首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel and highly sensitive method has been developed for the determination of catecholamines [noradrenaline (NA), dopamine (DA), serotonin (5-HT) and their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA)] in brain tissue. The method uses isocratic reversed-phase HPLC with amperometric end-point detection. The calibration curve was linear over the range 10–150 pg on-column. The assay limits of detection for NA, DA, 5-HT, 5-HIAA and HVA were 3.8, 3.8, 6.8, 5 and 7.5 pg on-column, respectively. The mean inter- and intra-assay relative standard deviations (RSDs) over the range of the standard curve were less than 5%. The absolute recoveries averaged 99.1%, 99.5%, 97.7%, 99.5% and 98.8% for NA, DA, 5-HT, 5-HIAA and HVA, respectively.  相似文献   

2.
目的:叶酸是一种水溶性B 族维生素,在体内氨基酸与核苷酸代谢中起重要作用, 是胎儿生长发育所必须的营养素。本文通 过建立叶酸缺乏的孕鼠模型,探讨叶酸缺乏对胎鼠宫内发育的影响,并研究胎鼠肝脏组织中胰岛素生长因子(IGF)系统的表达变 化。方法:雌性C57BL/6J 小鼠叶酸缺乏组6 只、正常对照组6 只,分别饲以不含叶酸和含2 mg 叶酸/kg 的纯合饲料。四周后与雄 鼠交配,于怀孕第13.5 天(13.5 dpc)对孕鼠剖腹取胎,观察和评价胎鼠发育指标,并对宫内发育迟缓(IUGR)比率进行统计。用 Real-time PCR 法检测胎鼠肝脏组织中胰岛素生长因子Ⅰ(IGFⅠ)、胰岛素生长因子Ⅰ受体(IGFⅠ R)、胰岛素生长因子Ⅱ(IGF Ⅱ)、胰岛素生长因子Ⅱ受体(IGFⅡR)、胰岛素生长因子结合蛋白1(IGFBP-1)和胰岛素生长因子结合蛋白3(IGFBP-3)mRNA的 相对表达水平。结果:叶酸缺乏组雌鼠合笼前每日体重增长量降低,13.5 dpc胎鼠吸收胎和死胎比率升高,胎重下降,IUGR 比率显 著升高,差异有统计学意义(P<0.05);叶酸缺乏组胎鼠肝脏组织中IGFⅡ和IGFⅡR mRNA 的相对表达水平均低于正常对照组 (P<0.05),IGFⅠ、IGFⅠR、IGFBP-1 和IGFBP-3 mRNA的相对表达水平两组间没有差异(P>0.05)。结论:叶酸缺乏会导致小鼠孕 中期胎鼠IUGR 比率升高及胎肝IGFⅡ和IGFⅡR mRNA 的表达水平降低,提示叶酸缺乏对IGF系统基因的调控,可能与胎鼠IUGR 发生机制有关。  相似文献   

3.
目的:叶酸是一种水溶性B族维生素,在体内氨基酸与核苷酸代谢中起重要作用,是胎儿生长发育所必须的营养素。本文通过建立叶酸缺乏的孕鼠模型,探讨叶酸缺乏对胎鼠宫内发育的影响,并研究胎鼠肝脏组织中胰岛素生长因子(IGF)系统的表达变化。方法:雌性C57BL/6J小鼠叶酸缺乏组6只、正常对照组6只,分别饲以不舍叶酸和含2mg叶酸/kg的纯合饲料。四周后与雄鼠交配,于怀孕第13.5天(13.5dpc)对孕鼠剖腹取胎,观察和评价胎鼠发育指标,并对宫内发育迟缓(IUGR)比率进行统计。用Real-timePCR法检测胎鼠肝脏组织中胰岛素生长因子I(IGFI)、胰岛素生长因子I受体(IGFIR)、胰岛素生长因子II(IGFII)、胰岛素生长因子II受体(IGFIIR)、胰岛素生长因子结合蛋白1(IGFBP-1)和胰岛素生长因子结合蛋白3(IGFBP-3)mRNA的相对表达水平。结果:叶酸缺乏组雌鼠合笼前每日体重增长量降低,13.5dpc胎鼠吸收胎和死胎比率升高,胎重下降,IUGR比率显著升高,差异有统计学意义(P〈0.05);叶酸缺乏组胎鼠肝脏组织中IGFII和IGFIIRmRNA的相对表达水平均低于正常对照组(P〈0.05),IGFI、IGFIR、IGFBP-1和IGFBP-3mRNA的相对表达水平两组间没有差异(P〉0.05)。结论:叶酸缺乏会导致小鼠孕中期胎鼠IUGR比率升高及胎肝IGFII和IGFIIRmRNA的表达水平降低,提示叶酸缺乏对IGF系统基因的调控,可能与胎鼠I-UGR发生机制有关。  相似文献   

