首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The BCR/ABL oncogene causes chronic myelogenous leukemia, a myeloproliferative disorder characterized by clonal expansion of hematopoietic progenitor cells and myeloid cells. It is shown here that transformation of the hematopoietic cell lines Ba/F3, 32Dcl3, and MO7e with BCR/ABL results in an increase in reactive oxygen species (ROS) compared with quiescent, untransformed cells. The increase in ROS was directly due to BCR/ABL because it was blocked by the ABL-specific tyrosine kinase inhibitor STI571. Oxidative stress through ROS is believed to have many biochemical effects, including the potential ability to inhibit protein-tyrosine phosphatases (PTPases). To understand the significance of increased production of ROS, a model system was established in which hydrogen peroxide (H(2)O(2)) was added to untransformed cells to mimic the increase in ROS induced constitutively by BCR/ABL. H(2)O(2) substantially reduced total cellular PTPase activity to a degree approximately equivalent to that of pervanadate, a well known PTPase inhibitor. Further, stimulation of untransformed cells with H(2)O(2) or pervanadate increased tyrosine phosphorylation of each of the most prominent known substrates of BCR/ABL, including c-ABL, c-CBL, SHC, and SHP-2. Treatment of the BCR/ABL-expressing cell line MO7/p210 with the reducing agents pyrrolidine dithiocarbamate or N-acetylcysteine reduced the accumulation of ROS and also decreased tyrosine phosphorylation of cellular proteins. Further, treatment of MO7e cells with H(2)O(2) or pervanadate increased the tyrosine kinase activity of c-ABL. Drugs that alter ROS metabolism or reactivate PTPases may antagonize BCR/ABL transformation.  相似文献   

2.
The DNA binding activity of FUS (also known as TLS), a nuclear pro-oncogene involved in multiple translocations, is regulated by BCR-ABL in a protein kinase CbetaII (PKCbetaII)-dependent manner. We show here that in normal myeloid progenitor cells FUS, although not visibly ubiquitinated, undergoes proteasome-dependent degradation, whereas in BCR-ABL-expressing cells, degradation is suppressed by PKCbetaII phosphorylation. Replacement of serine 256 with the phosphomimetic aspartic acid prevents proteasome-dependent proteolysis of FUS, while the serine-256-to-alanine FUS mutant is unstable and susceptible to degradation. Ectopic expression of the phosphomimetic S256D FUS mutant in granulocyte colony-stimulating factor-treated 32Dcl3 cells induces massive apoptosis and inhibits the differentiation of the cells escaping cell death, while the degradation-prone S256A mutant has no effect on either survival or differentiation. FUS proteolysis is induced by c-Jun, is suppressed by BCR-ABL or Jun kinase 1, and does not depend on c-Jun transactivation potential, ubiquitination, or its interaction with Jun kinase 1. In addition, c-Jun-induced FUS proteasome-dependent degradation is enhanced by heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and depends on the formation of a FUS-Jun-hnRNP A1-containing complex and on lack of PKCbetaII phosphorylation at serine 256 but not on FUS ubiquitination. Thus, novel mechanisms appear to be involved in the degradation of FUS in normal myeloid cells; moreover, the ability of the BCR-ABL oncoprotein to suppress FUS degradation by the induction of posttranslational modifications might contribute to the phenotype of BCR-ABL-expressing hematopoietic cells.  相似文献   

