首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Dengue virus (DENV) and Zika virus (ZIKV) capsid proteins efficiently recruit and surround the viral RNA at the endoplasmic reticulum (ER) membrane to yield nascent viral particles. However, little is known either about the molecular mechanisms by which multiple copies of capsid proteins assemble into nucleocapsids (NCs) or how the NC is recruited and wrapped by the ER membrane during particle morphogenesis. Here, we measured relevant interactions concerning this viral process using purified DENV and ZIKV capsid proteins, membranes mimicking the ER lipid composition, and nucleic acids in in vitro conditions to understand the biophysical properties of the RNA genome encapsidation process. We found that both ZIKV and DENV capsid proteins bound to liposomes at liquid-disordered phase regions, docked exogenous membranes, and RNA molecules. Liquid–liquid phase separation is prone to occur when positively charged proteins interact with nucleic acids, which is indeed the case for the studied capsids. We characterized these liquid condensates by measuring nucleic acid partition constants and the extent of water dipolar relaxation, observing a cooperative process for the formation of the new phase that involves a distinct water organization. Our data support a new model in which capsid–RNA complexes directly bind the ER membrane, seeding the process of RNA recruitment for viral particle assembly. These results contribute to our understanding of the viral NC formation as a stable liquid–liquid phase transition, which could be relevant for dengue and Zika gemmation, opening new avenues for antiviral intervention.  相似文献   

3.
Infectious pancreatic necrosis virus (IPNV), a member of the family Birnaviridae, infects young salmon, with a severe impact on the commercial sea farming industry. Of the five mature proteins encoded by the IPNV genome, the multifunctional VP3 has an essential role in morphogenesis; interacting with the capsid protein VP2, the viral double-stranded RNA (dsRNA) genome and the RNA-dependent RNA polymerase VP1. Here we investigate one of these VP3 functions and present the crystal structure of the C-terminal 12 residues of VP3 bound to the VP1 polymerase. This interaction, visualized for the first time, reveals the precise molecular determinants used by VP3 to bind the polymerase. Competition binding studies confirm that this region of VP3 is necessary and sufficient for VP1 binding, while biochemical experiments show that VP3 attachment has no effect on polymerase activity. These results indicate how VP3 recruits the polymerase into birnavirus capsids during morphogenesis.  相似文献   

4.
Freeze-etch electron microscope studies of the morphogenesis and morphology of Sindbis virus confirmed results obtained by other workers employing thin-sectioning techniques. The 68-nm virion was found to have a nucleocapsid 36 nm in diameter surrounded by a double-layered, unit membrane. The membranous envelope is acquired as the capsid buds through the plasma membrane of the infected cell. The freeze-etch technique also provided the following new information. (i) At any one time, budding occurs in patches rather than evenly over the cell surface. (ii) The nucleocapsid is composed of capsomers 7 nm in diameter. (iii) The capsid interacts strongly with the membrane, both prior to budding and after maturation. (iv) The 7- to 10-nm particles characteristic of the internal faces of plasma membranes, which presumably represent host membrane proteins, are present in early stages of budding but disappear as morphogenesis progresses. (v) Fusion of the cell membrane at the base of the budding virion is a two-step process; the inner leaflet fuses into a sphere before the outer one. (vi) The outer surface of the viral envelope is covered with 4-nm subunits with a center-to-center spacing of 6 nm.  相似文献   

