首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Notch signaling involves the proteolytic cleavage of the transmembrane Notch receptor after binding to its transmembrane ligands. Jagged-1 also undergoes proteolytic cleavage by gamma-secretase and releases an intracellular fragment. In this study, we have demonstrated that the Jagged-1 intracellular domain (JICD) inhibits Notch1 signaling via a reduction in the protein stability of the Notch1 intracellular domain (Notch1-IC). The formation of the Notch1-IC-RBP-Jk-Mastermind complex is prevented in the presence of JICD, via a physical interaction. Furthermore, JICD accelerates the protein degradation of Notch1-IC via Fbw7-dependent proteasomal pathway. These results indicate that JICD functions as a negative regulator in Notch1 signaling via the promotion of Notch1-IC degradation.  相似文献   

2.
3.
4.
5.
Previously, mouse RAD50, one of the mammalian DNA recombination repair genes, was reported to have limited epitopic homology to p53. Here we report the functional characteristics of overexpressed human RAD50 (hRAD50). Transient transfection of hRAD50 in several cultured cells caused cytotoxicity. We established tetracycline-regulated, stable hRAD50 expression systems in SaOS-2 cells, which retain mutated p53, and in HeLa cells. After tetracycline withdrawal, cell death and multinucleated giant cells were observed with increased hRAD50 expression, and p21(WAF1/CIP1) but not p53 was increased. Transient transfection of hRAD50 in HCT116 p21(-/-) cells caused no cytotoxicity, but there was a significantly decreased survival rate in p21(+/+) cells. These cytotoxic effects of overexpressed hRAD50 in HeLa, SaOS-2, and HCT116 p21(+/+) cells were partially blocked by pretreatment of cells with N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, a pan-caspase inhibitor. When the hRAD50 expression cDNA was injected intratumorally with liposomes, it regressed or delayed tumor development in the animal model and nitric oxide synthase expression was induced in the tumor tissues that had regressed. Our results indicate that overexpressed hRAD50 has an antiproliferation activity in vitro and in vivo in a p21-dependent manner.  相似文献   

6.
p21(WAF1) appears to be a major determinant of the cell fate in response to anticancer therapy. It was shown previously that HCT116 human colon cancer cells growing in vitro enter a stable arrest upon DNA damage, whereas cells with a defective p21(WAF1) response undergo apoptosis. Here we report that the enhanced sensitivity of HCT116/p21(-/-) cells to chemotherapeutic drug-induced apoptosis correlates with an increased expression of p53 and a modification of their Bax/Bcl-2 ratio in favor of the pro-apoptotic protein Bax. Treatment of HCT116/p21(-/-) cells with daunomycin resulted in a reduction of the mitochondrial membrane potential and in activation of caspase-9, whereas no such changes were observed in HCT116/p21(+/+) cells, providing evidence that p21(WAF1) exerts an antagonistic effect on the mitochondrial pathway of apoptosis. Moreover, the role of p53 in activation of this pathway was demonstrated by the fact that inhibition of p53 activity by pifithrin-alpha reduced the sensitivity of HCT116/p21(-/-) cells to daunomycin-induced apoptosis and restored a Bax/Bcl-2 ratio similar to that observed in HCT116p21(+/+) cells. Enhancement of p53 expression after disruption of p21(WAF1) resulted from a stabilization of p53, which correlated with an increased expression of the tumor suppressor p14(ARF), an inhibitor of the ubiquitin ligase activity of Mdm2. In accordance with the role of p14(ARF) in p53 stabilization, overexpression of p14(ARF) in HCT116/p21(+/+) cells resulted in a strong increase in p53 activity. Our results identify a novel mechanism for the anti-apoptotic effect of p21(WAF1) consisting in maintenance of mitochondrial homeostasis that occurs in consequence of a negative control of p14(ARF) expression.  相似文献   