3.
4.
Imatinib mesylate (STI571), a specific inhibitor of BCR/ABL tyrosine kinase, exhibits potent antileukemic effects in the treatment of chronic myelogenous leukemia (CML). However, the precise mechanism by which inhibition of BCR/ABL activity results in pharmacological responses remains unknown. BCR/ABL-positive human K562 CML cells resistant to doxorubicin (K562DoxR) and their sensitive counterparts (K562DoxS) were used to determine the mechanism by which the STI571 inhibitor may overcome drug resistance. K562 wild type cells and CCRF-CEM lymphoblastic leukemia cells without BCR/ABL were used as controls. The STI571 specificity was examined by use of murine pro-B lymphoid Baf3 cells with or without BCR/ABL kinase expression. We examined kinetics of DNA repair after cell treatment with doxorubicin in the presence or absence of STI571 by the alkaline comet assay. The MTT assay was used to estimate resistance against doxorubicin and Western blot analysis with Crk-L antibody was performed to evaluate BCR/ABL kinase inhibition by STI571. We provide evidence that treatment of CML-derived BCR/ABL-expressing leukemia K562 cells with STI571 results in the inhibition of DNA repair and abrogation of the resistance of these cells to doxorubicin. We found that doxorubicin-resistant K562DoxR cells exhibited accelerated kinetics of DNA repair compared with doxorubicin-sensitive K562DoxS cells. Inhibition of BCR/ABL kinase in K562DoxR cells with 1 microM STI571 decreased the kinetics of DNA repair and abrogated drug resistance. The results suggest that STI571-mediated inhibition of BCR/ABL kinase activity can affect the effectiveness of the DNA-repair pathways, which in turn may enhance drug sensitivity of leukemia cells.  相似文献   

5.
The BCR/ABL tyrosine kinase inhibitor imatinib is highly effective for treatment of chronic myeloid leukemia (CML) and Philadelphia-chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). However, relapses with emerging imatinib-resistance mutations in the BCR/ABL kinase domain pose a significant problem. Here, we demonstrate that nutlin-3, an inhibitor of Mdm2, inhibits proliferation and induces apoptosis more effectively in BCR/ABL-driven Ton.B210 cells than in those driven by IL-3. Moreover, nutlin-3 drastically enhanced imatinib-induced apoptosis in a p53-dependent manner in various BCR/ABL-expressing cells, which included primary leukemic cells from patients with CML blast crisis or Ph+ ALL and cells expressing the imatinib-resistant E255K BCR/ABL mutant. Nutlin-3 and imatinib synergistically induced Bax activation, mitochondrial membrane depolarization, and caspase-3 cleavage leading to caspase-dependent apoptosis, which was inhibited by overexpression of Bcl-XL. Imatinib did not significantly affect the nutlin-3-induced expression of p53 but abrogated that of p21. Furthermore, activation of Bax as well as caspase-3 induced by combined treatment with imatinib and nutlin-3 was observed preferentially in cells expressing p21 at reduced levels. The present study indicates that combined treatment with nutlin-3 and imatinib activates p53 without inducing p21 and synergistically activates Bax-mediated intrinsic mitochondrial pathway to induce apoptosis in BCR/ABL-expressing cells.  相似文献   

6.
7.
Nucleotide-excision repair (NER) is the most versatile mechanism of DNA repair, recognizing and dealing with a variety of helix-distorting lesions, such as the UV-induced photoproducts cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) photoproducts. We investigated the influence of an anticancer drug, STI571, on the efficacy of NER in removing UV-induced DNA damage. STI571 is used mostly in the treatment of chronic myeloid leukemia and inhibits activity of the BCR/ABL oncogenic tyrosine kinase, which is a hallmark of this disease. NER activity was examined in the BCR/ABL-expressing cell lines K562 and BV173 of myeloid and lymphoid origin, respectively, as well as in CCRF-CEM cells, which do not express BCR/ABL. A murine myeloid parental 32D cell line and its counterpart transfected with the BCR/ABL gene were also tested. NER activity was assessed in the cell extracts by use of an UV-irradiated plasmid as a substrate and by a modified single-cell gel electrophoresis (comet) assay on UV-treated nucleoids. Additionally, quantitative PCR was performed to evaluate the efficacy of the removal of UV-induced lesions from the p53 gene by intact cells. Results obtained from these experiments indicate that STI571 decreases the efficacy of NER in leukemic cells expressing BCR/ABL. Therefore, STI571 may overcome the drug resistance associated with increased DNA repair in BCR/ABL-positive leukemias.  相似文献   