5.
The mechanisms involved in the construction of the icosahedral capsid of the African swine fever virus (ASFV) particle are not well understood at present. Capsid formation requires protein p72, the major capsid component, but other viral proteins are likely to play also a role in this process. We have examined the function of the ASFV structural protein pB438L, encoded by gene B438L, in virus morphogenesis. We show that protein pB438L associates with membranes during the infection, behaving as an integral membrane protein. Using a recombinant ASFV that inducibly expresses protein pB438L, we have determined that this structural protein is essential for the formation of infectious virus particles. In the absence of the protein, the virus assembly sites contain, instead of icosahedral particles, large aberrant tubular structures of viral origin as well as bilobulate forms that present morphological similarities with the tubules. The filamentous particles, which possess an aberrant core shell domain and an inner envelope, are covered by a capsid-like layer that, although containing the major capsid protein p72, does not acquire icosahedral morphology. This capsid, however, is to some extent functional, as the filamentous particles can move from the virus assembly sites to the plasma membrane and exit the cell by budding. The finding that, in the absence of protein pB438L, the viral particles formed have a tubular structure in which the icosahedral symmetry is lost supports a role for this protein in the construction or stabilization of the icosahedral vertices of the virus particle.  相似文献   

6.
7.
The crystal structure of recombinant hepatitis B virus (HBV) capsids formed by 240 core proteins has recently been published. We wanted to map sites on the surface of the icosahedral 35-nm particle that are important for nucleocapsid envelopment by HBV surface proteins during virion morphogenesis. For this purpose, we individually mutated 52 amino acids (aa) within the N-terminal 140 aa of the 185-aa long core protein displaying their side chains to the external surface of the capsid to alanine residues. The phenotype of the mutations with respect to virion formation was tested by transcomplementation of a core gene-negative HBV genome in transiently cotransfected cells, immunoprecipitation of nucleocapsids from cells and secreted virions from culture media, and detection of the particles by radioactive endogenous polymerase reactions. Thirteen point mutations impeded nucleocapsid detection by endogenous polymerase reactions. Twenty-seven mutations were compatible with virion formation. Among these were all capsid-forming mutations in the upper half of the spike protruding from the particle shell and two additional triple mutations at tip of the spike. Eleven mutations (S17, F18, L60, L95, K96, F122, I126, R127, N136, A137, and I139) allowed nucleocapsid formation but blocked particle envelopment and virion formation to undetectable levels. These mutations map to a ring-like groove around the base of the spike and to a small area at the capsid surface close to the pores in the capsid shell. These residues are candidate sites for the interaction with envelope proteins during virion morphogenesis.  相似文献   

8.
Ultrastructural observations in hepatitis C virus-infected lymphoid cells   总被引:3,自引:0,他引:3  
It is currently unclear whether the hepatocellular damage in chronic hepatitis C virus (HCV) infection is produced through the intrahepatic action of the anti-HCV immune response or through a direct cytopathic effect. In order to investigate the features of HCV replication (morphogenesis and cytopathic effect), we studied the infection of a permissive lymphocytic B cell line, Daudi cells, which were infected with sera of HCV-positive patients, and were examined after various time points under electron microscope. Viral genomic RNA was detected by in situ hybridization, and apoptosis with the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method. The amount of viral genomic RNA was observed to increase during infection. HCV replicated rapidly, since characteristics of viral morphogenesis resembling those of yellow fever virus in a hepatoma cell line could be found 2 days after infection. These included the following: a) several viral particles identical in size (about 42 nm) and structure (a spherical 30-nm-sized electron-dense nucleocapsid surrounded by a membrane) to yellow fever virus were present in the cytoplasm of cells displaying already typical signs of the early stage of apoptosis; b) numerous membrane-bound organelles and in particular the endoplasmic reticulum and vacuoles were observed; c) proliferation of membranes was apparent; and d) intracytoplasmic electron-dense inclusion bodies which have been demonstrated to correspond to nucleocapsids for other flaviviruses were detected. Several cells presented electron-dense areas in the endoplasmic reticulum displaying 30-nm circular structures lying among an amorphous material. Striking cytopathic features with ballooning, extremely enlarged vacuoles and signs of apoptosis were found in cells often containing sequestered aggregates of virus-like particles. By in situ hybridization we found that such enlarged cells contained HCV RNA. Our results thus indicate that the ultrastructural features of HCV viral particles and their morphogenesis resemble that of yellow fever virus and dengue virus. In Daudi cells, HCV infection seems to rapidly trigger apoptotic cell death, and efficient release of viral particles does not seem to take place.  相似文献   

