首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrio vulnificus is the causative agent of life-threatening septicemia and severe wound infections. Here, we announce the complete annotated genome sequence of V. vulnificus MO6-24/O, isolated from a patient with septicemia. When it is compared with previously known V. vulnificus genomes, the genome of this bacterium shows a unique genetic makeup, including phagelike elements, carbohydrate metabolism-related genes, and the superintegron.  相似文献   

2.
Curcumin, a natural polyphenolic flavonoid extracted from the rhizome of Curcuma longa L., has many beneficial biological activities. However, there are relatively few reports of the effects of curcumin on pathogen infections. This study examined the effect of curcumin on a Vibrio vulnificus infection. The cytotoxicity of V. vulnificus to HeLa cells was significantly inhibited by curcumin (at 10 or 30?μM). To further examine the inhibitory mechanism of curcumin against V. vulnificus-mediated cytotoxicity, the level of bacterial growth, bacterial motility, cell adhesion, RTX toxin expression and host cell reactions were evaluated. Curcumin inhibited V. vulnificus growth in HI broth. Curcumin inhibited both bacterial adhesion and RTX toxin binding to the host cells, which can be considered the major protective mechanisms for the decrease in V. vulnificus cytotoxicity. Curcumin also inhibited host cell rounding and actin aggregation, which are the early features of cell death caused by V. vulnificus. In addition, curcumin decreased the V. vulnificus-induced NF-κB translocation in HeLa cells. Finally, curcumin protected mice from V. vulnificus-induced septicemia. In conclusion, curcumin may be an alternative antimicrobial agent against fatal bacterial infections.  相似文献   

3.
Vibrio vulnificus is a marine bacterium associated with both primary septicemias and wound infections in humans. The lipopolysaccharides of a virulent and an avirulent strain of Vibrio vulnificus were compared with respect to their chemical constituents and electrophoretic characteristics. 2-Keto-3-deoxyoctonic acid, a normal constituent of the lipopolysaccharide of typical Enterobacteriaceae, was not found in the lipopolysaccharide of either strain. Hexadecenoate (C16:1) was the predominant fatty acid of the lipid A moiety of the lipopolysaccharides and of the membrane phospholipids of both strains. Hydroxy fatty acids composed 44% of the total fatty acids of the lipid A of the avirulent and 40% of those in the virulent strain. In addition, odd-numbered fatty acids were detected in both lipopolysaccharides. The electrophoretic profile was similar for both strains, but demonstrated no "ladder-like" pattern characteristic of "smooth" lipopolysaccharides. The result of this study showed no significant differences between the lipopolysaccharides of the virulent and avirulent strains of Vibrio vulnificus. The possible role for lipopolysaccharide in pathogenesis of Vibrio vulnificus infections is discussed.  相似文献   

4.
The gram-negative bacterium Vibrio vulnificus is a natural inhabitant of estuarine waters and poses a significant health threat to humans who suffer from immune disorders, liver disease, or hemochromatosis (iron overload). V. vulnificus enters human hosts via wound infections or consumption of raw shellfish (primarily oysters), and infections frequently progress to septicemia and death in susceptible individuals. Prevalence in waters and shellfish is not correlated with fecal indicator organisms; therefore, species-specific detection and enumeration of V. vulnificus in the environment has become a priority for agencies that are responsible for shellfish safety. The many selective-differential media developed for isolation of Vibrio spp., and specifically for V. vulnificus detection, are reviewed here; however, none of the media developed to date combines the sensitivity to low numbers with the specificity necessary to inhibit growth of other organisms. Therefore, immunological and molecular protocols are needed for confirmation of the identity of the organism and are discussed in detail. Methods under development that hold promise for rapid, accurate, and sensitive detection and enumeration of the organism include multiplex and real-time PCR. Developing technologies that have proven useful for detection and investigation of other pathogens such as biosensors, spectroscopy and microarrays may provide the next generation of tools for investigation of the prevalence and ecology of V. vulnificus.  相似文献   

