首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of soil environmental factors such as aeration on the ecology of microorganisms involved in the mineralization and degradation of the popular soil-applied pre-emergent herbicide, metolachlor is unknown. To address this knowledge gap, we utilized DNA-based stable isotope probing (SIP) where soil microcosms were incubated aerobically or anaerobically and received herbicide treatments with unlabeled metolachlor or 13C-metolachlor. Mineralization of metolachlor was confirmed as noted from the evolution of 14CO2 from 14C-metolachlor-treated microcosms and clearly demonstrated the efficient utilization of the herbicide as a carbon source. Terminal restriction fragment length polymorphisms (T-RFLP) bacterial community profiling performed on soil DNA extracts indicated that fragment 307 bp from aerobic soil and 212 bp from anaerobic soil were detected only in the herbicide-treated (both unlabeled metolachlor and 13C-metolachlor) soils when compared to the untreated control microcosms. T-RFLP profiles from the ultracentrifugation fractions illustrated that these individual fragments experienced an increase in relative abundance at a higher buoyant density (BD) in the labeled fractions when compared to the unlabeled herbicide amendment fractions. The shift in BD of individual T-RFLP fragments in the density-resolved fractions suggested the incorporation of 13C from labeled herbicide into the bacterial DNA and enabled the identification of organisms responsible for metolachlor uptake from the soil. Subsequent cloning and 16S rRNA gene sequencing of the 13C-enriched fractions implicated the role of organisms closely related to Bacillus spp. in aerobic mineralization and members of Acidobacteria phylum in anaerobic mineralization of metolachlor in soil.  相似文献   

2.
A microcosm is described in which root exudation may be estimated in the presence of microorganisms. Ryegrass seedlings are grown in microcosms in which roots were spatially separated from a microbial inoculant by a Millipore membrane. Seedlings grown in the microcosms were labelled with [14C]-CO2, and the fate of the label within the plant and rhizosphere was determined. Inoculation of the microcosms with Cladosporium resinae increased net fixation of the [14C] label compared to plants grown under sterile conditions. Inoculation also increased root exudation. The use of the microcosm was illustrated and its applications discussed.  相似文献   

3.
Ground water beneath the U.S. Department of Energy (USDOE) Pantex Plant is contaminated with the high explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). The authors evaluated biodegradation as a remedial option by measuring RDX mineralization in Pantex aquifer microcosms spiked with 14C-labeled RDX (75 g soil, 15 ml of 5 mg RDX/L). Under anaerobic conditions and constant temperature (16°C), cumulative 14CO2 production ranged between 52% and 70% after 49 days, with nutrient-amended (C, N, P) microcosms yielding the greatest mineralization (70%). The authors also evaluated biodegradation as a secondary treatment for removing RDX degradates following oxidation by permanganate (KMnO4) or reduction by dithionite-reduced aquifer solids (i.e., redox barriers). Under this coupled abiotic/biotic scenario, we found that although unconsumed permanganate initially inhibited biodegradation, > 48% of the initial 14C-RDX was recovered as 14CO2 within 77 days. Following exposure to dithionite-reduced solids, RDX transformation products were also readily mineralized (> 47% in 98 days). When we seeded Pantex aquifer material into Ottawa Sand that had no prior exposure to RDX, mineralization increased 100%, indicating that the Pantex aquifer may have an adapted microbial community that could be exploited for remediation purposes. These results indicate that biodegradation effectively transformed and mineralized RDX in Pantex aquifer microcosms. Additionally, biodegradation may be an excellent secondary treatment for RDX degradates produced from in situ treatment with permanganate or redox barriers.  相似文献   

4.
Stable isotope probing (SIP) can be used to analyze the active bacterial populations involved in a process by incorporating 13C-labeled substrate into cellular components such as DNA. Relatively long incubation times are often used with laboratory microcosms in order to incorporate sufficient 13C into the DNA of the target organisms. Addition of nutrients can be used to accelerate the processes. However, unnatural concentrations of nutrients may artificially change bacterial diversity and activity. In this study, methanotroph activity and diversity in soil was examined during the consumption of 13CH4 with three DNA-SIP experiments, using microcosms with natural field soil water conditions, the addition of water, and the addition of mineral salts solution. Methanotroph population diversity was studied by targeting 16S rRNA and pmoA genes. Clone library analyses, denaturing gradient gel electrophoresis fingerprinting, and pmoA microarray hybridization analyses were carried out. Most methanotroph diversity (type I and type II methanotrophs) was observed in nonamended SIP microcosms. Although this treatment probably best reflected the in situ environmental conditions, one major disadvantage of this incubation was that the incorporation of 13CH4 was slow and some cross-feeding of 13C occurred, thereby leading to labeling of nonmethanotroph microorganisms. Conversely, microcosms supplemented with mineral salts medium exhibited rapid consumption of 13CH4, resulting in the labeling of a less diverse population of only type I methanotrophs. DNA-SIP incubations using water-amended microcosms yielded faster incorporation of 13C into active methanotrophs while avoiding the cross-feeding of 13C.  相似文献   