7.
8.
9.
The tumor suppressor gene p53 has roles in multiple cell-cycle checkpoints, including the G1/S transition, to prevent replication of cells with DNA damage. p53 is thought to be associated with regulation of replication timing during S-phase in the human genome. In the present study, we used p53-wild-type and p53-null HCT116 colon carcinoma cells to analyze p53-dependent changes in replication timing of the human genome. The percentage of HCT116 p53(−/−) cells in S-phase was higher than that of HCT116 p53(+/+) cells. We compared replication timing of human genes between the two cell lines using 25,000 human cDNA microarray. We identified genes that replicated earlier in HCT116 p53(−/−) cells than in HCT116 p53(+/+) cells. These genes included cell-cycle- and apoptosis-related genes. We propose that p53 plays a role in regulation of replication timing of the human genome through the control of cell-cycle checkpoints.  相似文献   

10.
Nanosecond pulsed electric fields (nsPEFs) are ultrashort pulses with high electric field intensity (kV/cm) and high power (megawatts), but low energy density (mJ/cc). To determine roles for p53 in response to nsPEFs, HCT116 cells (p53+/+ and p53-/-) were exposed to nsPEF and analyzed for membrane integrity, phosphatidylserine externalization, caspase activation, and cell survival. Decreasing plasma membrane effects were observed in both HCT116p53+/+ and p53-/- cells with decreasing pulse durations and/or decreasing electric fields. However, addition of ethidium homodimer-1 and Annexin-V-FITC post-pulse demonstrated greater fluorescence in p53-/- versus p53+/+ cells, suggesting a postpulse p53-dependent biological effect at the plasma membrane. Caspase activity was significantly higher than nonpulsed cells only in the p53-/- cells. HCT116 cells exhibited greater survival in response to nsPEFs than HL-60 and Jurkat cells, but survival was more evident for HCT116p53+/+ cells than for HCT116p53-/- cells. These results indicate that nsPEF effects on HCT116 cells include (1) apparent direct electric field effects, (2) biological effects that are p53-dependent and p53-independent, (3) actions on mechanisms that originate at the plasma membranes and at intracellular structures, and (4) an apparent p53 protective effect. NsPEF applications provide a means to explore intracellular structures and functions that can reveal mechanisms in health and disease.  相似文献   

11.
The goal of cancer chemotherapy to induce multi-directional apoptosis as targeting a single pathway is unable to decrease all the downstream effect arises from crosstalk. Present study reports that Withanolide D (WithaD), a steroidal lactone isolated from Withania somnifera, induced cellular apoptosis in which mitochondria and p53 were intricately involved. In MOLT-3 and HCT116p53+/+ cells, WithaD induced crosstalk between intrinsic and extrinsic signaling through Bid, whereas in K562 and HCT116p53-/- cells, only intrinsic pathway was activated where Bid remain unaltered. WithaD showed pronounced activation of p53 in cancer cells. Moreover, lowered apoptogenic effect of HCT116p53-/- over HCT116p53+/+ established a strong correlation between WithaD-mediated apoptosis and p53. WithaD induced Bax and Bak upregulation in HCT116p53+/+, whereas increase only Bak expression in HCT116p53-/- cells, which was coordinated with augmented p53 expression. p53 inhibition substantially reduced Bax level and failed to inhibit Bak upregulation in HCT116p53+/+ cells confirming p53-dependent Bax and p53-independent Bak activation. Additionally, in HCT116p53+/+ cells, combined loss of Bax and Bak (HCT116Bax-Bak-) reduced WithaD-induced apoptosis and completely blocked cytochrome c release whereas single loss of Bax or Bak (HCT116Bax-Bak+/HCT116Bax+Bak-) was only marginally effective after WithaD treatment. In HCT116p53-/- cells, though Bax translocation to mitochondria was abrogated, Bak oligomerization helped the cells to release cytochrome c even before the disruption of mitochondrial membrane potential. WithaD also showed in vitro growth-inhibitory activity against an array of p53 wild type and null cancer cells and K562 xenograft in vivo. Taken together, WithaD elicited apoptosis in malignant cells through Bax/Bak dependent pathway in p53-wild type cells, whereas Bak compensated against loss of Bax in p53-null cells.  相似文献   

