首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The gene encoding the regulatory subunit (RKA1) of the cAMP-dependent protein kinase (PKA) of Yarrowia lipolytica was isolated to analyze the role of the PKA pathway in the dimorphic transition of the fungus. The gene encoded a protein of 397 amino acids that exhibits significant homology to fungal PKA regulatory subunits. Attempts to disrupt the gene by double homologous recombination, or the Pop-in Pop-out technique, were unsuccessful. The gene could be mutated only in merodiploids constructed with an autonomous replicating plasmid. Loss of the plasmid occurred with growth under nonselective conditions in the whole population of merodiploids carrying the mutation in the plasmid, but in merodiploids with the mutation at the chromosome, a resistant population prevailed. These data suggest that RKA1 is essential in Y. lipolytica. cAMP addition inhibited the dimorphic transition of the parental strain, but merodiploids carrying several copies of RKA1 were more resistant to cAMP. These results, and the observation that RKA1 was upregulated in mycelial cells, indicate that an active PKA pathway promotes yeast-like growth and opposes mycelial development. This behavior is in contrast to that of Candida albicans, where the PKA pathway favors hyphal growth.  相似文献   

3.
We have cloned and characterized the gene PYC1, encoding the unique pyruvate carboxylase in the dimorphic yeast Yarrowia lipolytica. The protein putatively encoded by the cDNA has a length of 1,192 amino acids and shows around 70% identity with pyruvate carboxylases from other organisms. The corresponding genomic DNA possesses an intron of 269 bp located 133 bp downstream of the starting ATG. In the branch motif of the intron, the sequence CCCTAAC, not previously found at this place in spliceosomal introns of Y. lipolytica, was uncovered. Disruption of the PYC1 gene from Y. lipolytica did not abolish growth in glucose-ammonium medium, as is the case in other eukaryotic microorganisms. This unusual growth phenotype was due to an incomplete glucose repression of the function of the glyoxylate cycle, as shown by the lack of growth in that medium of double pyc1 icl1 mutants lacking both pyruvate carboxylase and isocitrate lyase activity. These mutants grew when glutamate, aspartate, or Casamino Acids were added to the glucose-ammonium medium. The cDNA from the Y. lipolytica PYC1 gene complemented the growth defect of a Saccharomyces cerevisiae pyc1 pyc2 mutant, but introduction of either the S. cerevisiae PYC1 or PYC2 gene into Y. lipolytica did not result in detectable pyruvate carboxylase activity or in growth on glucose-ammonium of a Y. lipolytica pyc1 icl1 double mutant.  相似文献   

4.
5.
Flores CL  Gancedo C  Petit T 《PloS one》2011,6(9):e23695
We have cloned the Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase by complementation of the lack of growth in glucose of a Saccharomyces cerevisiae tps1 mutant. Disruption of YlTPS1 could only be achieved with a cassette placed in the 3' half of its coding region due to the overlap of its sequence with the promoter of the essential gene YlTFC1. The Yltps1 mutant grew in glucose although the Y. lipolytica hexokinase is extremely sensitive to inhibition by trehalose-6-P. The presence of a glucokinase, insensitive to trehalose-6-P, that constitutes about 80% of the glucose phosphorylating capacity during growth in glucose may account for the growth phenotype. Trehalose content was below 1 nmol/mg dry weight in Y. lipolytica, but it increased in strains expressing YlTPS1 under the control of the YlTEF1 promoter or with a disruption of YALI0D15598 encoding a putative trehalase. mRNA levels of YlTPS1 were low and did not respond to thermal stresses, but that of YlTPS2 (YALI0D14476) and YlTPS3 (YALI0E31086) increased 4 and 6 times, repectively, by heat treatment. Disruption of YlTPS1 drastically slowed growth at 35°C. Homozygous Yltps1 diploids showed a decreased sporulation frequency that was ascribed to the low level of YALI0D20966 mRNA an homolog of the S. cerevisiae MCK1 which encodes a protein kinase that activates early meiotic gene expression.  相似文献   