5.
In order to elucidate the effects of rice plants on CH4 production, we conducted experiments with soil slurries and planted rice microcosms. Methane production in anoxic paddy soil slurries was stimulated by the addition of rice straw, of unsterile or autoclaved rice roots, and of the culture fluid in which rice plants had axenically been cultivated. The addition of these compounds also increased the concentrations of acetate and H2, precursors of CH4 production, in the soil. Planted compared to unplanted paddy soil microcosms exhibited lower porewater CH4 concentrations but higher CH4 emission rates. They also exhibited higher sulfate concentrations but similar nitrate concentrations. Concentrations of acetate, lactate and H2 were not much different between planted and unplanted microcosms. Pulse labeling of rice plants with14CO2 resulted during the next 5 days in transient accumulation of radioactive lactate, propionate and acetate, and after the second day of incubation in the emission of14CH4. Most of the radioactivity (40–70%) was incorporated into the above-ground biomass of rice plants. However, during a total incubation of 16 days about 3–6% of the applied radioactivity was emitted as14CH4, demonstrating that plant-derived carbon was metabolized and significantly contributed to CH4 production. The sequence of the appearance of radioactive products and their specific radioactivities indicate that CH4 was produced from root exudates by a microbial community consisting of fermenting and methanogenic bacteria.  相似文献   

6.
Emission rates of CH4 were measured in microcosms of submerged soil which were planted with rice. Drainage of the rice microcosms for 48 h resulted in drastically decreased CH4 emission rates which only slowly recovered to the rates of the undrained controls. Drainage also resulted in drastically increased sulphate concentrations which only slowly decreased to nearly zero background values after the microcosms were submerged again. The mechanisms responsible for the decrease of CH4 production by aeration were investigated in slurries of a loamy and a sandy Italian rice soil. Incubation of the soil slurries under anoxic conditions resulted first in the reduction of nitrate, sulphate and ferric iron before CH4 production started. Incubation of the soil slurries for 48 h under air resulted in immediate and complete inhibition of CH4 production. Although the soil slurries were then again incubated under anoxic conditions (N2 atmosphere), the inhibition of CH4 production persisted for more than 30 days. The redox potential of the soil increased after the aeration but returned within 15 days to the low values typical for CH4 production. However, the concentrations of sulphate and of ferric iron increased dramatically after the aeration and stayed at elevated levels for the period during which CH4 production was inhibited. These observations show that even brief exposure of the soil to O2 allowed the production of sulphate and ferric iron from their reduced precursors. Elevated sulphate and ferric iron concentrations allowed sulphate-reducing and ferric iron-reducing bacteria to outcompete methanogenic bacteria on H2 as common substrate. Indeed, concentrations of H2 were decreased as long as sulphate and ferric iron were high so that the Gibbs free energy of CH4 production from H2/CO2 was also increased (less exergonic). On the other hand, concentrations of acetate, the more important precursor for CH4, were not much affected by the short aeration of the soil slurries, and the Gibbs free energy of CH4 production from acetate was highly exergonic suggesting that acetotrophic methanogens were not outcompeted but were otherwise inhibited. Aeration also resulted in increased rates of CO2 production and in a short-term increase of N2O production. However, these increases were < 10% of the decreased production of CH4 and did not represent a trade-off in terms of CO2 equivalents. Hence, short-term drainage and aeration of submerged paddy fields may be a useful mitigation option for decreasing the emission of greenhouse gases.  相似文献   

