首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malonamidase E2 (MAE2) from Bradyrhizobium japonicum is an enzyme that hydrolyzes malonamate to malonate and has a Ser-cis-Ser-Lys catalytic triad at the active site. The crystal structures of wild type and mutant MAE2 exhibited that the guanido group of Arg-158 could be involved in the binding of malonamate in which the negative charge of the carboxyl group could destabilize a negatively charged transition-state oxyanion in the enzymatic reaction. In an attempt to elucidate the specific roles of Arg-158, site-directed mutants, R158Q, R158E, and R158K, were prepared (see Table 1). The crystal structure of R158Q determined at 2.2 Angstrom resolution showed that the guanido group of Arg-158 was important for the substrate binding with the marginal structural change upon the mutation. The k(cat) value of R158Q significantly decreased by over 1500-fold and the catalytic activity of R158E could not be detected. The k(cat) value of R158K was similar to that of the wild type with the K(m) value drastically increased by 100-fold, suggesting that Lys-158 of R158K can stabilize the negative charge of the carboxylate in the substrate to some extent and contribute to the stabilization of the transition-state oxyanion, but a single amine group of Lys-158 in R158K could not precisely anchor the carboxyl group of malonamate compared with the guanido group of Arg-158. Our kinetic and structural evidences demonstrate that Arg-158 in MAE2 should be critical to both binding the substrate and stabilizing the transition-state oxyanion for the catalytic reaction of MAE2.  相似文献   

2.
AtzF, allophanate hydrolase, is a recently discovered member of the amidase signature family that catalyzes the terminal reaction during metabolism of s-triazine ring compounds by bacteria. In the present study, the atzF gene from Pseudomonas sp. strain ADP was cloned and expressed as a His-tagged protein, and the protein was purified and characterized. AtzF had a deduced subunit molecular mass of 66,223, based on the gene sequence, and an estimated holoenzyme molecular mass of 260,000. The active protein did not contain detectable metals or organic cofactors. Purified AtzF hydrolyzed allophanate with a k(cat)/K(m) of 1.1 x 10(4) s(-1) M(-1), and 2 mol of ammonia was released per mol allophanate. The substrate range of AtzF was very narrow. Urea, biuret, hydroxyurea, methylcarbamate, and other structurally analogous compounds were not substrates for AtzF. Only malonamate, which strongly inhibited allophanate hydrolysis, was an alternative substrate, with a greatly reduced k(cat)/K(m) of 21 s(-1) M(-1). Data suggested that the AtzF catalytic cycle proceeds through a covalent substrate-enzyme intermediate. AtzF reacts with malonamate and hydroxylamine to generate malonohydroxamate, potentially derived from hydroxylamine capture of an enzyme-tethered acyl group. Three putative catalytically important residues, one lysine and two serines, were altered by site-directed mutagenesis, each with complete loss of enzyme activity. The identity of a putative serine nucleophile was probed using phenyl phosphorodiamidate that was shown to be a time-dependent inhibitor of AtzF. Inhibition was due to phosphoroamidation of Ser189 as shown by liquid chromatography/matrix-assisted laser desorption ionization mass spectrometry. The modified residue corresponds in sequence alignments to the nucleophilic serine previously identified in other members of the amidase signature family. Thus, AtzF affects the cleavage of three carbon-to-nitrogen bonds via a mechanism similar to that of enzymes catalyzing single-amide-bond cleavage reactions. AtzF orthologs appear to be widespread among bacteria.  相似文献   

3.
The effects of dimethylsulfoxide, propranolol and chlorpromazine on the partial reactions of the ATPase of sarcoplasmic reticulum were investigated. When analyzed according to a reaction scheme in which the ADP-sensitive (E1P) and ADP-insensitive (E2P) phosphoenzymes occur sequentially and P1 is derived from the latter, dimethylsulfoxide decreased the rate of E2P hydrolysis whereas it stimulated the rate of the E1P to E2P conversion. Propranolol increased the rate of E2P hydrolysis while it decreased the rate of the E1P to E2P conversion. Propranolol exerted an additional effect, presumably inhibition of the phosphoenzyme formation. These effects of dimethylsulfoxide and propranolol can account for both the stimulatory and inhibitory effects of these drugs on the overall rate of ATP hydrolysis observed in the presence and absence of added alkali metal salts. Chlorpromazine accelerated E2P hydrolysis whereas it appeared to inhibit the E1P to E2P conversion. These effects of chlorpromazine appear able to account for its stimulatory and inhibitory effects on the overall rate of ATP hydrolysis in the presence and absence of alkali metal salts. In the presence of chlorpromazine, however, the rate of Pi liberation during the steady state ATP hydrolysis was found to be greater than the hydrolysis rate of E2P. This finding suggests that under these conditions Pi is derived not only from E2P but also from source(s) other than E2P.  相似文献   