9.
Proteolytic processing of the picornaviral polyprotein mediated by the differential action of virus-encoded proteinase(s) is pivotal to both RNA genome replication and capsid formation. Possibly to enlarge the array of viral proteins, picornaviral polyprotein processing results in intermediate and mature products which apparently have distinct functions within the viral life cycle. For hepatitis A virus (HAV), we report here on the autoproteolysis of precursor polypeptides comprising the only viral proteinase, 3Cpro, and on their role in viral particle formation. Following transient expression of a nested set of 3Cpro-containing proteins (P3, 3ABC, 3BCD, 3CD, 3BC, and 3C) in eukaryotic cells, the extent of processing was determined by analyzing the cleavage products. The 3C/3D site was more efficiently cleaved than those at the 3A/3B and 3B/3C sites, leading to the accumulation of the intermediate product 3ABC. In the absence of 3A from the precursor, cleavage at the 3B/3C site was further reduced and a switch to an alternative 3C/3D site was observed. Coexpression of various parts of P3 with the precursor of the viral structural proteins P1-2A showed that all 3C-containing intermediates cleaved P1-2A with almost equal efficiency; however, viral particles carrying the neutralizing epitope form much more readily in the presence of the complete P3 domain than with parts of it. These data support the notion that efficient liberation of structural proteins from P1-2A is necessary but not sufficient for productive HAV capsid formation and suggest that the polypeptides flanking 3Cpro promote the assembly of viral particles.  相似文献   

10.
11.
S Zhou  S Q Yang    D N Standring 《Journal of virology》1992,66(5):3086-3092
Little is known about the assembly of the 28-nm nucleocapsid or core particle of hepatitis B virus. Here we show that this assembly process can be reconstituted in Xenopus oocytes injected with a synthetic mRNA encoding the hepatitis B virus capsid protein (p21.5). Injected oocytes produce both a nonparticulate p21.5 species (free p21.5) and capsid particles. We describe rapid and simple methods for fractionating these species on a small scale either with step gradients of 10 to 60% (wt/vol) sucrose or by centrifugation to pellet the particles, and we characterize the oocyte core particles. Free p21.5 exhibits chemical and physical properties distinctly different from those of particles. Free p21.5 is partially cleaved by proteinase K, whereas core particles are almost completely resistant to cleavage. This suggests that the carboxyl-terminal protamine region, the main target for proteases within p21.5, is exposed in free p21.5 but faces the interior of the p21.5 core particle. Finally, pulse-chase experiments demonstrated that free p21.5 can be chased almost quantitatively into core particles, establishing that free p21.5 is fully competent to form particles and represents an assembly intermediate on the pathway for core particle formation. However, core particle assembly appears very dependent on p21.5 concentration and is rapidly compromised if the p21.5 concentration is lowered. The advantages of oocytes for studying assembly are discussed.  相似文献   

12.
13.
While the structures of nearly every HIV-1 protein are known in atomic detail from X-ray crystallography and NMR spectroscopy, many questions remain about how the individual proteins are arranged in the mature infectious viral particle. Here, we report the three-dimensional structures of individual HIV-1 virus-like particles (VLPs) as obtained by electron cryotomography. These reconstructions revealed that while the structures and positions of the conical cores within each VLP were unique, they exhibited several surprisingly consistent features, including similarities in the size and shape of the wide end of the capsid (the "base"), uniform positioning of the base and other regions of the capsid 11nm away from the envelope/MA layer, a cone angle that typically varied from 24 degrees to 18 degrees around the long axis of the cone, and an internal density (presumably part of the NC/RNA complex) cupped within the base. Multiple and nested capsids were observed. These results support the fullerene cone model for the viral capsid, indicate that viral maturation involves a free re-organization of the capsid shell rather than a continuous condensation, imply that capsid assembly is both concentration-driven and template-driven, suggest that specific interactions exist between the capsid and the adjacent envelope/MA and NC/RNA layers, and show that a particular capsid shape is favored strongly in-vivo.  相似文献   