7.
Carbon cycling responses of ecosystems to global warming will likely be stronger in cold ecosystems where many processes are temperature‐limited. Predicting these effects is difficult because air and soil temperatures will not change in concert, and will affect above and belowground processes differently. We disentangled above and belowground temperature effects on plant C allocation and deposition of plant C in soils by independently manipulating air and soil temperatures in microcosms planted with either Leucanthemopsis alpina or Pinus mugo seedlings. Daily average temperatures of 4 or 9°C were applied to shoots and independently to roots, and plants pulse‐labelled with 14CO2. We traced soil CO2 and 14CO2 evolution for 4 days, after which microcosms were destructively harvested and 14C quantified in plant and soil fractions. In microcosms with L. alpina, net 14C uptake was higher at 9°C than at 4°C soil temperature, and this difference was independent of air temperature. In warmer soils, more C was allocated to roots at greater soil depth, with no effect of air temperature. In P. mugo microcosms, assimilate partitioning to roots increased with air temperature, but only when soils were at 9°C. Higher soil temperatures also increased the mean soil depth at which 14C was allocated. Our findings highlight the dependence of C uptake, use, and partitioning on both air and soil temperature, with the latter being relatively more important. The strong temperature‐sensitivity of C assimilate use in the roots and rhizosphere supports the hypothesis that cold limitation on C uptake is primarily mediated by reduced sink strength in the roots. We conclude that variations in soil rather than air temperature are going to drive plant responses to warming in cold environments, with potentially large changes in C cycling due to enhanced transfer of plant‐derived C to soils.  相似文献   

8.
The effect of soil pH on rhizosphere carbon flow of Lolium perenne   总被引:1,自引:0,他引:1  
Perennial rye-grass plants were grown at 15°C in microcosms containing soil sampled from field plots that had been maintained at constant pH for the last 30 years. Six soil pH values were tested in the experiment, with pH ranging from 4.3–6.5. After 3 weeks growth in the microcosms, plant shoots were exposed to a pulse of 14C-CO2. The fate of this label was determined by monitoring 14C-CO2 respired by the plant roots/soil and by the shoots. The 14C remaining in plant roots and shoots was determined when the plants were harvested 7 days after receiving the pulse label. The amount of 14C (expressed as a percentage of the total 14C fixed by the plant) lost from the plant roots increased from 12.3 to 30.6% with increasing soil pH from 4.3 to 6. Although a greater percentage of the fixed 14C was respired by the root/soil as soil pH increased, plant biomass was greater with increasing soil pH. Possible reasons for observed changes in the pattern of 14C distribution are discussed and, it is suggested that changes in the soil microbial biomass and in plant nitrogen nutrition may, in particular be key factors which led to increased loss of carbon from plant roots with increasing soil pH.  相似文献   

9.
The anaerobic metabolism of acetate was studied in sediments and groundwater from a gas condensate-contaminated aquifer in an aquifer where geochemical evidence implicated sulfate reduction and methanogenesis as the predominant terminal electron-accepting processes. Most-probable-number tubes containing acetate and microcosms containing either [2-14C]acetate or [U-14C]acetate produced higher quantities of CH4 compared to CO2 in the presence or absence of sulfate.14CH4 accounted for 70 to 100% of the total labeled gas in the [14C]acetate microcosms regardless of whether sulfate was present or not. Denaturing gradient gel electrophoresis of the acetate enrichments both with and without sulfate using Archaea-specific primers showed identical predominant bands that had 99% sequence similarity to members of Methanosaetaceae. Clone libraries containing archaeal 16S rRNA gene sequences amplified from sediment from the contaminated portion of the aquifer showed that 180 of the 190 clones sequenced belonged to the Methanosaetaceae. The production of methane and the high frequency of sequences from the Methanosaetaceae in acetate enrichments with and without sulfate indicate that aceticlastic methanogenesis was the predominant fate of acetate at this site even though sulfate-reducing bacteria would be expected to consume acetate in the presence of sulfate.  相似文献   

10.
Microbial reductive dechlorination of [1,2-14C]trichloroethene to [14C]cis-dichloroethene and [14C]vinyl chloride was observed at 4°C in anoxic microcosms prepared with cold temperature-adapted aquifer and river sediments from Alaska. Microbial anaerobic oxidation of [1,2-14C]cis-dichloroethene and [1,2-14C]vinyl chloride to 14CO2 also was observed under these conditions.  相似文献   