5.
Vibrio vulnificus, an estuarine bacterium, is the causative agent of seafood-related gastroenteritis, primary septicemia, and wound infections worldwide. It occurs as part of the normal microflora of coastal marine environments and can be isolated from water, sediment, and oysters. Hindcast prediction was undertaken to determine spatial and temporal variability in the likelihood of occurrence of V. vulnificus in surface waters of the Chesapeake Bay. Hindcast predictions were achieved by forcing a multivariate habitat suitability model with simulated sea surface temperature and salinity in the Bay for the period between 1991 and 2005 and the potential hotspots of occurrence of V. vulnificus in the Chesapeake Bay were identified. The likelihood of occurrence of V. vulnificus during high and low rainfall years was analyzed. From results of the study, it is concluded that hindcast prediction yields an improved understanding of environmental conditions associated with occurrence of V. vulnificus in the Chesapeake Bay.  相似文献   

6.
Certain indigenous estuarine bacteria, such as Vibrio vulnificus, may cause opportunistic human infections after consumption of raw oysters or exposure of tissues to seawater. V. vulnificus is known to be closely associated with oyster (Crassostrea virginica) tissues and is not removed by controlled purification methods, such as UV light-assisted depuration. In fact, when live shellfish are subjected to controlled purification, the number of V. vulnificus cells can markedly increase. A review of previous studies showed that few workers have examined mechanisms in oysters which may influence the persistence of V. vulnificus in shellfish, such as the fate of V. vulnificus following phagocytosis by molluscan hemocytes. The objectives of this study were to define the intracellular viability and extracellular viability of V. vulnificus during the phagocytic process and to study the release of specific lysosomal enzymes. The viability of a virulent estuarine V. vulnificus isolate with opaque morphology was compared with the viability of a translucent, nonvirulent form, the viability of Vibrio cholerae, and the viability of Escherichia coli in phagocytosis experiments. Our results showed that the levels of phagocytosis and bactericidal degradation of the opaque V. vulnificus isolate were less than the levels of phagocytosis and bactericial degradation of the translucent morphotype. These findings indicate that encapsulation may contribute to resistance to ingestion and degradation by hemocytes. The rates of intracellular death of V. cholerae and E. coli exceeded the rate of intracellular death of the opaque V. vulnificus isolate, even though the ingestion or uptake rates did not differ significantly. The levels of lysozyme activity and acid phosphatase activity were not significantly different in hemocyte monolayers inoculated with V. vulnificus.  相似文献   

7.
Vibrio vulnificus is an estuarine bacterium which can cause opportunistic infections in humans consuming raw Gulf Coast oysters, Crassostrea virginica. Although V. vulnificus is known as a ubiquitous organism in the Gulf of Mexico, its ecological relationship with C. virginica has not been adequately defined. The objective of the present study was to test the hypothesis that V. vulnificus is a persistent microbial flora of oysters and unamenable to traditional methods of controlled purification, such as UV light depuration. Experimental depuration systems consisted of aquaria containing temperature-controlled seawater treated with UV light and 0.2-microns-pore-size filtration. V. vulnificus was enumerated in seawater, oyster shell biofilms, homogenates of whole oyster meats, and tissues including the hemolymph, digestive region, gills, mantle, and adductor muscle. Results showed that depuration systems conducted at temperatures greater than 23 degrees C caused V. vulnificus counts to increase in oysters, especially in the hemolymph, adductor muscle, and mantle. Throughout the process, depuration water contained high concentrations of V. vulnificus, indicating that the disinfection properties of UV radiation and 0.2-microns-pore-size filtration were less than the rate at which V. vulnificus was released into seawater. Approximately 10(5) to 10(6) V. vulnificus organisms were released from each oyster per hour, with 0.05 to 35% originating from shell surfaces. These surfaces contained greater than 10(3) V. vulnificus organisms per cm2. In contrast, when depuration seawater was maintained at 15 degrees C, V. vulnificus was not detected in seawater and multiplication in oyster tissues was inhibited.  相似文献   

8.
Densities of Vibrio vulnificus in the intestinal contents of various finfish, oysters, and crabs and in sediment and waters of the U.S. Gulf Coast were determined by the most probable number procedure. Species were identified by enzyme immunoassay. During the winter, densities of V. vulnificus were low, and the organism was isolated more frequently from sheepshead fish than from sediment and seawater. From April to October, V. vulnificus densities were considerably higher (2 to 5 logs) in estuarine fish than in surrounding water, sediment, or nearby oysters and crustacea. Highest densities were found in the intestinal contents of certain bottom-feeding fish (10(8)/100 g), particularly those that consume mollusks and crustaceans. Densities of V. vulnificus in fish that feed primarily on plankton and other finfish were similar to those in oysters, sediment, and crabs (10(5)/100 g). V. vulnificus was found infrequently in offshore fish. The presence of high densities of V. vulnificus in the intestines of common estuarine fish may have both ecological (growth and transport) and public health (food and wound infections) implications.  相似文献   

