首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Preparations enriched with plasmalemmal, outer mitochondrial, or Golgi complex membranes from rat liver were subfractionated by isopycnic centrifugation, without or after treatment with digitonin, to establish the subcellular distribution of a variety of enzymes. The typical plasmalemmal enzymes 5'-nucleotidase, alkaline phosphodiesterase I, and alkaline phosphatase were markedly shifted by digitonin toward higher densities in all three preparations. Three glycosyltransferases, highly purified in the Golgi fraction, were moderately shifted by digitonin in both this Golgi complex preparation and the microsomal fraction. The outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the outer mitochondrial membrane marker, monoamine oxidase, was not affected by digitonin in the out mitochondrial membrane preparation, in agreement wit its behavior in microsomes. With the exception of NADH cytochrome c reductase (which was concentrated in the outer mitochondrial membrane preparation), typical microsomal enzymes (glucose-6-phosphatase, esterase, and NADPH cytochrome c reductase) displayed low specific activities in the three preparations; except for part of the glucose-6-phosphatase activity in the plasma membrane preparation, their density distributions were insensitive to digitonin, as they were in microsomes. The influence of digitonin on equilibrium densities was correlated with its morphological effects. Digitonin induced pseudofenestrations in plasma membranes. In Golgi and outer mitochondrial membrane preparations, a few similarly altered membranes were detected in subfractions enriched with 5'-nucleotidase and alkaline phosphodiesterase I. The alterations of Golgi membranes were less obvious and seemingly restricted to some elements in the Golgi preparation. No morphological modification was detected in digitonin-treated outer mitochondrial membranes. These results indicate that each enzyme is associated with the same membrane entity in all membrane preparations and support the view that there is little overlap in the enzymatic equipment of the various types of cytomembranes.  相似文献   

2.
Study on the localization of proteases of mitochondrial origin   总被引:1,自引:0,他引:1  
A marked proteolytic activity against casein can be demonstrated in rat liver mitochondria. The proteases degrading casein appear distributed between a sedimentable fraction (Po) and a soluble extract (So). Part of the soluble fraction activity, which may be recovered in the mitochondrial intermembrane space, results from a contamination by lysosomal proteases and can be eliminated by previously washing the mitochondria with digitonin. The pre-exposure to digitonin causes an enhancement of the caseinolytic activity associated with the membrane fragments, proving that this activity is not due to lysosomal enzymes. When rats have been injected in vivo with the compound 48/80 which, by degranulating the mast cells prevents contamination of the mitochondrial preparations by mast cell proteases, the membrane fraction (Po) retains a caseinolytic activity of the order of 80 per cent of the control preparations. A similar value of activity is observed in the membranes of brain mitochondria, isolated by a method which removes the rare mast cells they may contain. This shows that the greater part of the caseinolytic activity associated with the rat liver membranes does not originate from mast cell granules. Liver mitochondria pre-exposed to digitonin to eliminate lysosomal contaminants, have been subfractionated into matrix, intermembrane space, inner and outer membrane. Each of the fractions exhibits a caseinolytic activity, but the largest part is localized in the inner compartments of mitochondria: the matrix and the inner membrane. The optimal pH and the sensitivity to inhibitors of the proteases in the different compartments indicate that we are dealing with distinct enzymes.  相似文献   