8.
Constitutively-activated tyrosine kinase mutants, such as BCR/ABL, FLT3-ITD, and Jak2-V617F, play important roles in pathogenesis of hematopoietic malignancies and in acquisition of therapy resistance. We previously found that hematopoietic cytokines enhance activation of the checkpoint kinase Chk1 in DNA-damaged hematopoietic cells by inactivating GSK3 through the PI3K/Akt signaling pathway to inhibit apoptosis. Here we examine the possibility that the kinase mutants may also protect DNA-damaged cells by enhancing Chk1 activation. In cells expressing BCR/ABL, FLT3-ITD, or Jak2-V617F, etoposide induced a sustained activation of Chk1, thus leading to the G2/M arrest of cells. Inhibition of these kinases by their inhibitors, imatinib, sorafenib, or JakI-1, significantly abbreviated Chk1 activation, and drastically enhanced apoptosis induced by etoposide. The PI3K inhibitor GD-0941 or the Akt inhibitor MK-2206 showed similar effects with imatinib on etoposide-treated BCR/ABL-expressing cells, including those expressing the imatinib-resistant T315I mutant, while expression of the constitutively activated Akt1-myr mutant conferred resistance to the combined treatment of etoposide and imatinib. GSK3 inhibitors, including LiCl and SB216763, restored the sustained Chk1 activation and mitigated apoptosis in cells treated with etoposide and the inhibitors for aberrant kinases, PI3K, or Akt. These observations raise a possilibity that the aberrant kinases BCR/ABL, FLT3-ITD, and Jak2-V617F may prevent apoptosis induced by DNA-damaging chemotherapeutics, at least partly through enhancement of the Chk1-mediated G2/M checkpoint activation, by inactivating GSK3 through the PI3K/Akt signaling pathway. These results shed light on the molecular mechanisms for chemoresistance of hematological malignancies and provide a rationale for the combined treatment with chemotherapy and the tyrosine kinase or PI3K/Akt pathway inhibitors against these diseases.  相似文献   

9.
10.
11.
12.
The BCR/ABL oncogene causes chronic myelogenous leukemia (CML), a myeloproliferative disorder characterized by clonal expansion of hematopoietic progenitor cells and granulocyte lineage cells. The SH2-containing inositol-5-phosphatase SHIP is a 145-kDa protein which has been shown to regulate hematopoiesis in mice. Targeted disruption of the murine SHIP gene results in a myeloproliferative syndrome characterized by a dramatic increase in numbers of granulocyte-macrophage progenitor cells in the marrow and spleen. Also, hematopoietic progenitor cells from SHIP(-/-) mice are hyperresponsive to certain hematopoietic growth factors, a phenotype very similar to the effects of BCR/ABL in murine cells. In a series of BCR/ABL-transformed hematopoietic cell lines, Philadelphia chromosome (Ph)-positive cell lines, and primary cells from patients with CML, the expression of SHIP was found to be absent or substantially reduced compared to untransformed cell lines or leukemia cells lacking BCR/ABL. Ba/F3 cells in which expression of BCR/ABL was under the control of a tetracycline-inducible promoter showed rapid loss of p145 SHIP, coincident with induction of BCR/ABL expression. Also, an ABL-specific tyrosine kinase inhibitor, CGP57148B (STI571), rapidly caused reexpression of SHIP, indicating that BCR/ABL directly, but reversibly, regulates the expression of SHIP protein. The estimated half-life of SHIP protein was reduced from 18 h to less than 3 h. However, SHIP mRNA also decreased in response to BCR/ABL, suggesting that SHIP protein levels could be affected by more than one mechanism. Reexpression of SHIP in BCR/ABL-transformed Ba/F3 cells altered the biological behavior of cells in culture. The reduction of SHIP due to BCR/ABL is likely to directly contribute to the pathogenesis of CML.  相似文献   