4.
An isocratic liquid chromatographic method with electrochemical detection for the determination of

-3,4-dihydroxyphenylalanine, dopamine, norepinephrine, epinephrine, serotonin, and their major metabolites, 3,4-dihydroxyphenylacetic acid, 4-hydroxy-3-methoxyphenylacetic acid and 5-hydroxyindole-3-acetic acid in chicken brain tissue is described. Chickens were killed at different ages, the brains were quickly frozen and 300-μm cryostat sections were made. From these sections, two to six tissue micropunches (1 mm in diameter) were punched out from 20 different areas of the hypothalamus and homogenated in 100 μl 0.1 M perchloric acid which included 0.01% cysteine as antioxidant. Fifty-μl supernatants were injected directly onto the LC system, separated on a 3-μm Phase II ODS column (100×3.2 mm I.D.) and detected by an electrochemical detector at a potential of +0.75 V. Standard curves, recoveries, analytical precision and detection limits were investigated for each monoamine neurotransmitter and its metabolites. The method was applied to study the influence of food restriction on the concentration of monoamine neurotransmitters in different brain areas, known to be involved in feeding and reproductive behaviour of female broiler chickens. Over 1000 micropunched tissue samples from ad libitum fed and food-restricted female broiler chickens were analyzed. Our results provide a possible role for catecholamines and indolamines in the altered feeding and reproductive behaviour of the broiler chicken.  相似文献   

5.
Summary Dominance hierarchy was determined in 5 groups of juvenile Arctic charr (Salvelinus alpinus), each group consisting of 4 fish. Telencephalon and brain stem (remaining parts of the brain) were analyzed with regard to their content of monoamines and monoamine metabolites. No significant differences were observed in the concentrations of norepinephrine (NE), dopamine (DA), or serotonin (5-hydroxytryptamine, 5-HT) between fish with different social rank. However, the concentration of 5-hydroxyindoleacetic acid (5-HIAA), the principle metabolite of 5-HT, was significantly higher in subordinate fish, and a significant inverse linear correlation was found between 5-HIAA concentration and social rank (as measured by dominance index) in the brain stem. In the telencephalon the dominant fish had a significantly higher level of homovanillic acid (HVA), a major DA metabolite. These findings indicate a greater serotonergic activity, possibly associated with increased stress, as well as a lower dopaminergic activity, possibly associated with reduced aggression, in subordinate charr. The differences between dominant and subordinate fish could either be caused by social interactions or reflect innate individual differences in monoamine utilization, predisposing individuals for dominant or subordinate positions in the dominance hierarchy.Abbreviations DA dopamine - DI dominance index - NE norepinephrine - 5-HT serotonin (5-hydroxytryptamine) - 5-HIAA 5-hydroxyindoleacetic acid - 5-HTOH 5-hydroxytryptophol - HVA homovanillic acid  相似文献   