3.
Using highly enriched membrane preparations from lactate-grown Saccharomyces cerevisiae cells, the subcellular and submitochondrial location of eight enzymes involved in the biosynthesis of phospholipids was determined. Phosphatidylserine decarboxylase and phosphatidylglycerolphosphate synthase were localized exclusively in the inner mitochondrial membrane, while phosphatidylethanolamine methyltransferase activity was confined to microsomal fractions. The other five enzymes tested in this study were common both to the outer mitochondrial membrane and to microsomes. The transmembrane orientation of the mitochondrial enzymes was investigated by protease digestion of intact mitochondria and of outside-out sealed vesicles of the outer mitochondrial membrane. Glycerolphosphate acyltransferase, phosphatidylinositol synthase, and phosphatidylserine synthase were exposed at the cytosolic surface of the outer mitochondrial membrane. Cholinephosphotransferase was apparently located at the inner aspect or within the outer mitochondrial membrane. Phosphatidate cytidylyltransferase was localized in the endoplasmic reticulum, on the cytoplasmic side of the outer mitochondrial membrane, and in the inner mitochondrial membrane. Inner membrane activity of this enzyme constituted 80% of total mitochondrial activity; inactivation by trypsin digestion was observed only after preincubation of membranes with detergent (0.1% Triton X-100). Total activity of those enzymes that are common to mitochondria and the endoplasmic reticulum was about equally distributed between the two organelles. Data concerning susceptibility to various inhibitors, heat sensitivity, and the pH optima indicate that there is a close similarity of the mitochondrial and microsomal enzymes that catalyze the same reaction.  相似文献   

4.
The topography of glycerolipid biosynthetic enzymes within the transverse plane of rat liver microsomal vesicles was investigated: (1) by use of the impermeant inhibitor, mercury-dextran; (2) by use of proteases; and (3) by determining whether the enzyme activities are latent. The seven enzyme activities investigated (dihydroxyacetone-phosphate acyltransferase, acyldihydroxyacetone-phosphate oxidoreductase, phosphatidic acid : CTPcytidyltransferase, CDPdiacylglycerol : inositol phosphatidyltransferase, 2-monoacylglycerol acyltransferase, diacylglycerol kinase, and the serine base exchange enzyme) function in phosphatidylinositol and phosphatidylserine synthesis and at intermediate levels in glycerolipid synthesis including steps of ether lipid synthesis. Mercury-dextran inhibited four of these enzymes greater than 60% in intact microsomal vesicles. One or more of the proteases employed (chymotrypsin, trypsin and pronase) inactivated each of the seven enzyme activities in intact microsomal vesicles. These two approaches indicate that each of these enzymes has important domains located on the cytoplasmic surface of microsomal vesicles. These enzyme activities could be assayed in intact microsomal vesicles. None appeared to be highly latent, indicating that substrates have free access to active sites. One substrate for each of these enzymes had been shown previously to be unable to cross the microsomal membrane. These data indicate that the active sites of these enzymes are located on the cytoplasmic surface of microsomal vesicles. It is concluded that the synthesis of phosphatidylserine and phosphatidylinositol, intermediates of ether lipid formation and other intermediates of glycerolipid synthesis occur asymmetrically on the cytoplasmic surface of the endoplasmic reticulum. These findings and our previous investigations on the topography of seven enzymes of triacylglycerol, phosphatidylcholine and phosphatidylethanolamine biosynthesis (Ballas, L.M. and Bell, R.M., Biochim. Biophys. Acta 602, (1980) 578-590) indicate that the synthesis of the major cellular glycerolipids occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum.  相似文献   

5.
1. The effects of repetitive treatment of rat liver mitochondria with digitonin were examined. The first treatment results in the removal of the outer membrane. Almost all the NADH-cytochrome c reductase (rotenone-insensitive) is lost whereas the major portions of the soluble and bound enzymes are retained. One exception appears to be the cytochromes, which undergo somewhat larger losses. The resulting inner-membrane complex carries out oxidative phosphorylation and P(i)-ATP exchange. 2. The properties of the inner-membrane complex are affected by the osmoticity of the medium. When it is suspended in water little protein is lost but there is a marked loss of phosphorylation. If after the suspension in water the particulate fraction is reisolated by centrifugation and treated with digitonin, or if the aqueous suspension is treated directly with digitonin and the particulate fraction then reisolated, the phosphorylation is largely restored. 3. Additional treatment of the inner mitochondrial complex with digitonin results in the formation of a particulate fraction that contains approx. 8% of the initial mitochondrial protein, no outer membrane, no soluble mitochondrial enzymes and is still capable of coupled oxidative phosphorylation and P(i)-ATP exchange. These effects cannot be reproduced by treatment with water. 4. The rat liver mitochondria and all of the resulting preparations obtained after digitonin treatment may be stored for long periods in dimethyl sulphoxide with little change of activity.  相似文献   

