Despite the relatively low molecular mass (approximately 400 Da) of these inhibitors, specific binding can be observed. For the two most potent inhibitors studied, SB 203580 and RWJ 67657, dissociation constants, K(d)'s, of 22 and 10 nm, respectively, were obtained. These values closely match the IC(5)0 values observed in a cell-based TNF alpha release assay implying that p38 plays a major role in TNF alpha release. The association and dissociation rates for the binding of these inhibitors to p38 have also been quantitated. SB 203580 and RWJ 67657 have very similar association rates of around 8 x 10(5) m(-1) x s(-1), and the differences in affinity are determined by different dissociation rates. The weaker binding compounds have dissociation rates similar to SB 203580, but the association rates vary by an order of magnitude or more. The direct measurement of compounds binding to p38 may help in understanding the difference between potency and efficacy for these inhibitors. This in turn may yield clues on how to develop better inhibitors.  相似文献   

11.
Locked nucleic acid (LNA) is a conformationally constrained DNA analogue that exhibits exceptionally high affinity for complementary DNA and RNA strands. The deoxyribose sugar is modified by a 2'-O, 4'-C oxymethylene bridge, which projects into the minor groove. In addition to changing the distribution of functional groups in the groove and the overall helical geometry relative to unmodified DNA, the bridge likely alters the hydration of the groove. Each of these factors will impact the ability of small molecules, proteins and other nucleic acids to recognize LNA-containing hybrids. This report describes the ability of several DNA-intercalating ligands and one minor groove binder to recognize LNA-DNA and LNA-RNA hybrid duplexes. Using UV-vis, fluorescence and circular dichroism spectroscopies, we find that the minor groove binder as well as the intercalators exhibit significantly lower affinity for LNA-containing duplexes. The lone exception is the alkaloid ellipticine, which intercalates into LNA-DNA and LNA-RNA duplexes with affinities comparable to unmodified DNA-DNA and RNA-DNA duplexes.  相似文献   

12.
Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (>100) and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.  相似文献   

13.
Small ankyrin 1 (sAnk1), an integral protein of the sarcoplasmic reticulum encoded by the ANK1 gene, binds with nanomolar affinity to the C terminus of obscurin, a giant protein surrounding the contractile apparatus in striated muscle. We used site-directed mutagenesis to characterize the binding site on sAnk1, specifically addressing the role of two putative amphipathic, positively charged helices. We measured binding qualitatively by blot overlay assays and quantitatively by surface plasmon resonance and showed that both positively charged sequences are required for activity. We showed further that substitution of a lysine or arginine with an alanine or glutamate located at the same position along either of the two putative helices has similar inhibitory or stimulatory effects on binding and that the effects of a particular mutation depended on the position of the mutated amino acid in each helix. We modeled the structure of the binding region of sAnk1 by homology with ankyrin repeats of human Notch1, which have a similar pattern of charged and hydrophobic residues. Our modeling suggested that each of the two positively charged sequences forms pairs of amphipathic, anti-parallel alpha-helices flanked by beta-hairpin-like turns. Most of the residues in homologous positions along each helical unit have similar, though not identical, orientations. CD spectroscopy confirmed the alpha-helical content of sAnk1, approximately 33%, predicted by the model. Thus, structural and mutational studies of the binding region on sAnk1 for obscurin suggest that it consists of two ankyrin repeats with very similar structures.  相似文献   