6.
Summary Fluorescent histochemistry was carried out on the brain of the teleost Myoxocephalus scorpius to show the distribution of monoaminergic neurones and their projections.Posterior to the obex of the fourth ventricle, at the junction of the spinal chord and medulla, there is an unpaired dorsal nucleus of catecholaminergic cells. A second group of catecholaminergic perikarya are scattered lateral to the vagal and glossopharyngeal motor nuclei. Both groups of aminergic cells contribute to a tract which crosses the fourth ventricle at the obex and runs along the lateral wall of the medulla towards the diencephalon.At the level of the isthmus there is a lateral nucleus composed of large catecholaminergic cells with prominent fluorescent axons and its possible homology with the locus coeruleus is considered. Medially, in the same region a nucleus of serotonergic neurones lies between the paired tracts of the fasciculus longitudinalis medialis.In the diencephalon there are three paraventricular nuclei, the nuclei recessus posterioris and lateralis and the paraventricular organ pars anterior. Ventral to the lateral recess there is a further nucleus less closely associated with the ependyma.The distribution of fluorescent fibres is described and the dispositions of the aminergic nuclei compared to those of other teleosts.  相似文献   

7.
ObjectiveThe objective of this study is to explore the protective effect of erythropoietin (EPO) on brain injury induced by intrauterine infection in premature infants and its related mechanism, so as to provide reference for clinical medication.MethodsIntrauterine infection model is established by injecting lipopolysaccharide into pregnant mice, and HE staining of mouse placenta is used to judge whether the model of intrauterine infection is successful or not. Fifteen female rats are successfully pregnant and divided into intrauterine infection group (10 rats) and control group (5 rats). The mice in the intrauterine infection group are intraperitoneally injected with lipopolysaccharide (LPS) at a dose of 0.3 mg/kg. After delivery, 16 newborn mice in the control group are randomly selected as blank control group. 32 newborn mice in the intrauterine infection group are selected as model group, and then divided into infection group and EPO treatment group, 16 mice in each group. After birth, mice in the blank control group are intraperitoneally injected with 0.2 mL saline daily. The infected mice are intraperitoneally injected with 0.2 mL saline daily. The mice in the EPO treatment group are intraperitoneally injected with recombinant human erythropoietin (rhEPO) 5000 IU/kg daily. HE staining results, EPOR protein and NMDAR1 mRNA expression in brain tissue of three groups of neonatal mice were compared.ResultsFirstly, the blood vessels of the mice in the intrauterine infection group are markedly hyperemic and edematous, and the infiltration of neutrophils is increased. The white matter structure of the neonatal mice in the intrauterine infection group is loose and stained lightly. The nerve fibers in the brain are different in thickness and disordered in arrangement. The nucleus is small and dark stained. The number of glial cells in brain tissue increases significantly. Secondly, the EPOR protein expression and physiological level of neonatal mice in intrauterine infection group increase significantly at 3, 7 and 14 days after birth. Compared with the blank control group, the difference is statistically significant (P < 0.05). On the 3rd day after birth, the expression level of EPOR protein in the EPO treated group is significantly higher than that in the intrauterine infection group (P < 0.05). Thirdly, the expression level of NMDA R1mRNA in brain tissue of neonatal mice at birth, on the 3rd and 7th day after EPO treatment is significantly lower than that of intrauterine infection group (P < 0.05).ConclusionEPO can promote the proliferation and differentiation of brain endogenous neural stem cells, and has a certain therapeutic effect on brain injury of premature mice caused by intrauterine infection.  相似文献   

8.
The relationship between the feeding paradigm (single diet versus food selection) and central idoleamines and catecholamines was studied. Temporal patterns of the brain parameters in response to presentation of a single diet of fixed composition (20% casein) or a choice between two isocaloric diets (0% and 60% casein) for 2 weeks under 8-h feeding cycles during the dark phase were measured in adult Sprague-Dawley rats. Groups of animals were then killed at the beginning and at 2-h intervals throughout the feeding period. The distribution and the temporal pattern of variation of the serotoninergic and the catecholaminergic parameters studied were significantly affected by the diet paradigms used. A different neurochemical equilibrium was observed before food intake and was characterized by a central serotoninergic predominance in subjects having a dietary selection experience but a central catecholaminergic predominance in animals adapted to a single diet. Hypothalamic and extrahypothalamic serotoninergic and catecholaminergic systems were found to intervene in an interdependent way, sometimes antagonistic according to the feeding paradigm and the related temporal changes in energy intake and macronutrient selection. These results suggest that central serotoninergic and catecholaminergic systems are influenced by the diet paradigm and display characteristic patterns of temporal variations during the feeding cycle. The feeding paradigm, per se, should then be considered as a potential synchronizer of central biological rhythms of monoamines, which in turn may affect food intake and appetite for macronutrients.  相似文献   