4.
A novel series of extrinsic probes for intracellular pH (pHi) determination by 1H NMR is described. Imidazol-1-ylacetate, malonate, 3-glutarate and 2-succinate esters were synthesized by reaction of imidazole either with -bromoesters or with ,β-unsaturated esters. The corresponding acids were prepared by hydrolysis.  相似文献   

5.
The possibility that Escherichia coli MutT and human MTH1 (hMTH1) hydrolyze oxidized DNA precursors other than 8-hydroxy-dGTP (8-OH-dGTP) was investigated. We report here that hMTH1 hydrolyzed 2-hydroxy-dATP (2-OH-dATP) and 8-hydroxy-dATP (8-OH-dATP), oxidized forms of dATP, but not (R)-8,5'-cyclo-dATP, 5-hydroxy-dCTP, and 5-formyl-dUTP. The kinetic parameters indicated that 2-OH-dATP was hydrolyzed more efficiently and with higher affinity than 8-OH-dGTP. 8-OH-dATP was hydrolyzed as efficiently as 8-OH-dGTP. The preferential hydrolysis of 2-OH-dATP over 8-OH-dGTP was observed at all of the pH values tested (pH 7.2 to pH 8.8). In particular, a 5-fold difference in the hydrolysis efficiencies for 2-OH-dATP over 8-OH-dGTP was found at pH 7.2. However, E. coli MutT had no hydrolysis activity for either 2-OH-dATP or 8-OH-dATP. Thus, E. coli MutT is an imperfect counterpart for hMTH1. Furthermore, we found that 2-hydroxy-dADP and 8-hydroxy-dGDP competitively inhibited both the 2-OH-dATP hydrolase and 8-OH-dGTP hydrolase activities of hMTH1. The inhibitory effects of 2-hydroxy-dADP were 3-fold stronger than those of 8-hydroxy-dGDP. These results suggest that the three damaged nucleotides share the same recognition site of hMTH1 and that it is a more important sanitization enzyme than expected thus far.  相似文献   

6.
An anaerobic enrichment from lake mud yielded a pure culture of a facultatively anaerobic bacterium able to grow on malonate under strictly anaerobic conditions. Strain 16mal1 was identified as a member of the family Enterobacteriaceae, and assigned to the genus Citrobacter on the basis of morphological, metabolic and biochemical characteristics. Malonate was fermented under strictly anaerobic (sulphide-reduced) conditions to acetate and CO2 concomitant with growth. A maximum growth rate of 1.88 generations h-1 (mu = 1.30 h-1) was measured. The dry weight yield of cells from malonate was estimated at 2.5 g mol-1. Yeast extract was required for growth on malonate: other additives, or a vitamin solution, could not replace this requirement. Other dicarboxylic acids were not degraded in the absence or presence of malonate. Malonate was degraded under anaerobic, but not aerobic conditions. Malonate-decarboxylating activity was inducible by malonate under both anaerobic and aerobic conditions, and was not expressed in glucose- or citrate-grown anaerobic cultures. Monensin had no effect on malonate degradation, while 2,4-dinitrophenol decreased the rate of malonate degradation. This, with the lack of a sodium requirement for anaerobic growth on malonate, suggested that ATP generation may not be mediated by a sodium-pumping mechanism.  相似文献   

