首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Pseudomonas diminuta LPS with a new endotoxic lipid A structure   总被引:5,自引:0,他引:5  
Lipid A that contains mainly 2,3-diamino-2,3-dideoxy-D-glucose, phosphate and fatty acids in the molar ratio 2:1:5-6 was found in Pseudomonas diminuta lipopolysaccharide. The lipid A was considered to have a diamino-sugar disaccharide structure that carries a nonglycosidic phosphomonoester group and amide-bound acyloxyacyl and 3-hydroxy fatty acyl groups. The lipopolysaccharide exhibited endotoxic activities including lethal toxicity, pyrogenicity, local Shwartzman activity, body weight-decreasing toxicity and Limulus activity. The free lipid A was also endotoxic.  相似文献   

2.
The chemical structure of the free lipid A isolated from Mesorhizobium huakuii IFO 15243(T) was elucidated. Lipid A is a mixture of at least six species of molecules whose structures differ both in the phosphorylation of sugar backbone and in fatty acylation. The backbone consists of a beta (1'-->6) linked 2,3-diamino-2,3-dideoxyglucose (DAG) disaccharide that is partly substituted by phosphate at position 4'. The aglycon of the DAG-disaccharide has been identified as alpha-D-galacturonic acid. All lipid A species carry four amide-linked 3-hydroxyl fatty residues. Two of them have short hydrocarbon chains (i.e. 3-OH-i-13:0) while the other two have longer ones (i.e. 3-OH-20:0). Distribution of 3-hydroxyl fatty acids between the reducing and nonreducing DAG is symmetrical. The nonpolar as well as (omega-1) hydroxyl long chain fatty acids are components of acyloxyacyl moieties. Two acyloxyacyl residues occur exclusively in the nonreducing moiety of the sugar backbone but their distribution has not been established yet. The distal DAG amide-bound fatty acid hydroxyls are not stoichiometrically substituted by ester-linked acyl components.  相似文献   

3.
The chemical structure of free lipid A isolated from rough- and smooth-form lipopolysaccharides (R-LPS and S-LPS, respectively) of the human gastroduodenal pathogen Helicobacter pylori was elucidated by compositional and degradative analysis, nuclear magnetic resonance spectroscopy, and mass spectrometry. The predominant molecular species in both lipid A components are identical and tetraacylated, but a second molecular species which is hexaacylated is also present in lipid A from S-LPS. Despite differences in substitution by acyl chains, the hydrophilic backbone of the molecules consisted of beta(1,6)-linked D-glucosamine (GlcN) disaccharide 1-phosphate. Because of microheterogeneity, nonstoichiometric amounts of ethanolamine-phosphate were also linked to the glycosidic hydroxyl group. In S-LPS, but not in R-LPS, the hydroxyl group at position 4' was partially substituted by another phosphate group. Considerable variation in the distribution of fatty acids on the lipid A backbone was revealed by laser desorption mass spectrometry. In tetraacyl lipid A, the amino group of the reducing GlcN carried (R)-3-hydroxyoctadecanoic acid (position 2), that of the nonreducing GlcN carried (R)-3-(octadecanoyloxy)octadecanoic acid (position 2'), and ester-bound (R)-3-hydroxyhexadecanoic acid was attached at position 3. Hexaacyl lipid A had a similar substitution by fatty acids, but in addition, ester-bound (R)-3-(dodecanoyloxy)hexadecanoic acid or (R)-3(tetradecanoyloxy)hexadecanoic acid was attached at position 3'. The predominant absence of ester-bound 4'-phosphate and the presence of tetraacyl lipid A with fatty acids of 16 to 18 carbons in length differentiate H. pylori lipid A from that of other bacterial species and help explain the low endotoxic and biological activities of H. pylori LPS.  相似文献   