13.
P210 BCR/ABL is a chimeric oncogene implicated in the pathogenesis of chronic myelogenous leukemia. BCR sequences have been shown to be required for activation of the tyrosine kinase and transforming functions of BCR/ABL. In this work, we show that two other structural requirements for full transforming activity of P210 BCR/ABL include a functional tyrosine kinase and the presence of tyrosine 1294, a site of autophosphorylation within the tyrosine kinase domain. Replacement of tyrosine 1294 with phenylalanine (1294F) greatly diminishes the transforming activity of BCR/ABL without affecting the specific activity of the protein tyrosine kinase. Expression of an exogenous myc gene in fibroblasts partially complements the transforming capacity of mutant P210 BCR/ABL (1294F). Surprisingly, tyrosine 1294 is not required for efficient induction of growth factor-independence in hematopoietic cell lines by P210 BCR/ABL. These results suggest that autophosphorylation at tyrosine 1294 may be important for recognition and phosphorylation of cellular substrates in the pathway of transformation, but it is not critical for mediating the events which lead to growth factor independence.  相似文献   

14.
Many leukemic oncogenes form as a consequence of gene fusions or mutation that result in the activation or overexpression of a tyrosine kinase. To identify commonalities and differences in the action of two such kinases, breakpoint cluster region (BCR)/ABL and TEL/PDGFRbeta, two-dimensional gel electrophoresis was employed to characterize their effects on the proteome. While both oncogenes affected expression of specific proteins, few common effects were observed. A number of proteins whose expression is altered by BCR/ABL, including gelsolin and stathmin, are related to cytoskeletal function whereas no such changes were seen in TEL/PDGFRbeta-transfected cells. Treatment of cells with the kinase inhibitor STI571 for 4-h reversed changes in expression of some of these cytoskeletal proteins. Correspondingly, BCR/ABL-transfected cells were less responsive to chemotactic and chemokinetic stimuli than non-transfected cells and TEL/PDGFRbeta-transfected Ba/F3 cells. Decreased motile response was reversed by a 16-h treatment with STI571. A phosphoprotein-specific gel stain was used to identify TEL/PDGFRbeta and BCR/ABL-mediated changes in the phosphoproteome. These included changes on Crkl, Ras-GAP-binding protein 1, and for BCR/ABL, cytoskeletal proteins such as tubulin, and Nedd5. Decreased phosphorylation of Rho-GTPase dissociation inhibitor (Rho GDI) was also observed in BCR/ABL-transfected cells. This results in the activation of the Rho pathway, and treatment of cells with Y27632, an inhibitor of Rho kinase, inhibited DNA synthesis in BCR/ABL-transfected Ba/F3 cells but not TEL/PDGFRbeta-expressing cells. Expression of a dominant-negative RhoA inhibited both DNA synthesis and transwell migration, demonstrating the significance of this pathway in BCR/ABL-mediated transformation.  相似文献   

15.
Non-homologous end joining (NHEJ) and homologous recombination repair (HRR) are the main mechanisms involved in the processing of DNA double strand breaks (DSBs) in humans. We showed previously that the oncogenic tyrosine kinase BCR/ABL stimulated DSBs repair by HRR. To evaluate the role of BCR/ABL in DSBs repair by NHEJ we examined the ability of leukemic BCR/ABL-expressing cell line BV173 to repair DNA damage induced by two DNA topoisomerase II inhibitors: etoposide and sobuzoxane. DNA lesions induced by sobuzoxane are repaired by a NHEJ pathway which is dependent on the catalytic subunit of protein kinase dependent on DNA (DNA-PKCS; D-NHEJ), whereas damage evoked by etoposide are repaired by two distinct NHEJ pathways, dependent on or independent of DNA-PKCS (backup NHEJ, B-NHEJ). Cells incubated with STI571, a highly specific inhibitor of BCR/ABL, displayed resistance to these agents associated with an accelerated kinetics of DSBs repair, as measured by the neutral comet assay and pulsed field gel electrophoresis. However, in a functional NHEJ assay, cells preincubated with STI571 repaired DSBs induced by a restriction enzyme with a lower efficacy than without the preincubation and addition of wortmannin, a specific inhibitor of DNA-PKCS, did not change efficacy of the NHEJ reaction. We suggest that BCR/ABL switch on B-NHEJ which is more error-prone then D-NHEJ and in such manner contribute to the increase of the genomic instability of leukemic cells.  相似文献   