7.
We have studied the kinetics of "unisite" ATP hydrolysis and synthesis in seven mutant Escherichia coli F1-ATPase enzymes. The seven mutations are distributed over a 105-residue segment of the catalytic nucleotide-binding domain in beta-subunit and are: G142S, K155Q, K155E, E181Q, E192Q, M209I, and R246C. We report forward and reverse rate constants and equilibrium constants in all seven mutant enzymes for the four steps of unisite kinetics, namely (i) ATP binding/release, (ii) ATP hydrolysis/synthesis, (iii) Pi release/binding, and (iv) ADP release/binding. The seven mutant enzymes displayed a wide range of deviations from normal in both rate and equilibrium constants, with no discernible common pattern. Notably, steep reductions in Kd ATP were seen in some cases, the value of Kd Pi was high, and K2 (ATP hydrolysis/synthesis) was relatively unaffected. Significantly, when the data from the seven mutations were combined with previous data from two other E. coli F1-beta-subunit mutations (D242N, D242V), normal E. coli F1, soluble and membranous mitochondrial F1, it was found that linear free energy relationships obtained for both ATP binding/release (log k+1 versus log K1) and ADP binding/release (log k-4 versus log K-4). Two conclusions follow. 1) The seven mutations studied here cause subtle changes in interactions between the catalytic nucleotide-binding domain and substrate ATP or product ADP. 2) The mitochondrial, normal E. coli, and nine total beta-subunit mutant enzymes represent a continuum in which subtle structural differences in the catalytic site resulted in changes in binding energy; therefore insights into the nature of energy coupling during ATP hydrolysis and synthesis by F1-ATPase may be ascertained by detailed studies of this group of enzymes.  相似文献   

8.
The present work compares the effects of several ligands (phosphatase substrates, MgCl2, RbCl and inorganic phosphate) and temperature on the phosphatase activity and the E2(Rb) occluded conformation of Na+/K+-ATPase. Cooling from 37 degrees C to 20 degrees C and 0 degrees C (hydrolysis experiments) or from 20 degrees C to 0 degrees C (occlusion experiments) had the following consequences: (i) dramatically reduced the Vmax for p-nitrophenyl phosphate and acetyl phosphate hydrolysis but it produced little or no changes in the Km for the substrates; (ii) led to a 5-fold drop in the Km for the inorganic phosphate-induced di-occlusion of E2(Rb); (iii) reduced the K0.5 and curve sigmoidicity of the Rb-stimulated hydrolysis of p-nitrophenyl phosphate and acetyl phosphate and the Rb-promoted E2(Rb) formation. At 20 degrees C, in the presence of 1 mM RbCl and no Mg2+, acetyl phosphate did not affect E2(Rb); with 3 mM MgCl2, acetyl phosphate stimulated a release of Rb from E2(Rb) both in the presence and absence of RbCl in the incubation mixture. As a function of acetyl phosphate concentration the Km for iRb release was indistinguishable from the Km found for stimulation of hydrolysis and enzyme phosphorylation under identical experimental conditions; in addition, the extrapolated di-occluded fraction corresponding to maximal hydrolysis was not different from 100%. These results indicate that although E2(K) might be an intermediary in the phosphatase reaction, the most abundant enzyme conformation during phosphatase turnover is E2 which has no K+ occluded in it. The ligand interactions associated to phosphatase activity do not support an equivalence of this reaction with the dephosphorylation step in the Na+ + K+-dependent ATP hydrolysis; on the other hand, there are similarities with the reversible binding of inorganic phosphate in the presence of Mg2+ and K+ ions.  相似文献   

9.
Biotypes of Agrobacterium tumefaciens in Hungary   总被引:3,自引:1,他引:2  
Isolates of Agrobacterium tumefaciens from Hungary were separated into three biotypes on the basis of their physiological characters. Biotypes 1 and 2 corresponded with those of Keane et al . (1970). The most common isolates were of biotype 2. Isolates from grapevines formed a separate biotype which might be distinguished from biotype 1 by D-(–)tartrate and malonate utilization. Many isolates with biotype-intermediate characters were found. Isolates utilizing D-(–)tartrate, erythritol and malonate were included into biotype 2, although many of them were 3–ketolactose positive. Biotypes were not separated geographically and biotype 1 and 2 apparently occurred together.  相似文献   