6.
The dimorphic yeast, Yarrowia lipolytica, has been developed as a useful expression/secretion system for heterologous proteins such as chymosin and tissue plasminogen activator. To further develop this expression system, we have cloned the gene (PYK) encoding the highly expressed glycolytic enzyme, pyruvate kinase (PYK). Genomic clones were selected by their specific hybridization to synthetic oligodeoxyribonucleotide probes based on regions of the enzyme that were conserved through evolution. The clones identified by hybridization contained overlapping DNA inserts. We have confirmed the identity of the cloned gene based on two criteria: (1) the nucleotide sequence of the proposed PYK gene predicts a protein that is highly homologous to the corresponding Saccharomyces cerevisiae enzyme, and (2) PYK-specific activity was increased twofold when wild-type Y. lipolytica strains were transformed with the isolated DNA. Interestingly, we found that the open reading frame of the Y. lipolytica PYK gene was interrupted by an intron. This represents the first report of an intron in a Y. lipolytica gene.  相似文献   

7.
8.
In an attempt to engineer a Yarrowia lipolytica strain to produce glycoproteins lacking the outer-chain mannose residues of N-linked oligosaccharides, we investigated the functions of the OCH1 gene encoding a putative alpha-1,6-mannosyltransferase in Y. lipolytica. The complementation of the Saccharomyces cerevisiae och1 mutation by the expression of YlOCH1 and the lack of in vitro alpha-1,6-mannosyltransferase activity in the Yloch1 null mutant indicated that YlOCH1 is a functional ortholog of S. cerevisiae OCH1. The oligosaccharides assembled on two secretory glycoproteins, the Trichoderma reesei endoglucanase I and the endogenous Y. lipolytica lipase, from the Yloch1 null mutant contained a single predominant species, the core oligosaccharide Man8GlcNAc2, whereas those from the wild-type strain consisted of oligosaccharides with heterogeneous sizes, Man8GlcNAc2 to Man12GlcNAc2. Digestion with alpha-1,2- and alpha-1,6-mannosidase of the oligosaccharides from the wild-type and Yloch1 mutant strains strongly supported the possibility that the Yloch1 mutant strain has a defect in adding the first alpha-1,6-linked mannose to the core oligosaccharide. Taken together, these results indicate that YlOCH1 plays a key role in the outer-chain mannosylation of N-linked oligosaccharides in Y. lipolytica. Therefore, the Yloch1 mutant strain can be used as a host to produce glycoproteins lacking the outer-chain mannoses and further developed for the production of therapeutic glycoproteins containing human-compatible oligosaccharides.  相似文献   

9.
Yarrowia lipolytica is a dimorphic fungus whose morphology is controlled by several factors such as pH and different compounds. To determine if the STE11-mitogen-activated protein kinase (MAPK) pathway plays a role in dimorphism of Y. lipolytica, we isolated the gene encoding a Mapkkk. The isolated gene (STE11) has an ORF of 2832 bp without introns, encoding a protein of 944 amino acids, with a theoretical Mr of 100.9 kDa, that exhibits high homology to fungal Mapkkks. Disruption of the STE11 gene was achieved by the pop-in/pop-out procedure. Growth rate and response to osmotic stress or agents affecting wall integrity were unaffected in the deleted mutants, but they lost the capacity to mate and to grow in the mycelial form. Both alterations were reverted by transformation with the wild-type STE11 gene. The Y. lipolytica STE11 gene driven by two different promoters was unable to complement Saccharomyces cerevisiae ste11Delta mutants, although the gene was transcribed. Also, a wild-type MAPKKK gene from Ustilago maydis failed to complement Y. lipolyticaDeltaste11 mutants. Both negative results were attributed to a failure of the transgenic gene products to interact with the corresponding regulatory and scaffold proteins. This hypothesis was supported by the observation that a truncated version of the U. maydis MAPKKK gene reversed mating and dimorphic defects in the mutants. All these results demonstrate that the MAPK pathway is essential for both morphogenesis and mating in Y. lipolytica.  相似文献   

10.
We isolated and characterized BMK1, a gene encoding a mitogen-activated protein kinase (MAPK), from the rice leaf spot pathogen Bipolaris oryzae. The deduced amino acid sequence showed significant homology with Fus3/Kss1 MAPK homologues from other phytopathogenic fungi. The BMK1 disruptants showed impaired hyphal growth, no conidial production, and loss of virulence against rice leaves, indicating that the BMK1 is essential for conidiation and pathogenicity in B. oryzae.  相似文献   