4.
A broad-host-range endosymbiont, Sinorhizobium sp. NGR234 is a component of several legume-symbiont model systems; however, there is little structural information on the cell surface glycoconjugates. NGR234 cells in free-living culture produce a major rough lipopolysaccharide (LPS, lacking O-chain) and a minor smooth LPS (containing O-chain), and the structure of the lipid A components was investigated by chemical analyses, mass spectrometry, and NMR spectroscopy of the underivatized lipids A. The lipid A from rough LPS is heterogeneous and consists of six major bisphosphorylated species that differ in acylation. Pentaacyl species (52%) are acylated at positions 2, 3, 2', and 3', and tetraacyl species (46%) lack an acyl group at C-3 of the proximal glucosamine. In contrast to Rhizobium etli and Rhizobium leguminosarum, the NGR234 lipid A contains a bisphosphorylated beta-(1' --> 6)-glucosamine disaccharide, typical of enterobacterial lipid A. However, NGR234 lipid A retains the unusual acylation pattern of R. etli lipid A, including the presence of a distal, amide-linked acyloxyacyl residue containing a long chain fatty acid (LCFA) (e.g. 29-hydroxytriacontanoate) attached as the secondary fatty acid. As in R. etli, a 4-carbon fatty acid, beta-hydroxybutyrate, is esterified to (omega - 1) of the LCFA forming an acyloxyacyl residue at that location. The NGR234 lipid A lacks all other ester-linked acyloxyacyl residues and shows extensive heterogeneity of the amide-linked fatty acids. The N-acyl heterogeneity, including unsaturation, is localized mainly to the proximal glucosamine. The lipid A from smooth LPS contains unique triacyl species (20%) that lack ester-linked fatty acids but retain bisphosphorylation and the LCFA-acyloxyacyl moiety. The unusual structural features shared with R. etli/R. leguminosarum lipid A may be essential for symbiosis.  相似文献   

5.
Acyloxyacyl hydrolase, a leukocyte enzyme previously has been shown to catalyze the hydrolysis of secondary (acyloxyacyl-linked) fatty acyl chains from the nonreducing glucosamine of the lipid A region of rough Salmonella typhimurium lipopolysaccharide (LPS). We describe here the activity of this enzyme toward smooth S. typhimurium LPS and LPS from Escherichia coli, Pseudomonas aeruginosa, Haemophilus influenzae, Neisseria meningitidis, and Neisseria gonorrhoeae. Acyloxyacyl hydrolase released the secondary acyl chains from all of these lipopolysaccharides, regardless of the location of the acyloxyacyl linkage on the diglucosamine backbone or the structure of the acyl chains. The two acyloxyacyl linkages present in each LPS molecule apparently were hydrolyzed separately, so that free fatty acids released from the different sites accumulated at different rates. The purified enzyme also removed greater than 90% of the secondary acyl chains in each LPS, indicating that the enzyme acts not only on intact LPS but also on LPS molecules that have only one secondary acyl chain. The enzyme did not release the glucosamine-linked 3-hydroxyacyl chains. The specificity and versatility of the enzyme for cleaving acyloxyacyl linkages suggest that it may be a useful reagent for studying the structure and bioactivities of lipopolysaccharides with diverse carbohydrate and lipid A structures.  相似文献   

6.
The chemical structure of lipid A isolated from Porphyromonas gingivalis lipopolysaccharide was elucidated by compositional analysis, mass spectrometry, and nuclear magnetic resonance spectroscopy. The hydrophilic backbone of free lipid A was found to consisted of beta(1,6)-linked D-glucosamine disaccharide 1-phosphate. (R)-3-Hydroxy-15-methylhexadecanoic acid and (R)-3-hydroxyhexadecanoic acid are attached at positions 2 and 3 of the reducing terminal residue, respectively, and positions 2' and 3' of the nonreducing terminal unit are acylated with (R)-3-O-(hexadecanoyl)-15-methylhexadecanoic acid and (R)-3-hydroxy-13-methyltetradecanoic acid, respectively. The hydroxyl group at position 4' is partially replaced by another phosphate group, and the hydroxyl groups at positions 4 and 6' are unsubstituted. Considerable heterogeneity in the fatty acid chain length and the degree of acylation and phosphorylation was detected by liquid secondary ion-mass spectrometry (LSI-MS). A significant pseudomolecular ion of lipid A at m/z 1,769.6 [M-H]- corresponding to a diphosphorylated GlcN backbone bearing five acyl groups described above was detected in the negative mode of LSI-MS. Predominant ions, however, were observed at m/z 1,434.9 [M-H]- and m/z 1,449.0 [M-H]-, each representing monophosphoryl lipid A lacking (R)-3-hydroxyhexadecanoic and (R)-3-hydroxy-13-methyltetradecanoic acids, respectively. The presence of mono- and diphosphorylated lipid A species was also confirmed by LSI-MS of de-O-acylated lipid A (m/z 955.3 and 1,035.2, respectively).  相似文献   