10.
Eight strains isolated from birds, reptiles, and water constitute a new DNA hybridization group that is 37–58% related toEdwardsiella tarda and less than 10% related to other species of Enterobacteriaceae (SI nuclease method). This homogeneous group (78–100% relatedness within the group) constitutes a new species that is namedEdwardsiella hoshinae sp. nov. (type strain, CIP 78.56 ATCC 33379). Strains of this species produce acid fromd-mannitol, sucrose,d-trehalose, and salicin, and give a positive malonate test. Seven other strains that produced acid fromd-mannitol and sucrose (but not fromd-trehalose and salicin) and were malonate negative were found to belong to theEdwardsiella tarda DNA hybridization group. The base composition of the DNAs ofE. tarda andE. hoshinae is 55–58 mol% G+C.  相似文献   

11.
The two phosphoenzymes (E1P and E2P) of Na+,K+-ATPase were measured as ADP-sensitive and K+-sensitive fractions. The sum of these fractions was nearly 1 in the range of 50 to 1,200 mM NaCl. The effects of Na+ on the levels of E1P and E2P, on the rate constant of E2P leads to E1P transition (k2), on the rate constant of E2P dephosphorylation (k3), on the rate constant of E1P leads to E2P transition (k1) and on the apparent equilibrium constant between E1P and E2P (Kapp) were examined. k1 was found to decrease with increasing Na+ concentration, whereas k2 increased. Kapp was found to be directly proportional to the third power of Na+ concentration. k3 increased with increasing Na+ concentration and saturated at about 1 M NaCl. These results are consistent with a simple model in which ATP hydrolysis occurs through effectively only two phosphoenzyme intermediates in the absence of K+ and three sodium ions are discharged cooperatively from the enzyme during the E1P leads to E2P conversion.  相似文献   

12.
The phosphate group of the ADP-insensitive phosphoenzyme (E2-P) of sarcoplasmic reticulum Ca2+ -ATPase (SERCA1a) was studied with infrared spectroscopy to understand the high hydrolysis rate of E2-P. By monitoring an autocatalyzed isotope exchange reaction, three stretching vibrations of the transiently bound phosphate group were selectively observed against a background of 50,000 protein vibrations. They were found at 1194, 1137, and 1115 cm(-1). This information was evaluated using the bond valence model and empirical correlations. Compared with the model compound acetyl phosphate, structure and charge distribution of the E2-P aspartyl phosphate resemble somewhat the transition state in a dissociative phosphate transfer reaction; the aspartyl phosphate of E2-P has 0.02 A shorter terminal P-O bonds and a 0.09 A longer bridging P-O bond that is approximately 20% weaker, the angle between the terminal P-O bonds is wider, and -0.2 formal charges are shifted from the phosphate group to the aspartyl moiety. The weaker bridging P-O bond of E2-P accounts for a 10(11)-10(15)-fold hydrolysis rate enhancement, implying that P-O bond destabilization facilitates phosphoenzyme hydrolysis. P-O bond destabilization is caused by a shift of noncovalent interactions from the phosphate oxygens to the aspartyl oxygens. We suggest that the relative positioning of Mg2+ and Lys684 between phosphate and aspartyl oxygens controls the hydrolysis rate of the ATPase phosphoenzymes and related phosphoproteins.  相似文献   

13.
Two nitrogen-fixing members of the Enterobacteriaceae have been isolated from paper mill process water and compost. Although they closely resembled Escherichia coli , detailed biochemical characterization of these and 7 other isolates established that they should be assigned to a biotype of Erwinia herbicola . They may be distinguished from E. coli by their lack of amino acid decarboxylase activity, their ability to utilize cellobiose and malonate and to ferment cellobiose and amygdalin. In one of them, the capacity to fix nitrogen, ferment cellobiose and utilize malonate was resistant to the effects of ethidium bromide, acridine orange and sodium dodecyl sulphate, and the ability to utilize cellobiose could not be transferred on to E. coli or Salmonella typhi . It is therefore concluded that these characters are not carried on transferable plasmids. Forty-eight strains of E. coli of varying origin were examined for acetylene reducing activity and all were found to be negative. It is concluded that hitherto no naturally occurring strains of E. coli have been shown to fix nitrogen.  相似文献   