11.
Wendland J  Philippsen P 《Genetics》2001,157(2):601-610
Polarized cell growth requires a polarized organization of the actin cytoskeleton. Small GTP-binding proteins of the Rho-family have been shown to be involved in the regulation of actin polarization as well as other processes. Hyphal growth in filamentous fungi represents an ideal model to investigate mechanisms involved in generating cell polarity and establishing polarized cell growth. Since a potential role of Rho-proteins has not been studied so far in filamentous fungi we isolated and characterized the Ashbya gossypii homologs of the Saccharomyces cerevisiae CDC42, CDC24, RHO1, and RHO3 genes. The AgCDC42 and AgCDC24 genes can both complement conditional mutations in the S. cerevisiae CDC42 and CDC24 genes and both proteins are required for the establishment of actin polarization in A. gossypii germ cells. Agrho1 mutants show a cell lysis phenotype. Null mutant strains of Agrho3 show periodic swelling of hyphal tips that is overcome by repolarization and polar hyphal growth in a manner resembling the germination pattern of spores. Thus different Rho-protein modules are required for distinct steps during polarized hyphal growth of A. gossypii.  相似文献   

12.
Inspection of the complete genome of the yeast Yarrowia lipolytica for the presence of genes encoding homologues of known telomere-binding proteins surprisingly revealed no counterparts of typical yeast Myb domain-containing telomeric factors including Rap1 or Taz1. Instead, we identified a gene, YALIOD10923g, encoding a protein containing two Myb domains, exhibiting a high degree of similarity to the Myb domain of human telomeric proteins TRF1 and TRF2 and homologous to an essential fission yeast protein Mug152 whose expression is elevated during meiosis. The protein, which we named Tay1p (telomere-associated in Yarrowia lipolytica 1), was purified for biochemical studies. Using a model Y. lipolytica telomere, we demonstrate that the protein preferentially binds to Y. lipolytica telomeric tracts. Tay1p binds along the telomeric tract as dimers and larger oligomers, and it is able to remodel the telomeric DNA into both looped structures and synaptic complexes of two model telomere DNAs. The ability of Tay1p to induce dimerization of telomeres in vitro goes in line with its oligomeric nature, where each oligomer can employ several Myb domains to form intermolecular telomere clusters. We also provide experimental evidence that Tay1p may be associated with Y. lipolytica telomeres in vivo. Together with its homologues from Schizosaccharomyces pombe and several basidiomycetous fungi (Sánchez-Alonso, P., and Guzman, P. (2008) Fungal Genet. Biol. 45, S54-S62), Tay1p constitutes a novel family of putative telomeric factors whose analysis may be instrumental in understanding the function and evolution of double-stranded DNA telomeric proteins.  相似文献   

13.
The Ras family of GTPase proteins has been shown to control morphogenesis in many organisms, including several species of pathogenic fungi. In a previous study, we identified a gene encoding a fungus-specific Ras subfamily homolog, rasB, in Aspergillus fumigatus. Here we report that deletion of A. fumigatus rasB caused decreased germination and growth rates on solid media but had no effect on total biomass accumulation after 24 h of growth in liquid culture. The DeltarasB mutant had an irregular hyphal morphology characterized by increased branching. Expression of rasBDelta113-135, a mutant transgene lacking the conserved rasB internal amino acid insertion, did not complement the deletion phenotype of delayed growth and germination rates and abnormal hyphal morphology. Virulence of the rasB deletion strain was diminished; mice infected with this strain exhibited approximately 65% survival compared to approximately 10% with wild-type and reconstituted strains. These data support the hypothesis that rasB homologs, which are highly conserved among fungi that undergo hyphal growth, control signaling modules important to the directional growth of fungal hyphae.  相似文献   