9.
The present study elucidated the effects of indoleamines (serotonin, melatonin, and tryptophan) on oxidative damage of brain mitochondria and synaptosomes induced either by 6-hydroxydopamine (6-OHDA) or by iron plus ascorbate and on viability loss in dopamine-treated PC12 cells. Serotonin (1-100 microM), melatonin (100 microM), and antioxidant enzymes attenuated the effects of 6-OHDA, iron plus ascorbate, or 1-methyl-4-phenylpyridinium on mitochondrial swelling and membrane potential formation. Serotonin and melatonin decreased the attenuation of synaptosomal Ca(2+) uptake induced by either 6-OHDA alone or iron plus ascorbate. Serotonin and melatonin inhibited the production of reactive oxygen species, formation of malondialdehyde and carbonyls, and thiol oxidation in mitochondria and synaptosomes and decreased degradation of 2-deoxy-D-ribose. Unlike serotonin, melatonin did not reduce the iron plus ascorbate-induced thiol oxidation. Tryptophan decreased thiol oxidation and 2-deoxy-D-ribose degradation but did not inhibit the production of reactive oxygen species and formation of oxidation products in the brain tissues. Serotonin and melatonin attenuated the dopamine-induced viability loss, including apoptosis, in PC12 cells. The results suggest that serotonin may attenuate the oxidative damage of mitochondria and synaptosomes and the dopamine-induced viability loss in PC12 cells by a decomposing action on reactive oxygen species and inhibition of thiol oxidation and shows the effect comparable to melatonin. Serotonin may show a prominent protective effect on the iron-mediated neuronal damage.  相似文献   

10.
11.
Summary Immunoreactive serotonin (ir-5HT) containing cells were localized in the brain and pituitary gland of the platyfish by use of immunoperoxidase procedures. In the brain, ir-neurons were found lining the wall of the third ventricle and in its lateral and posterior recesses. More caudally, ir-perikarya were found in the valvular portion of the cerebellum and in the raphe region. Ir-5HT was also localized within the pineal gland in fish that had been sacrificed before 1:00 p.m. Within the pituitary gland, ir-5HT was localized in periodic acid Schiff-positive cells of the pars intermedia of all fish while, in only a few animals, less intense immunoreactivity was also present in gonadotrops of the caudal pars distalis.  相似文献   

12.
Seed size and cotyledon morphology are two key juvenile traits that have evolved in response to changes in plant species life-history strategies and habitat associations. Correlations of these traits with each other and with other juvenile traits were examined for 70 species of trees and shrubs in Kibale National Park, Uganda. Although species with photosynthetic cotyledons were more abundant than in other tropical floras, both univariate and multivariate analyses supported trait associations expected from the literature. Trait values varied continuously across species, yet mean trait values differed significantly among habitat association types. Species with large seeds, large seedlings, thick storage cotyledons, slow germination, large-stature adults, and dispersal by large animals were common in forest and gap habitats. An opposite suite of traits was common in open habitats (grassland and edge). Analyses incorporating phylogeny (independent contrasts and omnibus tests) confirmed that these suites of traits showed correlated evolution. Cotyledon functional morphology yielded a strong phylogenetic signal, while seed mass was labile. Nevertheless, contingent change tests found that evolutionary change from photosynthetic to reserve cotyledons was more likely when disperser and perhaps seed size of ancestral species were already large, suggesting a strong interdependency among these traits.  相似文献   