11.
The metabolism of 14C-labeled 1-nitropyrene in microcosms containing nonsterile estuarine sediments, and in cultures of a Mycobacterium sp. previously isolated from oil-contaminated sediments was investigated. Although mineralization of 1-nitropyrene by pure cultures of the Mycobacterium sp. totaled only 12.3% after 10 days of incubation, over 80% of the ethyl acetate extractable 14C-labeled compounds consisted of 1-nitropyrene metabolites. High pressure liquid chromatographic analysis of 1-nitropyrene degradation products indicated that two major metabolites were formed. They were identified as 1-nitropyrene cis-9,10-and 4,5-dihydrodiols, based on their UV-visible, mass and NMR spectra. Time course studies in microcosms showed that 1-nitropyrene was degraded slowly under aerobic and anaerobic conditions in estuarine sediments. Less than 1% had been converted to 14CO2 after 8 weeks of aerobic incubation. The addition of 1-nitropyrene to anaerobic sediments resulted in no 14CO2 evolution; however, the nitro group of 1-nitropyrene was reduced to form 1-aminopyrene. Although the mineralization of 1-nitropyrene in sediments was slow, the Mycobacterium sp. metabolized 1-nitropyrene in pure culture. This bacterium appears promising for the bioremediation of this ubiquitous pollutant in contaminated waste.Abbreviations DEP Direct exposure probe - HPLC high pressure liquid chromatography - GC/MS gas chromatography/mass spectrometry - Nitro-PAHS nitropolycyclic aromatic hydrocarbons - TLC thin-layer chromatography - UV ultraviolet  相似文献   

12.
Soil containing hexachlorocyclohexane (HCH) was spiked with 14C--HCH and then subjected to bioremediation in bench-scale microcosms to determine the rate and extent of mineralization of the 14C-labeled HCH to 14CO2. The soil was treated using two different DARAMEND amendments, D6386 and D6390. The amendments were previously found to enhance natural HCH bioremediation as determined by measuring the disappearance of parent compounds under either strictly oxic conditions (D6386), or cycled anoxic/oxic conditions (D6390). Within 80 days of the initiation of treatment, mineralization was observed in all of the strictly oxic microcosms. However, mineralization was negligible in the cycled anoxic/oxic microcosms throughout the 275-day study, even after cycling was ceased at 84 days and although significant removal (up to 51%) of indigenous -HCH (146 mg/kg) was detected by GC with electron capture detector. Of the amended, strictly oxic treatments, only one, in which 47% of the spiked 14C-HCH was recovered as 14CO2, enhanced mineralization compared with an unamended treatment (in which 34% recovery was measured). Other oxic treatments involving higher amendment application rates or auxiliary carbon sources were inhibitory to mineralization. Thus, although HCH degradation occurs during the application of either oxic or cycled anoxic/oxic DARAMEND treatments, mineralization of -HCH may be inhibited depending on the amendment and treatment protocol.  相似文献   

13.
The fate of contaminant carbon was monitored during aerobic biodegradation in the presence of a mixed indigenous microbial consortium in order to calibrate a microbial-growth-based biokinetic model. The methodology simultaneously monitored mineralization, substrate depletion and microbial population evolution in biomass extract spiked with14C-labeled hexadecane. Hexadecane depletion and hexadecane-degrader population were monitored using sacrificed microcosms by centrifuging the extract so that the supernatant and the residue contained residual hexadecane and microbial population, respectively. This methodology allowed verification of the carbon mass balance (average14C-carbon recovery of 90.33 ± 1.62% for biotic microcosms) and calibration of a biokinetic model. Four biokinetic parameters and three yield coefficients were identified (Haldane kinetic parameters:μS = 1.3639 d-1, Ks = 0.4295 mg-C, KI = 6.6457 mg-C; decay kinetic parameter:μd = 1.3.102 d-1; substrate/biomass, carbon dioxide/ biomass during growth and carbon dioxide/biomass during decay yield coefficients: Ys = 1.5948 mg-C/mg-C, YP g = 0.4554 mg-C/mg-C, YP d = 1.3263 mg-C/mg-C) and compared with the literature data. The methodology can facilitate the identification of biodegradation models by decoupling the intrinsic ability of microorganisms to degrade contaminant from restrictions imposed by limiting conditions.  相似文献   