7.
Deacylation of purified lipopolysaccharides (LPS) markedly reduces its toxicity toward mammals. However, the biological significance of LPS deacylation during infection of the mammalian host is uncertain, particularly because the ability of acyloxyacyl hydrolase, the leukocyte enzyme that deacylates purified LPS, to attack LPS residing in the bacterial cell envelope has not been established. We recently showed that the cellular and extracellular components of a rabbit sterile inflammatory exudate are capable of extensive and selective removal of secondary acyl chains from purified LPS. We now report that LPS as a constituent of the bacterial envelope is also subject to deacylation in the same inflammatory setting. Using Escherichia coli LCD25, a strain that exclusively incorporates radiolabeled acetate into fatty acids, we quantitated LPS deacylation as the loss of radiolabeled secondary (laurate and myristate) and primary fatty acids (3-hydroxymyristate) from the LPS backbone. Isolated mononuclear cells and neutrophils removed 50% and 20-30%, respectively, of the secondary acyl chains of the LPS of ingested whole bacteria. When bacteria were killed extracellularly during incubation with ascitic fluid, no LPS deacylation occurred. In this setting, the addition of neutrophils had no effect, but addition of mononuclear cells resulted in removal of >40% of the secondary acyl chains by 20 h. Deacylation of LPS was always restricted to the secondary acyl chains. Thus, in an inflammatory exudate, primarily in mononuclear phagocytes, the LPS in whole bacteria undergoes substantial and selective acyloxyacyl hydrolase-like deacylation, both after phagocytosis of intact bacteria and after uptake of LPS shed from extracellularly killed bacteria. This study demonstrates for the first time that the destruction of Gram-negative bacteria by a mammalian host is not restricted to degradation of phospholipids, protein, and RNA, but also includes extensive deacylation of the envelope LPS.  相似文献   

8.
The structure of lipid A from Azospirillum lipoferum, a plant-growth-promoting rhizobacterium, was investigated. It was determined by chemical analysis, mass spectrometric methods, as well as 1D and 2D NMR spectroscopy. Because of the presence of substituents, the investigated lipid A differs from typical enterobacterial lipid A molecules. Its backbone is composed of a beta-(1,6)-linked D-glucosamine disaccharide but lacks phosphate residues. Moreover, the reducing end of the backbone (position C-1) is substituted with alpha-linked d-galacturonic acid. 3-hydroxypalmitoyl residues are exclusively connected to amino groups of the glucosamine disaccharide. Hydroxyls at positions C-3 and C-3' are esterified with 3-hydroxymyristic acids. Primary polar fatty acids are partially substituted by nonpolar fatty acids (namely, 18:0, 18:1 or 16:0), forming acyloxyacyl moieties.  相似文献   