13.
The content of anserine and carnosine in the lateral portion of the quadriceps femoris muscle of 50 healthy, human subjects has been studied. Anserine was undetectable in all muscle samples examined. Muscle carnosine values for the group conformed to a normal distribution with a mean (SD) value of 20.0 (4.7) mmol.kg-1 of dry muscle mass. The concentration of carnosine was significantly higher in the muscle of male subjects (21.3, 4.2 mmol.kg-1 dry mass) than in females of a similar age and training status (17.5, 4.8 mmol.kg-1 dry mass) (P less than 0.005). The test-retest reliability of measures was determined on a subgroup of 17 subjects. No significant difference in mean carnosine concentration was found between the two trials [21.5 (4.0) and 22.0 (5.2) mmol.kg-1 dry muscle mass; P greater than 0.05]. The importance of carnosine as a physicochemical buffer within human muscle was examined by calculating its buffering ability over the physiological pH range. From the range of carnosine concentrations observed (7.2-30.7 mmol.kg-1 dry muscle mass), it was estimated that the dipeptide could buffer between 2.4 and 10.1 mmol H+.kg-1 dry mass over the physiological pH range 7.1-6.5, contributing, on average, approximately 7% to the total muscle buffering. This suggests that in humans, in contrast to many other species, carnosine is of only limited importance in preventing the reduction in pH observed during high intensity exercise.  相似文献   

14.
Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups.  相似文献   

15.
An anthropometric survey of 750 preschoolers was conducted during 1979 in Belize to assess nutritional status in two districts, one coastal and the other inland. Mothers were interviewed concerning reproductive history, child's health and dietary history, and associated factors. Analysis included the recognition of low arm circumference, weight-for-age, stature-for-age, and weight-for-stature. Survey results indicate that about 25% of the children, birth to 5 years old, show evidence of stunting, while 2.5% show evidence of wasting. Comparisons of rates of malnutrition by ethnic group reveal that the Maya and Garifuna (Black Carib) children are significantly more commonly malnourished than others. Applying a discriminant function to groups of children designated as “poor” and “better-than-average” growth classes reveals several factors which may be contributory to the etiology of preschool malnutrition in Belize. The frequency of diarrhea and age at introduction to solid foods, are significantly related to growth retardation among preschoolers. Analysis of 24-hour-diet recalls corroborates the patterning of malnutrition among ethnic groups.  相似文献   

16.
The aim of the present work is to develop a non-destructive, non-invasive technique for the early diagnosis of an oncoming brain edema based on the variation of vibration characteristics of the head system (i.e. eigenfrequency spectrum and modal damping). Besides the theoretical model that supports the basic principle, the proposed technique has been verified experimentally in animal tests. The advantage of such an approach is that the relative information is available well in advance an increase of intracranial pressure is detected. The uncontrolled intracranial hypertension is associated with increased mortality or vegetative state in head trauma. Traumatic lesions located on temporal lobe render particularly impeding the transtendorial herniation. From the medical point of view, intracranial pressure (ICP) monitoring represents an effective way for early consideration of neurological decompensation in various neurosurgical conditions particularly in the head-injured setting. However, the use of ICP monitoring is not an effective way of brain edema detection, since ICP increase very often causes irreversible problems to the patient's brain. Therefore, the determination of an earlier, less invasive and more sensitive indicator of the oncoming intracranial hypertension and of the impeding neurological deterioration is of profound importance.

The present work aims at experimental verification of both eigenfrequency shifting and modal damping increase of the spectral response of the head system of rabbits, wherever a mass increase in the content of cranial shell appears. The conducted analysis concludes that the eigenfrequency spectrum and its modal damping characteristics are sufficiently sensitive parameters in order to characterize mass increase in the cranial shell.

Therefore the combination of both the above parameters could be used with confidence for the early diagnosis of brain edema.  相似文献   


17.
We investigated the effects of hydrocortisone acetate and dexamethasone administered to pregnant rats during the last gestational week on sexual differentiation of testosterone metabolism and biogenic monoamine contents and turnover in the discrete brain regions in 10-day-old offspring. In the preoptic area, sex-dependent differences in aromatase activity were attenuated by prenatal glucocorticoids. Prenatal dexamethasone but not hydrocortisone acetate caused the inversion of sexual dimorphism of 5alpha-reductase activity in the preoptic area. In the brain preoptic area of the male pups prenatally exposed to hydrocortisone acetate, a decrease in noradrenaline turnover was found. Dopamine turnover in the preoptic area and 5-hydroxytryptamine metabolism in the preoptic area and medial basal hypothalamus increased in females as a result of hydrocortisone acetate treatment. Our results indicate that excess glucocorticoids in prenatal life modifies the basic neurochemical and neurophysiological mechanisms of sexual brain differentiation and might contribute to behavioral and reproductive disorders in adulthood.  相似文献   