9.
Vibrio vulnificus is an estuarine bacterium which can cause opportunistic infections in humans consuming raw Gulf Coast oysters, Crassostrea virginica. Although V. vulnificus is known as a ubiquitous organism in the Gulf of Mexico, its ecological relationship with C. virginica has not been adequately defined. The objective of the present study was to test the hypothesis that V. vulnificus is a persistent microbial flora of oysters and unamenable to traditional methods of controlled purification, such as UV light depuration. Experimental depuration systems consisted of aquaria containing temperature-controlled seawater treated with UV light and 0.2-microns-pore-size filtration. V. vulnificus was enumerated in seawater, oyster shell biofilms, homogenates of whole oyster meats, and tissues including the hemolymph, digestive region, gills, mantle, and adductor muscle. Results showed that depuration systems conducted at temperatures greater than 23 degrees C caused V. vulnificus counts to increase in oysters, especially in the hemolymph, adductor muscle, and mantle. Throughout the process, depuration water contained high concentrations of V. vulnificus, indicating that the disinfection properties of UV radiation and 0.2-microns-pore-size filtration were less than the rate at which V. vulnificus was released into seawater. Approximately 10(5) to 10(6) V. vulnificus organisms were released from each oyster per hour, with 0.05 to 35% originating from shell surfaces. These surfaces contained greater than 10(3) V. vulnificus organisms per cm2. In contrast, when depuration seawater was maintained at 15 degrees C, V. vulnificus was not detected in seawater and multiplication in oyster tissues was inhibited.  相似文献   

10.
Vibrio (Beneckea) vulnificus is a recently recognized halophilic organism that may cause serious human infections. Patients infected with V. vulnificus often have a history of exposure to the sea, suggesting that the organism may be a common inhabitant of marine environments. Twenty-one inshore sites around Galveston Island in the Gulf of Mexico were cultured for V. vulnificus over a 12-month period. The organism was recovered from all but one of the sites at some time during the study. It was frequently isolated during the summer and fall from environments of relatively low salinity (7 to 16%). V. vulnificus was rarely isolated from any of the sites during the winter months, when water temperatures dropped below 20 degrees C. In vitro growth characteristics of environmental isolates of V. vulnificus demonstrated salinity optima of 1.0 to 2.0% NaCl and a temperature optimum of 37 degrees C. These growth characteristics may account for the seasonal and geographical variations in occurrence of the organism. Overall, the results of these studies indicate that V. vulnificus is commonly found in Gulf Coast environments and that the occurrence of the organism is favored by warm temperatures and relatively low salinity.  相似文献   

11.
Journal of Applied Phycology - The pathogenic bacterium Vibrio vulnificus is related to human infections by direct contact with the bacteria or by consuming raw aquacultural products, like oysters...  相似文献   

12.
Vibrio vulnificus, a normal bacterial inhabitant of estuaries, is of concern because it can be a potent human pathogen, causing septicemia, wound infections, and gastrointestinal disease in susceptible hosts. From May 1989 through December 1990, oysters and/or water were obtained from six areas in the Great Bay estuary of New Hampshire and Maine. Water was also sampled from three freshwater sites that lead into these areas. V. vulnificus was first detected in the estuary in early July and remained present through September. V. vulnificus was isolated routinely during this period from oysters and water of the Squamscott, Piscataqua, and Oyster Rivers but was only isolated twice from the oysters or water of the Great Bay itself. This study determined that there was a strong correlation (by analysis of variance) between temperature, salinity, and the presence of V. vulnificus in water and oysters. However, other unidentified factors appear to influence its presence in certain areas of the estuary.  相似文献   

13.
Vibrio vulnificus, a normal bacterial inhabitant of estuaries, is of concern because it can be a potent human pathogen, causing septicemia, wound infections, and gastrointestinal disease in susceptible hosts. From May 1989 through December 1990, oysters and/or water were obtained from six areas in the Great Bay estuary of New Hampshire and Maine. Water was also sampled from three freshwater sites that lead into these areas. V. vulnificus was first detected in the estuary in early July and remained present through September. V. vulnificus was isolated routinely during this period from oysters and water of the Squamscott, Piscataqua, and Oyster Rivers but was only isolated twice from the oysters or water of the Great Bay itself. This study determined that there was a strong correlation (by analysis of variance) between temperature, salinity, and the presence of V. vulnificus in water and oysters. However, other unidentified factors appear to influence its presence in certain areas of the estuary.  相似文献   