9.
In the present paper laser desorption mass spectrometry (LDMS) was applied to dephosphorylated free lipid A preparations obtained from lipopolysaccharides of Re mutants of Salmonella minnesota, Escherichia coli and Proteus mirabilis. The purpose of this study was to elucidate the location of (R)-3-hydroxytetradecanoic acid and 3-O-acylated (R)-3-hydroxytetradecanoic acid residues which are bound to amino and hydroxyl groups of the glucosamine disaccharide backbone of lipid A. Based on the previous finding from biochemical analyses that the amino group of the nonreducing glucosamine residue (GlcN II) of the backbone carries, in S. minnesota and E. coli, 3-dodecanoyloxytetradecanoic acid and, in P. mirabilis, 3-tetradecanoyloxytetradecanoic acid, a self-consistent interpretation of the LDMS was possible. It was found that: (a) in all three lipids A GlcN II is, besides the amide-linked 3-acyloxyacyl residue, substituted by ester-linked 3-tetradecanoyloxytetradecanoic acid; (b) the reducing glucosamine (GlcN I) is substituted by ester-linked 3-hydroxytetradecanoic acid; (c) the amino group of GlcN I carries a 3-hydroxytetradecanoic acid which is non-acylated in E. coli and which is partially acylated by hexadecanoic acid in S. minnesota and P. mirabilis. In lipids A which were obtained from the P. mirabilis Re mutant grown at low temperature (12 degrees C) LDMS analysis revealed that specifically the one fatty acid bound to the 3-hydroxyl group of amide-linked 3-hydroxytetra-decanoic acid at GlcN II is positionally replaced by delta 9-hexadecenoic acid (palmitoleic acid). It appears, therefore, that enterobacterial lipids A resemble each other in that the 3-hydroxyl groups of the two 3-hydroxytetradecanoic acid residues linked to GlcN II are fully acylated, while those of the two 3-hydroxytetradecanoic acid groups attached to GlcN I are free or only partially substituted.  相似文献   

10.
R Bhat  A Marx  C Galanos    R S Conrad 《Journal of bacteriology》1990,172(12):6631-6636
Lipid A derived from Pseudomonas aeruginosa PAO1 contains a biphosphorylated 1-6-linked glucosamine disaccharide backbone. The reducing glucosamine has an unsubstituted glycosidically linked phosphate at C-1. The nonreducing glucosamine has an ester-bound phosphate at C-4' which is nonstoichiometrically substituted with 4-amino-4-deoxyarabinose. Induction of 4-amino-4-deoxyarabinose was dependent on cultural conditions. No pyrophosphate groups were detected. Acyloxyacyl diesters are formed by esterification of the amide-bound 3-hydroxydodecanoic acid with dodecanoic acid and 2-hydroxydodecanoic acids in an approximate molar ratio of 2:1. Dodecanoic and 3-hydroxydecanoic acids are esterified to positions C-3 and C-3' in the sugar backbone. All hydroxyl groups of the glucosamine disaccharide except C-4 and C-6' are substituted. Lipopolysaccharide chemical analyses measured glucose, rhamnose, heptose, galactosamine, alanine, phosphate, and glucosamine. The proposed lipid A structure differs from previous models. There are significant differences in acyloxyacyl diesters, and the proposed model includes an aminopentose substituent.  相似文献   

11.
The structure of the lipid A component of lipopolysaccharides isolated from two wild-type strains (Fisher 2 and 7) and one rough mutant (PAC 605) of Pseudomonas aeruginosa was investigated using chemical analysis, methylation analysis, combined gas-liquid chromatography/mass spectrometry, laser-desorption mass spectrometry and NMR spectroscopy. The lipid A backbone was found to consist of a pyranosidic beta 1,6-linked D-glucosamine disaccharide [beta-D-GlcpN-(1----6)-D-GlcpN], phosphorylated in positions 4' and 1. Position 6' of the beta-D-GlcpN-(1----6)-D-GlcpN disaccharide was identified as the attachment site of the core oligosaccharide and the hydroxyl group at C-4 was not substituted. Lipid A of the three P. aeruginosa strains expressed heterogeneity with regard to the degree of acylation: a hexaacyl as well as a pentaacyl component were structurally characterized. The hexaacyl lipid A contains two amide-bound 3-O-acylated (R)-3-hydroxydodecanoic acid groups [12:0(3-OH)] at positions 2 and 2' of the GlcN dissacharide and two ester-bound (R)-3-hydroxydecanoic acid groups [10:0(3-OH)] at positions 3 and 3'. The pentaacyl species, which represents the major lipid A component, lacks one 10:0(3-OH) residue, the hydroxyl group in position 3 of the reducing GlcN residue being free. In both hexa- and pentaacyl lipid A the 3-hydroxyl group of the two amide-linked 12:0(3-OH) residues are acylated by either dodecanoic (12:0) or (S)-2-hydroxydodecanoic acid [12:0(2-OH)], the lipid A species with two 12:0(2-OH) residues, however, being absent. The presence of only five acyl residues in the major lipid A fraction may account for the low endotoxic activity observed with P. aeruginosa lipopolysaccharide.  相似文献   