14.
A plasmid‐based reverse genetics system for human astrovirus type 1 (HAstV1) is examined. Upon transfection into 293T cells, the plasmid vector, which harbors a HAstV1 expression cassette, expressed astroviral RNA that appeared to be capable of viral RNA replication, as indicated by the production of subgenomic RNA and capsid protein expression irrespective of the heterologous 5′ ends of the transcribed RNA. Particles infectious to Caco‐2 cells were made in this system; however, their infectivity was much lower than would be expected from the amount of particles apparently produced. Using Huh‐7 cells as the transfection host with the aim of improving viral capsid processing for virion maturation partially restored the efficiency of infectious particle formation. Our results support the possibility that the DNA transfection process induces a cellular response that targets late, but not early, stages of HAstV1 infection.  相似文献   

15.
Human rhinoviruses were imaged under physiological conditions by dynamic force microscopy. Topographical images revealed various polygonal areas on the surfaces of the 30-nm viral particles. RNA release was initiated by exposure to a low-pH buffer. The lengths of the RNAs that were released but still connected to the virus capsid varied between 40 and 330 nm, whereas RNA molecules that were completely released from the virus were observed with lengths up to 1 micro m. Fork-like structure elements with 30-nm extensions were sometimes resolved at one end of the RNA molecules. They possibly correspond to the characteristic multi-stem-loop conformation, the internal ribosomal entry site, located at the 5' region of the genome. This study demonstrates that dynamic force microscopy can be used to study viral RNA release in situ under physiological conditions.  相似文献   

16.
Mabit H  Schaller H 《Journal of virology》2000,74(24):11472-11478
Hepadnaviruses are DNA viruses but, as pararetroviruses, their morphogenesis initiates with the encapsidation of an RNA pregenome, and these viruses have therefore evolved mechanisms to exclude nucleocapsids that contain incompletely matured genomes from participating in budding and secretion. We provide here evidence that binding of hepadnavirus core particles from the cytosol to their target membranes is a distinct step in morphogenesis, discriminating among different populations of intracellular capsids. Using the duck hepatitis B virus (DHBV) and a flotation assay, we found about half of the intracellular capsids to be membrane associated due to an intrinsic membrane-binding affinity. In contrast to free cytosolic capsids, this subpopulation contained largely mature, double-stranded DNA genomes and lacked core protein hyperphosphorylation, both features characteristic for secreted virions. Against expectation, however, the selective membrane attachment observed did not require the presence of the large DHBV envelope protein, which has been considered to be crucial for nucleocapsid-membrane interaction. Furthermore, removal of surface-exposed phosphate residues from nonfloating capsids by itself did not suffice to confer membrane affinity and, finally, hyperphosphorylation was absent from nonenveloped nucleocapsids that were released from DHBV-transfected cells. Collectively, these observations argue for a model in which nucleocapsid maturation, involving the viral genome, capsid structure, and capsid dephosphorylation, leads to the exposure of a membrane-binding signal as a step crucial for selecting the matured nucleocapsid to be incorporated into the capsid-independent budding of virus particles.  相似文献   