16.
Tumors expressing the ABL oncoproteins (BCR/ABL, TEL/ABL, v-ABL) can avoidapoptosis triggered by DNA damaging agents. The tumor suppressor protein p53 is animportant activator of apoptosis in normal cells; conversely its functional loss may causedrug resistance. The ABL oncoprotein - p53 paradigm represents the relationship between anoncogenic tyrosine kinase and a tumor suppressor gene. Here we show that BCR/ABLoncoproteins employ p53 to induce resistance to DNA damage in myeloid leukemia cells.Cells transformed by the ABL oncoproteins displayed accumulation of p53 upon DNAdamage. In contrast, only a modest increase of p53 expression followed by activation ofcaspase-3 were detected in normal cells expressing endogenous c-ABL. Phosphatidylinositol-3 kinase-like protein kinases (ATR and also ATM) -dependent phosphorylation of p53-Ser15residue was associated with the accumulation of p53, and stimulation of p21Waf-1 andGADD45, resulting in G2/M delay in BCR/ABL cells after genotoxic treatment. Inhibition ofp53 by siRNA or by the temperature-sensitive mutation reduced G2/M accumulation anddrug resistance of BCR/ABL cells. In conclusion, accumulation of the p53 proteincontributed to prolonged G2/M checkpoint activation and drug resistance in myeloid cellsexpressing the BCR/ABL oncoproteins.  相似文献   

17.
Growth factor receptor-binding protein-2 (Grb2) plays a key role in signal transduction initiated by Bcr/Abl oncoproteins and growth factors, functioning as an adaptor protein through its Src homology 2 and 3 (SH2 and SH3) domains. We found that Grb2 was tyrosine-phosphorylated in cells expressing BCR/ABL and in A431 cells stimulated with epidermal growth factor (EGF). Phosphorylation of Grb2 by Bcr/Abl or EGF receptor reduced its SH3-dependent binding to Sos in vivo, but not its SH2-dependent binding to Bcr/Abl. Tyr209 within the C-terminal SH3 domain of Grb2 was identified as one of the tyrosine phosphorylation sites, and phosphorylation of Tyr209 abolished the binding of the SH3 domain to a proline-rich Sos peptide in vitro. In vivo expression of a Grb2 mutant where Tyr209 was changed to phenylalanine enhanced BCR/ABL-induced ERK activation and fibroblast transformation, and potentiated and prolonged Grb2-mediated activation of Ras, mitogen-activated protein kinase and c-Jun N-terminal kinase in response to EGF stimulation. These results suggest that tyrosine phosphorylation of Grb2 is a novel mechanism of down-regulation of tyrosine kinase signaling.  相似文献   

18.
The resistance to the tyrosine kinase inhibitor imatinib in BCR/ABL-positive leukemias is mostly associated with mutations in the kinase domain of BCR/ABL, which include the most prevalent mutations E255K and T315I. Intriguingly, these mutations have also been identified in some patients before imatinib treatment. Here we examined the effects of these mutations on the kinase activity of a BCR/ABL kinase domain construct that also contained the SH3 and SH2 domains. When expressed in COS7 cells, the BCR/ABL construct with either E255K or T315I exhibited not only the resistance to imatinib but also the increase in activity to induce autophosphorylation as well as tyrosine phosphorylation of various cellular proteins, which included STAT5. The mutant kinases also showed increased activities in in vitro kinase assays. These results raise a possibility that the major imatinib resistance mutations E255K and T315I may confer the growth advantage on leukemic cells to expand in the absence of selective pressure from imatinib treatment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号