14.
In the present study, we used Vibrio vulnificus and a zebrafish model system to investigate the inhibitory effect of epinecidin-1 on acute bacterial infection and studied the impacts of pretreatment, co-treatment, and post-treatment with epinecidin-1 on its protective efficacy. In vivo experiments showed that co-treatment with epinecidin-1 and V. vulnificus achieved 78%-97% survival rates after 30 days. When epinecidin-1 and V. vulnificus were co-injected into zebrafish and zebrafish were re-challenged with V. vulnificus after 30 days, zebrafish had survival rates of 22%-47%. Pretreatment and post-treatment with epinecidin-1 obtained respective survival rates of 57% and 60%. In addition, epinecidin-1 modulated the expressions of immune-responsive genes like interleukin (IL)-10, IL-1b, tumor necrosis factor-α, and interferon-γ as analyzed by a microarray and qPCR approach. This study demonstrates the use of epinecidin-1 to develop inactivated material for fish bacterial infections which can provide guidelines for the future design of epinecidin-1-bacterial formulations for various in vivo applications.  相似文献   

15.
Arbitrarily-primed-polymerase chain reaction (AP-PCR) DNA fingerprints were generated for 10 Vibrio vulnificus strains isolated from patients who became infected and died between 1993 and 1996 as a result of consuming raw oysters. Analysis of the DNA fingerprints with gel imaging and cluster analysis software revealed significant genetic heterogeneity among these strains, suggesting that V. vulnificus has a high degree of variation in its genomic organization, and that multiple pathogenic strains with greatly diverse genomic arrangements, rather than a single type of infective strain or serogroup, caused these infections.  相似文献   

16.
Vibrio vulnificus is an estuarine bacterium capable of causing rapidly fatal infections through both ingestion and wound infection. Like other opportunistic pathogens, V. vulnificus must adapt to potentially stressful environmental changes while living freely in seawater, upon colonization of the oyster gut, and upon infection of such diverse hosts as humans and eels. In order to begin to understand the ability of V. vulnificus to respond to such stresses, we examined the role of the alternate sigma factor RpoS, which is important in stress response and virulence in many pathogens. An rpoS mutant of V. vulnificus strain C7184o was constructed by homologous recombination. The mutant strain exhibited a decreased ability to survive diverse environmental stresses, including exposure to hydrogen peroxide, hyperosmolarity, and acidic conditions. The most striking difference was a high sensitivity of the mutant to hydrogen peroxide. Albuminase, caseinase, and elastase activity were detected in the wild type but not in the mutant strain, and an additional two hydrolytic activities (collagenase and gelatinase) were reduced in the mutant strain compared to the wild type. Additionally, the motility of the rpoS mutant was severely diminished. Overall, these studies suggest that rpoS in V. vulnificus is important for adaptation to environmental changes and may have a role in virulence.  相似文献   

17.
Vibrio vulnificus is a marine bacterium that causes human wound infections and septicemia with a high mortality rate. V. vulnificus strains from different clinical and environmental sources or geographic regions have been successfully characterized by ribotyping and several other methods. Pulsed-field gel electrophoresis (PFGE) is a highly discriminative method, but previous studies suggested that it was not suitable for examining the correlation of V. vulnificus strains from different origins. We employed PFGE to determine its efficacy for characterizing V. vulnificus strains from different geographic regions, characterizing a total of 153 strains from clinical and environmental origins from the United States and Taiwan after SfiI or NotI digestion. V. vulnificus strains showed a high intraspecific diversity by PFGE after SfiI or NotI digestion, and about 12% of the strains could not be typed by the use of either of these enzymes. For PFGE with SfiI digestion, most of the clinical and environmental strains from the United States were grouped into cluster A, while the strains from Taiwan were grouped into other clusters. Clinical strains from the United States showed a higher level of genetic homogeneity than clinical strains from Taiwan, and environmental strains from both regions showed a similarly high level of heterogeneity. PFGE with NotI digestion was useful for studying the correlation of clinical strains from the United States and Taiwan, but it was not suitable for analyzing environmental strains. The results showed that PFGE with SfiI digestion may be used to characterize V. vulnificus strains from distant geographic regions, with NotI being a recommended alternative enzyme.  相似文献   