14.
Metabolic processes occurring at the sea-water-sediment interface were studied using a circulation flow microcalorimeter. A methodology was developed to characterize rapid and global changes in metabolism and energy flow, not easily detectable with reductionist approaches. Sea water was pumped continuously, 5–10 mm above the sediment, in experimental microcosms; a 100-μm filter prevented passage of meiofauna. This “circulating interface” was taken through the microcalorimeter and from there to an oxygen electrode, and was returned to the microcosm. The microcosms were experimentally eutrophicated using peptone (4 mg·ml ?1). The relationship between heat production and oxygen tension in the circulating interface has been compared with ATP production, 14CO2 and [14C]particulate matter turnovers. Initial heat steady-state production rises to a peak of 130 to 180 μW·ml?1 in 6 to 8 h after peptone treatment. The microcalorimetric peak is closely correlated with 14CO2 turnover and partially correlated with micro-events on the pO2 curve. ATP concentration and particulate-14C turnover increase constantly and then stabilize, with the establishment of a new heat production steady state. The approach provides an indication of the temporal behaviour of complex mixtures of microorganisms and ciliates at the water-sediment interface, and gives holistic measurements of energy flow after induced perturbation (eutrophication) of the ecosystem. Although many problems remain to be solved in this field, it is shown here that flow microcalorimetric measurements can be used to monitor the effects of addition of reagents like pollutants and nutrients.  相似文献   

15.
Pseudomonas putida utilizes cyanide as the sole source of carbon and nitrogen. Agar, alginate, and carrageenan were screened as the encapsulating matrices for P. putida. Alginate-immobilized cells of P. putida degraded sodium cyanide (NaCN) more efficiently than non-immobilized cells or cells immobilized in agar or carrageenan. The end products of biodegradation of cyanide were identified as ammonia (NH3) and carbon dioxide (CO2). These products changed the medium pH. In bioreactors, the rate of cyanide degradation increased with an increase in the rate of aeration. Maximum utilization of cyanide was observed at 200 ml min−1 of aeration. Immobilized cells of P. putida degraded cyanides, cyanates and thiocyanates to NH3 and CO2. Use of Na[14C]-CN showed that 70% of carbon of Na[14C]-CN was converted into 14CO2 and only 10% was associated with the cell biomass. The substrate-dependent kinetics indicated that the K m and V max values of P. putida for the substrate, NaCN were 14 mM and 29 nmol of oxygen consumed mg protein−1 min−1 respectively. Received 29 January 1996/ Accepted in revised form 19 September 1997  相似文献   

16.
Mineralization of [U-14C]methyl t-butyl ether (MTBE) to 14CO2 without accumulation of t-butyl alcohol (TBA) was observed in surface-water sediment microcosms under denitrifying conditions. Methanogenic activity and limited transformation of MTBE to TBA were observed in the absence of denitrification. Results indicate that bed sediment microorganisms can effectively degrade MTBE to nontoxic products under denitrifying conditions.  相似文献   

17.
Bacterial metabolism of algal extracellular carbon   总被引:3,自引:3,他引:0  
Measurements of microbial utilization of extracellular organic carbon (EOC) released by phytoplankton commonly consider only EOC fractions subject to rapid uptake. Questions remain whether other EOC fractions are metabolized, what portion is labile, and with what assimilation efficiency this carbon substrate is utilized. 14C-EOC was prepared by incubation of the natural mixed planktonic community from an oligotrophic lake with H14CO3 in the light. 14C-EOC which was not rapidly removed by heterotrophs remained in solution and was isolated by filtration. This residual EOC was inoculated with lake microheterotrophs in laboratory microcosms, and utilization kinetics were determined through long-term assays of cumulative 14CO2 production. Time-courses for 14CO2 production were consistent for all assays and were well described by a deterministic mixed-order degradation model. On twelve sampling occasions, from 29% to 76% of residual 14C-EOC was labile to further metabolism by lake heterotrophs. First-order rate constants for EOC utilization showed a mode of 0.05 to 0.15 per day. From 33% to 78% of gross 14C-EOC uptake was respired (mean 50%), indicating appreciable return of algal EOC to the pelagic food web as microbial biomass.Contribution No. 596, W. K. Kellogg Biological Station, Michigan State University.  相似文献   