12.
Lipid A anchors the lipopolysaccharide (LPS) to the outer membrane and is usually composed of a hexa‐acylated diglucosamine backbone. Burkholderia cenocepacia, an opportunistic pathogen, produces a mixture of tetra‐ and penta‐acylated lipid A. “Late” acyltransferases add secondary acyl chains to lipid A after the incorporation of four primary acyl chains to the diglucosamine backbone. Here, we report that B. cenocepacia has only one late acyltransferase, LpxL (BCAL0508), which adds a myristoyl chain to the 2′ position of lipid A resulting in penta‐acylated lipid A. We also identified PagL (BCAL0788), which acts as an outer membrane lipase by removing the primary β ‐hydroxymyristate (3‐OH‐C14:0) chain at the 3 position, leading to tetra‐acylated lipid A. Unlike PagL, LpxL depletion caused reduced cell growth and defects in cell morphology, both of which were suppressed by overexpressing the LPS flippase MsbA (BCAL2408), suggesting that lipid A molecules lacking the fifth acyl chain contributed by LpxL are not good substrates for the flippase. We also show that intracellular B. cenocepacia within macrophages produced more penta‐acylated lipid A, suggesting lipid A penta‐acylation in B. cenocepacia is required not only for bacterial growth and morphology but also for adaptation to intracellular lifestyle.  相似文献   

13.
Certain phosphatidylglycerol-deficient mutants of Escherichia coli accumulate two fatty acylated monosaccharides related to lipid A biosynthesis that have been identified as 2,3-diacylglucosamine 1-phosphate (lipid X) and triacylglucosamine 1-phosphate (lipid Y) (Raetz, C. R. H. (1984) Rev. Infect. Dis. 6, 463-472). Lipid Y has the same structure as lipid X, except that it bears an additional palmitoyl moiety, esterified to the 3-OH of the N-linked R-3-hydroxymyristoyl residue. We now describe a membrane-associated system for the enzymatic conversion of lipid X to lipid Y. Removal of glycerophospholipids form such membranes by washing with cold ethanol abolishes the activity. The system can be reactivated by the addition of exogenous phospholipids dispersed as mixed micelles with Triton X-100. When reconstituted in this manner, the formation of lipid Y is strictly dependent upon a glycerophospholipid donor bearing a palmitoyl residue in the sn-1 position. The enzyme system does not utilize palmitoyl coenzyme A or palmitoyl acyl carrier protein. It does not catalyze efficient transfer of fatty acids differing from palmitate by only one carbon atom. In contrast, the enzyme has relatively little specificity for the polar headgroup of the phospholipid donor, and it also appears to utilize a disaccharide precursor of lipid A as an alternative palmitoyl acceptor. Since the in vitro synthesis of lipid Y proceeds with a high yield, we have isolated the product and verified its structure by 1H NMR spectroscopy and mass spectrometry. The transesterification reaction that converts lipid X to lipid Y may be a model for the enzymatic synthesis of other acyloxyacyl structures, known to occur in mature lipid A.  相似文献   

14.
Rutin and esculin were enzymatically acylated with different aliphatic acids as acyl donors (fatty acids, dicarboxylic acids and ω-substituted fatty acids) by an immobilized lipase from Candida antarctica. The effect of the water content and the acyl donors pattern on the flavonoid initial acylation rate and conversion yield were investigated. The obtained results indicated that the water content of the medium has a strong effect on the performance of these reactions. The best conversion yields were reached when the water content was kept lower than 200 ppm. At low water content of the medium, these syntheses are influenced by carbon chain length and substitution pattern of the acyl donors. Higher conversion yields of esculin and rutin (>70%) were obtained with aliphatic acids having high carbon chain length (>12). Moreover, it has been found that the amine and thiol groups on ω-substituted fatty acid chain were unfavourable to these reactions. The 1H NMR and 13C NMR analyses of some synthesized esters (esculin and rutin palmitate) show that only monoesters were produced and that the esterification takes place on the primary OH of glucose moiety of the esculin and on the secondary 4′′′-OH of the rhamnose residue of rutin.  相似文献   