12.
13.
14.
15.
Genotoxic stressors, such as radiation, induce cellular damage that activates pre-programmed repair pathways, some of which involve microRNAs (miRNA) that alter gene expression. The let-7 family of miRNA regulates multiple cellular processes including cell division and DNA repair pathways. However, the role and mechanism underlying regulation of let-7 genes in response to stress have yet to be elucidated. In this study we demonstrate that let-7a and let-7b expression decreases significantly following exposure to agents that induce stress including ionizing radiation. This decrease in expression is dependent on p53 and ATM in vitro and is not observed in a p53(-/-) colon cancer cell line (HCT116) or ATM(-/-) human fibroblasts. Chromatin Immunoprecipitation (ChIP) analysis showed p53 binding to a region upstream of the let-7 gene following radiation exposure. Luciferase transient transfections demonstrated that this p53 binding site is necessary for radiation-induced decreases in let-7 expression. A radiation-induced decrease in let-7a and let-7b expression is also observed in radiation-sensitive tissues in vivo and correlates with altered expression of proteins in p53-regulated pro-apoptotic signaling pathways. In contrast, this decreased expression is not observed in p53 knock-out mice suggesting that p53 directly repress let-7 expression. Exogenous expression of let-7a and let-7b increased radiation-induced cytotoxicity in HCT116 p53(+/+) cells but not HCT116 p53(-/-) cells. These results are the first demonstration of a mechanistic connection between the radiation-induced stress response and the regulation of miRNA and radiation-induced cytotoxicity and suggest that this process may be a molecular target for anticancer agents.  相似文献   

16.
17.
Liver receptor homologue 1 (LRH-1) is an orphan nuclear receptor that has been implicated in the progression of breast, pancreatic and colorectal cancer (CRC). To determine mechanisms underlying growth promotion by LRH-1 in CRC, we undertook global expression profiling following siRNA-mediated LRH-1 knockdown in HCT116 cells, which require LRH-1 for growth and in HT29 cells, in which LRH-1 does not regulate growth. Interestingly, expression of the cell cycle inhibitor p21 (CDKN1A) was regulated by LRH-1 in HCT116 cells. p21 regulation was not observed in HT29 cells, where p53 is mutated. p53 dependence for the regulation of p21 by LRH-1 was confirmed by p53 knockdown with siRNA, while LRH-1-regulation of p21 was not evident in HCT116 cells where p53 had been deleted. We demonstrate that LRH-1-mediated p21 regulation in HCT116 cells does not involve altered p53 protein or phosphorylation, and we show that LRH-1 inhibits p53 recruitment to the p21 promoter, likely through a mechanism involving chromatin remodelling. Our study suggests an important role for LRH-1 in the growth of CRC cells that retain wild-type p53.  相似文献   

18.
19.
Treatment of cells with the anti-cancer drug camptothecin (CPT) induces topoisomerase I (Top1)-mediated DNA damage, which in turn affects cell proliferation and survival. In this report, we demonstrate that treatment of the wild-type HCT116 (wt HCT116) human colon cancer cell line and the isogenic p53(-/-) HCT116 and p21(-/-) HCT116 cell lines with a high concentration (250 nm) of CPT resulted in apoptosis, indicating that apoptosis occurred by a p53- and p21-independent mechanism. In contrast, treatment with a low concentration (20 nm) of CPT induced cell cycle arrest and senescence of the wt HCT116 cells, but apoptosis of the p53(-/-) HCT116 and p21(-/-) HCT116 cells. Further investigations indicated that p53-dependent expression of p21 blocked apoptosis of wt HCT116 cells treated with 20 nm, but not 250 nm CPT. Interestingly, blocking of the apoptotic pathway, by Z-VAD-FMK, in p21(-/-) HCT116 cells following treatment with 20 nm CPT did not permit the cells to develop properties of senescence. These observations demonstrated that p21 was required for senescence development of HCT116 cells following treatment with low concentrations of CPT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号