14.
15.
Yeast pseudohyphal filamentation is a stress-responsive growth transition relevant to processes required for virulence in pathogenic fungi. Pseudohyphal growth is controlled through a regulatory network encompassing conserved MAPK (Ste20p, Ste11p, Ste7p, Kss1p, and Fus3p), protein kinase A (Tpk2p), Elm1p, and Snf1p kinase pathways; however, the scope of these pathways is not fully understood. Here, we implemented quantitative phosphoproteomics to identify each of these signaling networks, generating a kinase-dead mutant in filamentous S. cerevisiae and surveying for differential phosphorylation. By this approach, we identified 439 phosphoproteins dependent upon pseudohyphal growth kinases. We report novel phosphorylation sites in 543 peptides, including phosphorylated residues in Ras2p and Flo8p required for wild-type filamentous growth. Phosphoproteins in these kinase signaling networks were enriched for ribonucleoprotein (RNP) granule components, and we observe co-localization of Kss1p, Fus3p, Ste20p, and Tpk2p with the RNP component Igo1p. These kinases localize in puncta with GFP-visualized mRNA, and KSS1 is required for wild-type levels of mRNA localization in RNPs. Kss1p pathway activity is reduced in lsm1Δ/Δ and pat1Δ/Δ strains, and these genes encoding P-body proteins are epistatic to STE7. The P-body protein Dhh1p is also required for hyphal development in Candida albicans. Collectively, this study presents a wealth of data identifying the yeast phosphoproteome in pseudohyphal growth and regulatory interrelationships between pseudohyphal growth kinases and RNPs.  相似文献   

16.
17.
The human fungal pathogen Candida albicans undergoes reversible morphogenetic transitions between yeast, hyphal and pseudohyphal forms. The fungal vacuole actively participates in differentiation processes and plays a key role supporting hyphal growth. The ABG1 gene of C. albicans encodes an essential protein located in the vacuolar membranes of both yeast and hyphae. Using fluorescence microscopy of a green fluorescent protein-tagged version of Abg1p, a fraction of the protein was detected in hyphal tips, not associated with vacuolar membranes. Live cell imaging of emerging germ tubes showed that Abg1p migrated to the polarized growth site and colocalized with endocytic vesicles. Phenotypic analysis of a methionine-regulated conditional mutant confirmed that Abg1p is involved in endocytosis.  相似文献   

18.
19.
The non-conventional yeast Yarrowia lipolytica is a suitable model for the study of yeast dimorphism. In order to identify genes that may be involved in the regulation of this process, random mutagenesis was performed. This led to the isolation of monomorphic mutants that had lost the ability to grow in a hyphal form both in liquid and on solid medium. Filamentation was restored to one of the mutants by transformation with a fragment of Y. lipolytica genomic DNA containing a single 2766-bp ORF. The predicted protein has a molecular weight of 99.6 kDa and is highly homologous to the protein kinases Cla4 of Candida albicans and Saccharomyces cerevisiae, which are members of the p21-activated kinase (PAK) family. Analysis of the putative protein sequence identified conserved C-terminal catalytic, and internal Cdc42p-binding regions, as well as a pleckstrin homology domain typical of PAK kinases. The results indicate that CLA4 is a single-copy gene located on the chromosome V of Y. lipolytica. Deletion of CLA4 is not lethal, but completely eliminates the ability to form filaments and to invade agar. A strain lacking a functional CLA4 gene exhibits an aberrant distribution of chitin in the cell wall, indicating a possible role for the Cla4 protein kinase in the maintenance of cell polarity in Y. lipolytica.  相似文献   

20.
The dimorphic yeast Yarrowia lipolytica forms true hyphae in a medium containing N-acetylglucosamine. We made a new finding that serum is a very effective inducer of hypha formation of Y. lipolytica: serum induced its hyphal growth very quickly compared to N-acetylglucosamine (4 h vs. 10 h). Osmotic and oxidative stresses (0.2 M NaCl and 20 mM H2O2) inhibited the hypha formation induced by N-acetylglucosamine, but did not suppress the hypha formation triggered by serum. Serum-specific morphological mutants, which formed hyphae in the N-acetylglucosamine medium but not in serum medium, could be isolated. These results suggest that the signal triggered by serum may be transduced through a different pathway, at least in part, from that used for the N-acetylglucosamine signal in Y. lipolytica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号