6.
Separation of Neurospora mitochondrial outer membranes from the inner membrane/matrix fraction was effected by digitonin treatment and discontinuous density gradient centrifugation. The solubilization of four isoleucine-valine biosynthetic enzymes was studied as a function of digitonin concentration and time of incubation in the detergent. The kinetics of the appearance of valine biosynthetic function in fractions outside of the inner membrane/matrix fraction, coupled with enzyme solubilization patterns similar to that for the matrix marker, mitochondrial malate dehydrogenase, indicate that the four isoleucine-valine pathway enzymes are localized in the mitochondrial matrix.  相似文献   

7.
CDP-diacylglycerol for polyglycerophosphatide biogenesis can be synthesized within rat liver mitochondria. This membrane-associated enzyme was predominantly located in the inner mitochondrial membrane. GTP had a significant effect in activating the microsomal CDP-diacylglycerol synthase, especially if the microsomes were preincubated with GTP in the presence of phosphatidic acid. This stimulatory effect of GTP on the microsomal enzyme was not detected in the mitochondrial fractions. The enzymes could be solubilized from the membrane fractions using CHAPS, and the detergent-soluble activity partially restored by addition of phospholipids. Mitochondrial and microsomal CDP-diacylglycerol synthase activity could be completely separated by anion-exchange column chromatography. The mitochondrial and microsomal CDP-diacylglycerol synthases appear to be two distinct enzymes with different localization and regulatory characteristics.  相似文献   

8.
We have investigated the subcellular localization of the peripheral-type benzodiazepine receptor in rat adrenal gland using the high affinity ligand 3H-labeled 1-(2-chlorophenyl)-N-methyl-(1-methylpropyl)-3-isoquinoline carboxamide ([3H]PK11195). The autoradiographic pattern of [3H]PK11195 binding sites in tissue sections of adrenal gland is similar to the histochemical distribution of the mitochondrial marker enzymes, cytochrome oxidase and monoamine oxidase, which are present in high concentrations only in the cortex. Subcellular fractionation studies of homogenates of adrenal gland indicate that the recovery and enrichment of [3H]PK11195 binding sites in the nuclear, mitochondrial, microsomal, and soluble fractions correlate closely with cytochrome oxidase activity, but not with markers for the nuclei, lysosomes, peroxysomes, endoplasmic reticulum, plasma membrane, or cytoplasm, indicating an association of the peripheral-type benzodiazepine receptor with the mitochondrial compartment. Titration of isolated mitochondria with digitonin results in the simultaneous release of the peripheral-type benzodiazepine receptor and of monoamine oxidase, but not cytochrome oxidase, indicating association of the peripheral-type benzodiazepine receptor with the mitochondrial outer membrane. Scatchard analysis and drug displacement studies of the binding of [3H] PK11195 to intact mitochondria and to the outer membrane-enriched digitonin extract further confirm the localization of the peripheral-type benzodiazepine receptor to the mitochondrial outer membrane.  相似文献   

9.
Incubation of guinea pig lung mitochondrial suspension in an isotonic low ionic strength buffer containing various proteolytic enzymes caused significant stimulation of the glycerophosphate acyltransferase activity. The maximal stimulation range between 20 and 105%, and the order was as follows: bromelain greater than chymotrypsin greater than pronase greater than trypsin greater than papain greater than nagarse. Under hypotonic conditions, over 85% of GAT was destroyed by all the proteolytic enzymes. Microsomal enzyme activity was consistently inhibited (greater than 95%) by exposure to any of these proteases even under isotonic conditions. These results suggest that GAT is located on the inner aspect of the mitochondrial outer membrane. Also, it is likely that a portion of this enzyme or that of a modulator is present in the outer side of the outer membrane and proteolysis of this component causes stimulation.  相似文献   