14.
Recent studies have demonstrated that sulfated polyanions (SP) are potent inhibitors of HIV infection in vitro, appearing to inhibit virus attachment. To understand the mode of action of these compounds a large panel of SP were examined for their ability to inhibit HIV infection, block anti-CD4 mAb binding and, when immobilized, bind soluble CD4 and virion gp120. Based on anti-CD4 mAb binding-inhibition studies a SP binding site was identified on the CD4 molecule. Dextran sulfate (DXS)-500 kDa, polyvinylsulfate (PVS), and polyanethole sulfonate were particularly potent SP inhibitors, blocking the binding of 11 of the 12 anti-CD4 mAb tested. These 11 mAb are known to interact with the two amino-terminal Ig-like domains of CD4. In fact, DXS-500 kDa exhibited an hierarchy of inhibition of anti-CD4 mAb which suggests that SP bind to a conformational site incorporating the first two Ig-like domains of CD4. This SP binding site is clearly distinct but closely associated with the gp120 binding region of CD4. In terms of anti-HIV activity there was no evidence that SP act at the virion level as rgp120 did not bind to immobilized SP and preincubation of virions with SP did not affect infectivity. In contrast, many of the SP tested showed some affinity for CD4 based on anti-CD4 mAb blocking studies and binding of soluble CD4 to immobilized SP. The most active in this regard were DXS-500 kDa and PVS, whose anti-HIV activity could be entirely due to disruption of the CD4-gp120 interaction. However, with SP such as heparin, fucoidan, the carrageenans, and polyanethole sulfonate, although CD4 blocking may contribute to anti-HIV activity, some other anti-viral mechanism is also operating. Finally, pentosan sulfate, a SP with anti-HIV activity comparable to DXS-500 kDa and PVS, showed little or no reactivity with CD4 and must inhibit HIV infection by a totally CD4-independent mechanism.  相似文献   

15.
Small molecules that modulate protein-protein interactions are of great interest for chemical biology and therapeutics. Here I present a structure-based approach to predict 'bi-functional' sites able to bind both small molecule ligands and proteins, in proteins of unknown structure. First, I develop a homology-based annotation method that transfers binding sites of known three-dimensional structure onto protein sequences, predicting residues in ligand and protein binding sites with estimated true positive rates of 98% and 88%, respectively, at 1% false positive rates. Applying this method to the human proteome predicts 8463 proteins with bi-functional residues and correctly recovers the targets of known interaction modulators. Proteins with significantly (p < 0.01) more bi-functional residues than expected were found to be enriched in regulatory and depleted in metabolism functions. Finally, I demonstrate the utility of the method by describing examples of predicted overlap and evidence of their biological and therapeutic relevance. The results suggest that combining the structures of known binding sites with established fold detection algorithms can predict regions of protein-protein interfaces that are amenable to small molecule modulation. Open-source software and the results for several complete proteomes are available at http://pibase.janelia.org/homolobind.  相似文献   

16.
The chaperonin GroEL is a megadalton-sized molecular machine that plays an essential role in the bacterial cell assisting protein folding to the native state through actions requiring ATP binding and hydrolysis. A combination of medicinal chemistry and genetics has been employed to generate an orthogonal pair, a small molecule that selectively inhibits ATPase activity of a GroEL ATP-binding pocket variant. An initial screen of kinase-directed inhibitors identified an active pyrazolo-pyrimidine scaffold that was iteratively modified and screened against a collective of GroEL nucleotide pocket variants to identify a cyclopentyl carboxamide derivative, EC3016, that specifically inhibits ATPase activity and protein folding by the GroEL mutant, I493C, involving a side chain positioned near the base of ATP. This orthogonal pair will enable in vitro studies of the action of ATP in triggering activation of GroEL-mediated protein folding and might enable further studies of GroEL action in vivo. The approach originated for studying kinases by Shokat and his colleagues may thus also be used to study large macromolecular machines.  相似文献   

17.
Caspase-11, a cytosolic lipopolysaccharide (LPS) receptor, mediates lethal immune responses and coagulopathy in sepsis, a leading cause of death worldwide with limited therapeutic options. We previously showed that over-activation of caspase-11 is driven by hepatocyte-released high mobility group box 1 (HMGB1), which delivers extracellular LPS into the cytosol of host cells during sepsis. Using a phenotypic screening strategy with recombinant HMGB1 and peritoneal macrophages, we discovered that FeTPPS, a small molecule selectively inhibits HMGB1-mediated caspase-11 activation. The physical interaction between FeTPPS and HMGB1 disrupts the HMGB1-LPS binding and decreases the capacity of HMGB1 to induce lysosomal rupture, leading to the diminished cytosolic delivery of LPS. Treatment of FeTPPS significantly attenuates HMGB1- and caspase-11-mediated immune responses, organ damage, and lethality in endotoxemia and bacterial sepsis. These findings shed light on the development of HMGB1-targeting therapeutics for lethal immune disorders and might open a new avenue to treat sepsis.Subject terms: Cell death and immune response, Sepsis  相似文献   