15.
Structural heterogeneity regarding local Shwartzman activity of lipid A   总被引:2,自引:0,他引:2  
The relation of chemical structure to local Shwartzman activity of lipid A preparations purified by thin-layer chromatography from five bacterial strains was examined. Two lipid A fractions from E. coli F515--Ec-A2 and Ec-A3--exhibited strong activity, similar to that of previous synthetic E. coli-type lipid A (compound 506 or LA-15-PP). The Ec-A3 fraction contained a component that appeared to be structurally identical to compound 506, and the main component of Ec-A2 fraction was structurally similar to compound 506 except that it carried a 3-hydroxytetradecanoyl group at the C-3' position of the backbone in place of a 3-tetradecanoyloxytetradecanoyl group. Free lipid A (12 C) and purified lipid A fractions, Ec-A2 (12 C) and Ec-A3 (12 C), respectively, obtained from bacteria grown at 12 C, exhibited activity comparable to Ec-A2 or Ec-A3. In these preparations, a large part of the 3-dodecanoyloxytetradecanoyl group might be replaced by 3-hexadecenoyloxytetradecanoyl group. Salmonella minnesota R595 free lipid A also contained at least two active lipid A components as seen in E. coli lipid A, but the third component corresponding to the synthetic Salmonella-type lipid A (compound 516 or LA-16-PP) exhibited low activity. A lipid A fraction, Cv-A4 from Chromobacterium violaceum IFO 12614, which was proposed to have two acyloxyacyl groups at the C-2 and C-2' positions with other acyl groups, exhibited weaker activity than the free lipid A or LPS. The purified lipid A fractions from Pseudomonas diminuta JCM 2788 and Pseudomonas vesicularis JCM 1477 contained an unusual backbone with 2,3-diamino-2,3-dideoxy-D-glucose disaccharide phosphomonoester, and these lipid A (Pd-A3 and Pv-A3) exhibited strong activity comparable to the E. coli lipid A. Thus, the present results show that the local Shwartzman reaction can be expressed by partly different lipid A structures in both hydrophilic backbone and fatty acyl residues; when they have the same backbone the potency varies markedly depending on the structure of the acyl residues.  相似文献   

16.
The chemical structure of lipid A from the lipopolysaccharide of the mushroom-associated bacterium Pseudomonas reactans, a pathogen of cultivated mushroom, was elucidated by compositional analysis and spectroscopic methods (MALDI-TOF and two-dimensional NMR). The sugar backbone was composed of the beta-(1'-->6)-linked d-glucosamine disaccharide 1-phosphate. The lipid A fraction showed remarkable heterogeneity with respect to the fatty acid and phosphate composition. The major species are hexacylated and pentacylated lipid A, bearing the (R)-3-hydroxydodecanoic acid [C12:0 (3OH)] in amide linkage and a (R)-3-hydroxydecanoic [C10:0 (3OH)] in ester linkage while the secondary fatty acids are present as C12:0 and/or C12:0 (2-OH). A nonstoichiometric phosphate substitution at position C-4' of the distal 2-deoxy-2-amino-glucose was detected. Interestingly, the pentacyl lipid A is lacking a primary fatty acid, namely the C10:0 (3-OH) at position C-3'. The potential biological meaning of this peculiar lipid A is also discussed.  相似文献   

17.
The molecular cloning and eukaryotic cell expression of the complementary DNA for human neutrophil acyloxyacyl hydrolase (AOAH) are described. AOAH is a leukocyte enzyme that selectively removes the secondary (acyloxyacyl-linked) fatty acyl chains from the lipid A region of bacterial lipopolysaccharides (endotoxins), thereby detoxifying the molecules. The two disulfide-linked subunits of the enzyme are encoded by a single mRNA. The amino acid sequence of the protein contains a lipase consensus sequence in the large subunit and a region in the small subunit that is similar to the saposins, cofactors for sphingolipid hydrolases. The recombinant enzyme, like native AOAH, hydrolyzes secondary acyl chains from more than one position on the lipopolysaccharide backbone. Acyloxyacyl hydrolase is a novel two-component lipase that, by deacylating lipopolysaccharides, may modulate host inflammatory responses to Gram-negative bacterial invasion.  相似文献   