18.
Vibrio vulnificus infections are associated with raw oyster consumption, and disease reservoirs are determined by the ability of this bacterium to infect and persist in oysters. Surface structures, such as capsular polysaccharide (CPS), pili and flagella, function as virulence factors in mouse infection models. Furthermore, virulence is related to phase variation in colony morphology, which reflects CPS expression and includes opaque (encapsulated, virulent), translucent (reduced encapsulation, avirulent) and rugose (wrinkled, biofilm-enhanced) colony types. The role of these factors in environmental survival is unknown; therefore, mutational analysis and phase variation of V. vulnificus were examined in an oyster infection model. Oysters ( Crassostrea virginica ) were pre-treated with tetracycline to reduce background bacteria and subsequently inoculated via filter feeding with 106 colony-forming units (cfu) ml−1 of V. vulnificus wild-type strains and phase variants, as well as strains with deletion mutations in genes related to CPS (Δ wza ), pili (Δ pilA ), flagella (Δ flaCDE/ Δ flaFBA ) and motility (Δ motAB ). All mutants were significantly reduced in their dissemination to oyster haemolymph as compared with wild type; however, recovery of mutants from gills and intestinal tissue was generally similar to wild type. Translucent and rugose inocula showed induction of high-frequency phase variation to the opaque encapsulated phenotype (100% and 72% respectively) during oyster infections that did not occur in strains recovered from seawater. Thus, multiple bacterial factors determine uptake of V. vulnificus in oysters, and phase variation during oyster infection is a likely mechanism for environmental survival and for induction of the more virulent phenotype.  相似文献   

19.
We have cloned a nuclease gene, vvn, from Vibrio vulnificus, an estuarine bacterium that causes wound infections and septicemia in humans and eels. The gene contained a 696-bp open reading frame encoding 232 amino acids (aa), including a signal sequence of 18 aa. The deduced amino acid sequence of the mature nuclease predicted a molecular mass of 25 kDa, which was confirmed by vital stain, and a pI of 8.6. Vvn was produced in the periplasm of either V. vulnificus or recombinant Escherichia coli strains and was active in the oxidized (but not the reduced) form. This nuclease was able to digest DNA and RNA, with differential thermostability in DNase and RNase activities. Expression of Vvn in E. coli DH5alpha reduced the frequencies of transformation with the divalent ion-treated cells and electroporation by about 6 and 2 logs, respectively. In addition, the transformation frequency of a Vvn-deficient V. vulnificus mutant (ND) was 10-fold higher than that of the parent strain. These data suggested that Vvn may be involved in preventing uptake of foreign DNA by transformation. However, Vvn expressed in the recipients had little effect on the conjugation frequency in either E. coli or V. vulnificus. Some other DNase(s) may be present in the periplasm and responsible for a residual DNase activity, which was about one-fourth of that of the parent strain, detected in the ND mutant. We also demonstrated that Vvn was not required for the virulence of V. vulnificus mice.  相似文献   

20.
Vibrio vulnificus is an estuarine bacterium responsible for 95% of all seafood-related deaths in the United States. The bacterium occurs naturally in molluscan shellfish, and ingestion of raw oysters is typically the source of human infection. V. vulnificus is also known to enter a viable but nonculturable (VBNC) state, wherein the cells are no longer culturable on routine plating media but can be shown to remain viable. Whether or not this human pathogen remains virulent when entering the VBNC state has not been definitively demonstrated. In this study, the VBNC state was induced through a temperature downshift to 5 degrees C, with cells becoming nonculturable (< 0.1 CFU/ml) within 7 days. As they became nonculturable, virulence was determined by employing an iron overload mouse model. At the point of nonculturability (7 days), injections of the diluted microcosm population resulted in death when < 0.04 CFU was inoculated, although > 10(5) cells in the VBNC state were present in the inoculum. Culturable cells of V. vulnificus, with identification confirmed through PCR, were recovered from the blood and peritoneal cavities of mice which had died from injections of cells present in the VBNC state for at least 3 days. Thus, our data suggest that cells of V. vulnificus remain virulent, at least for some time, when present in the VBNC state and are capable of causing fatal infections following in vivo resuscitation. Our studies also indicate, however, that virulence decreases significantly as cells enter the VBNC state, which may account, at least to some extent, for the decrease in infections caused by this bacterium during winter months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号