18.
Small molecule rescue of mutant forms of human carbonic anhydrase II (HCA II) occurs by participation of exogenous donors/acceptors in the proton transfer pathway between the zinc-bound water and solution. To examine more thoroughly the energetics of this activation, we have constructed a mutant, H64W HCA II, which we have shown is activated by 4-methylimidazole (4-MI) by a mechanism involving the binding of 4-MI to the side chain of Trp-64 approximately 8 A from the zinc. A series of experiments are consistent with the activation of H64W HCA II by the interaction of imidazole and pyridine derivatives as exogenous proton donors with the indole ring of Trp-64; these experiments include pH profiles and H/D solvent isotope effects consistent with proton transfer, observation of approximately fourfold greater activation with the mutant containing Trp-64 compared with Gly-64, and the observation by x-ray crystallography of the binding of 4-MI associated with the indole side chain of Trp-64 in W5A-H64W HCA II. Proton donors bound at the less flexible side chain of Trp-64 in W5A-H64W HCA II do not show activation, but such donors bound at the more flexible Trp-64 of H64W HCA II do show activation, supporting suggestions that conformational mobility of the binding site is associated with more efficient proton transfer. Evaluation using Marcus theory showed that the activation of H64W HCA II by these proton donors was reflected in the work functions w(r) and w(p) rather than in the intrinsic Marcus barrier itself, consistent with the role of solvent reorganization in catalysis.  相似文献   

19.
Ricin A-chain is an N-glucosidase that attacks ribosomal RNA at a highly conserved adenine residue. Our recent crystallographic studies show that not only adenine and formycin, but also pterin-based rings can bind in the active site of ricin. For a better understanding of the means by which ricin recognizes adenine rings, the geometries and interaction energies were calculated for a number of complexes between ricin and tautomeric modifications of formycin, adenine, pterin, and guanine. These were studied by molecular mechanics, semi-empirical quantum mechanics, and ab initio quantum mechanical methods. The calculations indicate that the formycin ring binds better than adenine and pterin better than formycin, a result that is consistent with the crystallographic data. A tautomer of pterin that is not in the low energy form in either the gas phase or in aqueous solution has the best interaction with the enzyme. The net interaction energy, defined as the interaction energy calculated in vacuo between the receptor and an inhibitor minus the solvation energy of the inhibitor, provides a good prediction of the ability of the inhibitor to bind to the receptor. The results from experimental and molecular modeling work suggest that the ricin binding site is not flexible and may only recognize a limited range of adenine-like rings. Proteins 31:33–41, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    20.
    He W  Li Y  Liu J  Hu Z  Chen X 《Biopolymers》2005,79(1):48-57
    Cardamonin (2',4'-dihydroxy-6'-methoxychalcone), one of the main constituents from the seeds of Alpinia katsumadai Hayata, belongs to chalcone with its antibacterial, antiinflammatory and other important therapeutic activities of significant potency and low systemic toxicity. In this article, the interaction of cardamonin to human serum albumin (HSA) has been studied for the first time by spectroscopic methods including Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD), and UV-absorption spectroscopy in combination with fluorescence quenching under physiological conditions with drug concentrations of 0.67-4.0 microM. The results of the spectroscopic measurements and the thermodynamic parameters obtained (the enthalpy change DeltaH(0) and the entropy change DeltaS(0) were calculated to be -25.312 and 7.040 J.mol(-1).K(-1) according to the van't Hoff equation) suggest that hydrophobic interaction is the predominant intermolecular forces stabilizing the complex, which is also in good agreement with the results of the molecule modeling study. The alterations of protein secondary structure in the presence of cardamonin in aqueous solution were quantitatively calculated by the evidence from CD and FTIR spectroscopes with reductions of alpha-helices of about 20%, decreases of beta-sheet structures of about 14%, and increases of beta-turn structures of about 15%. The quenching mechanism and the number of binding sites (n approximately 1) were obtained by fluorescence titration data. Fluorescent displacement measurements confirmed that cardamonin binds HSA on site II. In addition, the effects of common ions on the constants of the cardamonin-HSA complex were also discussed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号