18.
Aeroadaptive microaerophilic Azotobacter chroococcum 184 produced a cell-associated black pigment when grown at high aeration rates under nitrogen-fixing conditions. This pigment was shown to be a catechol melanin. Polyphenol oxidase activity was detected in cell extracts of cells grown for 72 h. Melanin formation was optimal in the later stages of growth, and there was no correlation between nitrogenase activity and melanization. Nitrogenase activity in strain 184 was optimal at 10% O2, and melanin formation was suppressed by O2 limitation. In the presence of charcoal, an adsorbent of toxic oxygen intermediates, and benzoic acid, a scavenger of hydroxyl radicals, melanization was inhibited. However, in the presence of copper, the intensity of pigment color increased and melanization was accelerated. Copper also eliminated catalase and peroxidase activities of the organism but still permitted aerobic growth. In the presence of low levels of iron, melanization was accelerated under high aeration rates, and under low rates of aeration, melanization was observed only at higher levels of iron. Hydroxamate-siderophore production was detectable in the presence of soluble iron under high rates of aeration but was repressed by the same levels of iron under low aeration rates. Unlike melanization and hydroxamate formation, catechol formation was observed under both low and high rates of aeration under nitrogen-fixing conditions. Catechol formation and melanization were repressed by 14 mM NH4+, at which level nitrogenase activity was also repressed. Copper reversed the repressive effect of NH4+. A role for catechol formation and melanization in aeroadaptation is proposed.  相似文献   

19.
Macrophyte combined with artificial aeration is a promising in situ remediation approach for urban rivers polluted with nutrients and organic matter. However, seasonal variations and aeration effects on phytoremediation performance and root-adhered microbial communities are still unclear. In this study, Pontederia cordata was used to treat polluted urban river water under various aeration intensities. Results showed that the highest removal efficiencies of chemical oxygen demand (CODCr) and total nitrogen (TN) were attained under aeration of 30 L min?1 in spring and summer and 15 L min?1 in autumn, while total phosphorus (TP) removal reached maximum with aeration of 15 L min?1 in all seasons. Moderate aeration was beneficial for increasing the diversity of root-adhered bacteria communities, and the shift of bacterial community structure was more pronounced in spring and autumn with varying aeration intensity. The dual effect, i.e. turbulence and dissolved oxygen (DO), of aeration on the removal of CODCr and TN prevailed over the individual effect of DO, while DO was the most influential factor for TP removal and the root-adhered bacterial community diversity. P. cordata combined with 15 L min?1 aeration was deemed to be the best condition tested in this study.  相似文献   

20.
Bryophytes blanket the floor of temperate rainforests in New Zealand and may influence a number of important ecosystem processes, including carbon cycling. Their contribution to forest floor carbon exchange was determined in a mature, undisturbed podocarp‐broadleaved forest in New Zealand, dominated by 100–400‐year‐old rimu (Dacrydium cupressimum) trees. Eight species of mosses and 13 species of liverworts contributed to the 62% cover of the diverse forest floor community. The bryophyte community developed a relatively thin (depth <30 mm), but dense, canopy that experienced elevated CO2 partial pressures (median 46.6 Pa immediately below the bryophyte canopy) relative to the surrounding air (median 37.6 Pa at 100 mm above the canopy). Light‐saturated rates of net CO2 exchange from 14 microcosms collected from the forest floor were highly variable; the maximum rate of net uptake (bryophyte photosynthesis – whole‐plant respiration) per unit ground area at saturating irradiance was 1.9 μmol m?2 s?1 and in one microcosm, the net rate of CO2 exchange was negative (respiration). CO2 exchange for all microcosms was strongly dependent on water content. The average water content in the microcosms ranged from 1375% when fully saturated to 250% when air‐dried. Reduction in water content across this range resulted in an average decrease of 85% in net CO2 uptake per unit ground area. The results from the microcosms were used in a model to estimate annual carbon exchange for the forest floor. This model incorporated hourly variability in average irradiance reaching the forest floor, water content of the bryophyte layer, and air and soil temperature. The annual net carbon uptake by forest floor bryophytes was 103 g m?2, compared to annual carbon efflux from the forest floor (bryophyte and soil respiration) of ?1010 g m?2. To put this in perspective of the magnitude of the components of CO2 exchange for the forest floor, the bryophyte layer reclaimed an amount of CO2 equivalent to only about 10% of forest floor respiration (bryophyte plus soil) or ~11% of soil respiration. The contribution of forest floor bryophytes to productivity in this temperate rainforest was much smaller than in boreal forests, possibly because of differences in species composition and environmental limitations to photosynthesis. Because of their close dependence on water table depth, the contribution of the bryophyte community to ecosystem CO2 exchange may be highly responsive to rapid changes in climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号