18.
The lipid A component of lipopolysaccharides from Fusobacterium nucleatum Fev 1 consists of beta-1',6-linked D-glucosamine disaccharides, which carry two phosphate groups: one in glycosidic and one in ester linkage. The amino groups of the glucosamine disaccharides are substituted by D-3-hydroxyhexadecanoic acid. The hydroxyl groups of the disaccharide backbone are acylated by tetradecanoic, hexadecanoic, and D-3-hydroxytetradecanoic acids. Part of the ester-bound D-3-hydroxytetradecanoic acid is 3-O-substituted by tetradecanoic acid. Whereas a similar pattern of fatty acids was detected in lipopolysaccharides from two other F. nucleatum strains, the amide-bound fatty acid in F. varium and F. mortiferum was D-3-hydroxytetradecanoic acid. The chemical relationships of lipid A from Fusobacteria and other gram-negative bacteria are discussed.  相似文献   

19.
The structure of the lipid-A from Rhizobium species Sin-1, a nitrogen-fixing Gram-negative bacterial symbiont of Sesbania, was determined by composition, nuclear magnetic resonance spectroscopic, and mass spectrometric analyses. The lipid-A preparation consisted of a mixture of structures due to differences in fatty acylation and in the glycosyl backbone. There were two different disaccharide backbones. One disaccharide consisted of a distal glucosaminosyl residue beta-linked to position 6 of a proximal 2-aminoglucono-1,5-lactonosyl residue, and in the second disaccharide, the proximal residue was 2-amino-2,3-dideoxy-d-erythro-hex-2-enono-1,5-lactone. For both disaccharides, the distal glucosamine was acylated at C-2' primarily with beta-hydroxypalmitate (beta-OHC16:0) which, in turn, was O-acylated with 27-hydroxyoctacosanoic acid. For some of the lipid-A molecules, the distal glucosaminosyl residue was also acylated at C-3' with beta-hydroxymyristate (beta-OHC14:0), whereas other molecules were devoid of this acyl substituent. Both the 2-aminoglucono-1,5-lactonosyl and 2-amino-2,3-dideoxy-d-erythro-hex-2-enono-1,5-lactonosyl residues were acylated at C-2, primarily with beta-OHC16:0. Minor amounts of lipid-A molecules contained beta-OHC14:0 at C-3 and/or beta-hydroxystearate (beta-OHC18:0) or beta-hydroxyoctadecenoate (beta-OHC18:1) as the C-2 and C-2' N-acyl substituents.  相似文献   

20.
Burkholderia cepacia, a Gram-negative bacterium ubiquitous in the environment, is a plant pathogen causing soft rot of onions. This microorganism has recently emerged as a life-threatening multiresistant pathogen in cystic fibrosis patients. An important virulence factor of B. cepacia is the lipopolysaccharide (LPS) fraction. Clinical isolates and environmental strains possess LPS of high inflammatory nature, which induces a high level production of cytokines. For the first time, the complete structure of the lipid A components isolated from the lipopolysaccharide fraction of a clinical strain of B. cepacia is described. The structural studies carried out by selective chemical degradations, MS, and NMR spectroscopy revealed multiple species differing in the acylation and in the phosphorylation patterns. The highest mass species was identified as a penta-acylated tetrasaccharide backbone containing two phosphoryl-arabinosamine residues in addition to the archetypal glucosamine disaccharide [Arap4N-l-beta-1-P-4-beta-D-GlcpN-(1-6)-alpha-D-GlcpN-1-P-1-beta-L-Arap4N]. Lipid A fatty acids substitution was also deduced, with two 3-hydroxytetradecanoic acids 14:0 (3-OH) in ester linkage, and two 3-hydroxyhexadecanoic acids 16:0 (3-OH) in amide linkage, one of which was substituted by a secondary 14:0 residue at its C-3. Other lipid A species present in the mixture and exhibiting lower molecular weight lacked one or both beta-L-Arap4N residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号