17.
Viral capsid proteins (CPs) can regulate gene expression and encapsulate viral RNAs. Low-level expression of the brome mosaic virus (BMV) CP was found to stimulate viral RNA accumulation, while higher levels inhibited translation and BMV RNA replication. Regulation of translation acts through an RNA element named the B box, which is also critical for the replicase assembly. The BMV CP has also been shown to preferentially bind to an RNA element named SLC that contains the core promoter for genomic minus-strand RNA synthesis. To further elucidate CP interaction with RNA, we used a reversible cross-linking-peptide fingerprinting assay to identify peptides in the capsid that contact the SLC, the B-box RNA, and the encapsidated RNA. Transient expression of three mutations made in residues within or close by the cross-linked peptides partially released the normal inhibition of viral RNA accumulation in agroinfiltrated Nicotiana benthamiana. Interestingly, two of the mutants, R142A and D148A, were found to retain the ability to down-regulate reporter RNA translation. These two mutants formed viral particles in inoculated leaves, but only R142A was able to move systemically in the inoculated plant. The R142A CP was found to have higher affinities for SLC and the B box compared with those of wild-type CP and to alter contacts to the RNA in the virion. These results better define how the BMV CP can interact with RNA and regulate different viral processes.  相似文献   

18.
19.
In this work, we evaluate the stability, dynamics and protein-nucleic acid interaction in Flock House virus (FHV). FHV is an RNA insect virus, non-enveloped, member of the family Nodaviridae. It is composed of a bipartite single-stranded RNA genome packaged in an icosahedral capsid of 180 copies of an identical protein (alpha protein). A fundamental property of many animal viruses is the post-assembly maturation required for infectivity. FHV is constructed as a provirion, which matures to an infectious virion by cleavage of alpha protein into beta and gamma subunits. We used high pressure, temperature and chemical denaturing agents to promote perturbation of the viral capsid. These effects were monitored by spectroscopy measurements (fluorescence, light scattering and CD) and size-exclusion chromatography. The data showed that FHV was stable to pressures up to 310 MPa at room temperature. The fluorescence emission and light scattering values showed small changes that were reversible after decompression. When we combined pressure and sub-denaturing urea concentrations (1 M), the changes were more drastic, suggesting dissociation of the capsid. However, these changes were reversible after pressure release. The complete dissociation of FHV could be observed only under high urea concentrations (10 M). There were no significant changes in emission spectra up to 5 M urea. FHV also was stable when we used temperature treatments (high and low). We also compared the effects of urea and pressure on FHV wild type and cleavage-defective mutant VLPs (virus-like particles). The VLPs and authentic particles are distinguishable by protein-RNA interactions, since VLPs pack cellular RNA and native particles contain viral RNA. Our results demonstrated that native particles are more stable than VLPs to physical and chemical treatments. Our data point to the specificity of the interaction between the capsid protein and the viral RNA. This specificity is crucial to the stability of the particle, which makes this interaction an excellent target for drug development.  相似文献   

20.
Venezuelan equine encephalitis virus (VEEV) is a pathogenic alphavirus, which circulates in the Central, South, and North Americas, including the United States, and represents a significant public health threat. In recent years, strong progress has been made in understanding the structure of VEEV virions, but the mechanism of their formation has yet to be investigated. In this study, we analyzed the functions of different capsid-specific domains and its amino-terminal subdomains in viral particle formation. Our data demonstrate that VEEV particles can be efficiently formed directly at the plasma membrane without cytoplasmic nucleocapsid preassembly. The entire amino-terminal domain of VEEV capsid protein was found to be dispensable for particle formation. VEEV variants encoding only the capsid''s protease domain efficiently produce genome-free VEEV virus-like particles (VLPs), which are very similar in structure to the wild-type virions. The amino-terminal domain of the VEEV capsid protein contains at least four structurally and functionally distinct subdomains, which mediate RNA packaging and the specificity of packaging in particular. The most positively charged subdomain is a negative regulator of the nucleocapsid assembly. The three other subdomains are not required for genome-free VLP formation but are important regulators of RNA packaging. Our data suggest that the positively charged surface of the VEEV capsid-specific protease domain and the very amino-terminal subdomain are also involved in interaction with viral RNA and play important roles in RNA encapsidation. Finally, we show that VEEV variants with mutated capsid acquire compensatory mutations in either capsid or nsP2 genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号