14.
A purified and electrophoretically homogeneous blue laccase from the litter-decaying basidiomycete Stropharia rugosoannulata with a molecular mass of approximately 66 kDa oxidized Mn(2+) to Mn(3+), as assessed in the presence of the Mn chelators oxalate, malonate, and pyrophosphate. At rate-saturating concentrations (100 mM) of these chelators and at pH 5.0, Mn(3+) complexes were produced at 0.15, 0.05, and 0.10 micromol/min/mg of protein, respectively. Concomitantly, application of oxalate and malonate, but not pyrophosphate, led to H(2)O(2) formation and tetranitromethane (TNM) reduction indicative for the presence of superoxide anion radical. Employing oxalate, H(2)O(2) production, and TNM reduction significantly exceeded those found for malonate. Evidence is provided that, in the presence of oxalate or malonate, laccase reactions involve enzyme-catalyzed Mn(2+) oxidation and abiotic decomposition of these organic chelators by the resulting Mn(3+), which leads to formation of superoxide and its subsequent reduction to H(2)O(2). A partially purified manganese peroxidase (MnP) from the same organism did not produce Mn(3+) complexes in assays containing 1 mM Mn(2+) and 100 mM oxalate or malonate, but omitting an additional H(2)O(2) source. However, addition of laccase initiated MnP reactions. The results are in support of a physiological role of laccase-catalyzed Mn(2+) oxidation in providing H(2)O(2) for extracellular oxidation reactions and demonstrate a novel type of laccase-MnP cooperation relevant to biodegradation of lignin and xenobiotics.  相似文献   

15.
To better characterize the enzymatic activities required for human papillomavirus (HPV) DNA replication, the E1 helicases of HPV types 6 and 11 were produced using a baculovirus expression system. The purified wild type proteins and a version of HPV11 E1 lacking the N-terminal 71 amino acids, which was better expressed, were found to be hexameric over a wide range of concentrations and to have helicase and ATPase activities with relatively low values for K(m)(ATP) of 12 microm for HPV6 E1 and 6 microm for HPV11 E1. Interestingly, the value of K(m)(ATP) was increased 7-fold in the presence of the E2 transactivation domain. In turn, ATP was found to perturb the co-operative binding of E1 and E2 to DNA. Mutant and truncated versions of in vitro translated E1 were used to identify a minimal ATPase domain composed of the C-terminal 297 amino acids. This fragment was expressed, purified, and found to be fully active in ATP hydrolysis, single-stranded DNA binding, and unwinding assays, despite lacking the minimal origin-binding domain.  相似文献   

16.
Hime NJ  Drew KJ  Hahn C  Barter PJ  Rye KA 《Biochemistry》2004,43(38):12306-12314
This study compares the kinetics of hepatic lipase (HL)-mediated phospholipid and triacylglycerol hydrolysis in spherical, reconstituted high-density lipoproteins (rHDL) that contain either apolipoprotein E2 (apoE2), apoE3, apoE4, or apoA-I as the sole apolipoprotein. HL-mediated phospholipid hydrolysis was assessed by incubating various concentrations of rHDL that contained only cholesteryl esters (CE) in their core, (E2/CE)rHDL, (E3/CE)rHDL, (E4/CE)rHDL, and (A-I/CE)rHDL, with a constant amount of HL. The rate of phospholipid hydrolysis was determined as the formation of nonesterified fatty acid mass. HL-mediated triacylglycerol hydrolysis was assessed in rHDL containing CE, unlabeled triacylglycerol, and [(3)H]triacylglycerol in their core, (E2/TG)rHDL, (E3/TG)rHDL, (E4/TG)rHDL, and (A-I/TG)rHDL. Triacylglycerol hydrolysis was determined as the ratio of (3)H-labeled hydrolysis products to (3)H-labeled unhydrolyzed triacylglycerol. The rates of phospholipid hydrolysis in the (E2/CE)rHDL, (E3/CE)rHDL, and (E4/CE)rHDL were significantly greater than that in the (A-I/CE)rHDL. The rates of triacylglycerol hydrolysis were also greater in the (E2/TG)rHDL, (E3/TG)rHDL, and (E4/TG)rHDL compared to the (A-I/TG)rHDL, although to a lesser degree than observed with phospholipid hydrolysis. Furthermore, the rates of both phospholipid and triacylglycerol hydrolyses were greater in the (E2)rHDL than in either the (E3)rHDL or the (E4)rHDL. These results show that apoE increases the rate of HL-mediated phospholipid and triacylglycerol hydrolysis in rHDL and that this influence is isoform dependent.  相似文献   