18.
Four weeks old (weanling) female rats were treated with the tricyclic antidepressant and histamine/serotonin receptor blocker mianserin for studying its faulty hormonal imprinting effect. Measurements were done four months later. Brain serotonin levels significantly decreased in four regions (hippocampus, hypothalamus, striatum and brainstem), without any change in the cortex. Sexual activity of the treated and control rats was similar. Cerebrospinal fluid nocistatin level was one magnitude higher in the treated rats, than in the controls. The density of uterine estrogen receptors was significantly reduced, while binding capacity of glucocorticoid receptors of liver and thymus remained at control level. The results call attention to the possibility of 1. a broad spectrum imprinting at the time of weaning by a receptor level acting non-hormone molecule 2. imprinting of the brain in a non-neonatal period of life and 3. a very durable (lifelong?) effect of the late imprinting with an antidepressant.  相似文献   

19.
Since substance P (SP) has been demonstrated to coexist with serotonin (5-HT) in the same population of neurons in the descending raphe system, we have studied the possibility of interactions between these neurotransmitters in other brain areas. Brain nuclei were punched from frozen 300-micron slices of rat brain and extracted with 0.1 M HCIO4 or 2 M acetic acid prior to assay, respectively, of 5-HT content by HPLC with electrochemical detection or SP content by specific radioimmunoassay. Ten days after injection of rats with the 5-HT neurotoxin P-chloroamphetamine (PCA, 10 mg/kg, B.W., i.p.) or 3 days after 5-HT synthesis blockade with p-chlorophenylalanine (PCPA, 300 mg/kg, B.W., i.p.), the 5-HT content of all brain nuclei studied was reduced by means of, respectively, 50% and 81%. In PCA-treated animals, the SP content of the periaqueductal grey matter was significantly increased; PCPA treatment caused, in addition, large increases in the SP content of five other brain nuclei. Blockade of 5-HT receptors by methysergide (15 mg/kg for 5 days) did not significantly change 5-HT levels or turnover, but resulted in 50-200% increases in the SP content of 10 of the 28 brain nuclei studied. Significant decreases in the SP content of numerous areas were seen following treatments (pargyline 30 mg/kg, alone or in combination with 5-hydroxytryptophan, 60 mg/kg) that simultaneously increased 5-HT levels. These results illustrate the modulation of distinct SP-containing systems of the rat brain by perturbation of central serotoninergic pathways and indicate a reciprocal relationship between the SP and 5-HT concentrations of numerous brain nuclei, in particular n. striae terminalis, n. raphe dorsalis, n. accumbens, n. septi, substantia grisea centralis, and n. raphes medianus.  相似文献   

20.
Compared to our closest living and extinct relatives, humans have a large, specialized, and complex brain embedded in a uniquely shaped braincase. Here, we quantitatively compare endocranial shape changes during ontogeny in humans and chimpanzees. Identifying shared and unique aspects in developmental patterns of these two species can help us to understand brain evolution in the hominin lineage.Using CT scans of 58 humans and 60 chimpanzees varying in age from birth to adulthood, we generated virtual endocasts to measure and analyze 29 three-dimensional endocranial landmarks and several hundred semilandmarks on curves and the endocranial surface; these data were then analyzed using geometric morphometric methods.The ontogenetic shape trajectories are nonlinear for both species, which indicates several developmental phases. Endocranial shape is already distinct at birth and there is no overlap between the two species throughout ontogeny. While some aspects of the pattern of endocranial shape change are shared between humans and chimpanzees, the shape trajectories differ substantially directly after birth until the eruption of the deciduous dentition: in humans but not in chimpanzees, the parietal and cerebellar regions expand relatively (contributing to neurocranial globularity) and the cranial base flexes within the first postnatal year when brain growth rates are high. We show that the shape changes associated with this early “globularization phase” are unique to humans and do not occur in chimpanzees before or after birth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号