17.
1. Commercially available [2-14C]pyruvate and [2-14C]malonate were found to contain 3-6% (w/w) of [14C]acetate. 2. The contaminating [14C]acetate was efficiently utilized for fatty acid synthesis by isolated chloroplasts, whereas the parent materials were poorer substrates. 3. Maximum incorporation rates of the different substrates examined were (ng-atoms of C/h per mg of chlorophyll): [1-14C]acetate, 2676; [2-14C]pyruvate, 810; H14CO3-, 355; [2-14C]malonate, 19. 4. Products of CO2 fixation were probably not a significant carbon source for fatty acid synthesis in the presence of exogenous acetate.  相似文献   

18.
Two new sulfur containing derivatives, t-butyl 3-[(1-methylpropyl)dithio]-2-propenyl malonate (1), t-butyl 3-[(1-methylthiopropyl)thio]-2-propenyl malonate (2) were isolated from the roots of Ferula persica Willd. var. latisecta D. F. Chamberlain. Their structures were elucidated by spectral methods.  相似文献   

19.
TrzF, the allophanate hydrolase from Enterobacter cloacae strain 99, was cloned, overexpressed in the presence of a chaperone protein, and purified to homogeneity. Native TrzF had a subunit molecular weight of 65,401 and a subunit stoichiometry of α2 and did not contain significant levels of metals. TrzF showed time-dependent inhibition by phenyl phosphorodiamidate and is a member of the amidase signature protein family. TrzF was highly active in the hydrolysis of allophanate but was not active with urea, despite having been previously considered a urea amidolyase. TrzF showed lower activity with malonamate, malonamide, and biuret. The allophanate hydrolase from Pseudomonas sp. strain ADP, AtzF, was also shown to hydrolyze biuret slowly. Since biuret and allophanate are consecutive metabolites in cyanuric acid metabolism, the low level of biuret hydrolase activity can have physiological significance. A recombinant Escherichia coli strain containing atzD, encoding cyanuric acid hydrolase that produces biuret, and atzF grew slowly on cyanuric acid as a source of nitrogen. The amount of growth produced was consistent with the liberation of 3 mol of ammonia from cyanuric acid. In vitro, TrzF was shown to hydrolyze biuret to liberate 3 mol of ammonia. The biuret hydrolyzing activity of TrzF might also be physiologically relevant in native strains. E. cloacae strain 99 grows on cyanuric acid with a significant accumulation of biuret.  相似文献   

20.
Gastric H(+),K(+)-ATPase is shown to transport 2 mol of H(+)/mol of ATP hydrolysis in isolated hog gastric vesicles. We studied whether the H(+) transport mechanism is due to charge transfer and/or transfer of hydronium ion (H(3)O(+)). From transport of [(18)O]H(2)O, 1.8 mol of water molecule/mol of ATP hydrolysis was found to be transported. We performed a molecular dynamics simulation of the three-dimensional structure model of the H(+),K(+)-ATPase alpha-subunit at E(1) conformation. It predicts the presence of a charge transfer pathway from hydronium ion in cytosolic medium to Glu-345 in cation binding site 2 (H(3)O(+)-Lys-164 -Gln-161-Glu-345). No charge transport pathway was formed in mutant Q161L, E345L, and E345D. Alternative pathways (H(3)O(+)-Gln-161-Glu-345) in mutant K164L and (H(3)O(+)-Arg-105-Gln-161-Gln-345) in mutant E345Q were formed. The H(+),K(+)-ATPase activity in these mutants reflected the presence and absence of charge transfer pathways. We also found charge transfer from sites 2 to 1 via a water wire and a charge transfer pathway (H(3)O(+)-Asn-794 -Glu-797). These results suggest that protons are charge-transferred from the cytosolic side to H(2)O in sites 2 and 1, the H(2)O comes from cytosolic medium, and H(3)O(+) in the sites are transported into lumen during the conformational transition from E(1)PtoE(2)P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号