10.
Summary The conversion of cyclohexanecarboxyl-CoA to hippuric acid in submit ochondrial fractions from guinea pig liver was studied using a gas chromatographic-mass spectrometric method employing selected ion monitoring. Comparison of the activities of the cyclohexanecarboxyl-CoA to hippuric acid converting system (CCoAHC-system) and marker enzymes in the various submit ochondrial fractions showed that the CCoAHC-system is localized in the mitochondrial matrix. Partial separation of the inner and outer membranes has been accomplished by treating mitochondria with digitonin in isotonic medium and fractionating the treated mitochondria by differential centrifugation. A digitonin-protein ratio of 2.6 mg of digitonin/10 mg of protein must be used in order to release significant amounts of amine oxidase activity (outer membrane marker) from low speed mitochondrial pellets. This pellet still contained most of the glutamate dehydrogenase activity and was insignificantly contaminated with adenylate kinase. Moderate concentrations of phenazine methosulfate (PMS) greatly stimulated the activity of the CCoAHC-system, even in intact mitochondria (optimal concentration of PMS: 1 mM) whilst higher concentrations (> 1 mM) decreased the activity. The formation of hippuric acid in these mitochondrial preparations was linear with time for at least 40 min and linear with respect to protein concentration up to approximately 2.0 mg mitochondrial protein·m1.  相似文献   

11.
Glucose catabolism in brain. Intracellular localization of hexokinase   总被引:1,自引:0,他引:1  
A major energy source in brain is glucose, which is committed to metabolism by hexokinase (Type I isozyme), an enzyme usually considered to be bound to the outer mitochondrial membrane. In this study, the subcellular location of hexokinase in brain has been rigorously investigated. Mitochondrial fractions containing hexokinase (greater than 500 milliunits/mg protein) were prepared by two different procedures, and then subjected to density gradient centrifugation before and after loading with barium phosphate, a technique designed to increase the density of the mitochondria. The gradient distribution patterns of both unloaded and loaded preparations show that brain hexokinase does not distribute exclusively with mitochondrial marker enzymes. This is particularly evident in the loaded preparations where there is a clear distinction between the peak activities of hexokinase and mitochondrial markers. The same observation was made when the mitochondrial fraction of either untreated or barium phosphate-loaded mitochondria was subjected to titration with digitonin. In fact, at concentrations of digitonin, which almost completely solubilize marker enzymes for both the inner and outer mitochondrial membranes, a significant fraction of the total hexokinase remains particulate bound. Electron microscopy confirmed that particulate material is still present under these conditions. Significantly, hexokinase is released from particulate material only at high concentrations of digitonin which solubilize the associated microsomal marker NADPH-cytochrome c reductase. Glucose 6-phosphate, which is known to release hexokinase from the brain "mitochondrial fraction" also releases hexokinase from this unidentified particulate component. These results on brain, a normal glucose utilizing tissue, differ from those obtained previously on highly glycolytic tumor cells where identical subfractionation procedures revealed a strictly outer mitochondrial membrane location for particulate hexokinase (Parry, D. M., and Pedersen, P. L. (1983) J. Biol. Chem. 258, 10904-10912). It is concluded that in brain, hexokinase has a greater propensity to localize at nonmitochondrial receptor sites than to those known to be associated with the outer mitochondrial membrane.  相似文献   

12.
Rat liver microsomes incubated with [3H] puromycin in high salt buffer were digested with a mixture of protease, trypsin and chymotrypsin, in both the presence and absence of 1% deoxycholate. Our observations revealed that the proteolysis of peptidyl puromycin labeled with [3H] puromycin was at least partially protected by the presence of microsomal membrane. Immunochemical analyses have further shown that most of the nascent NADPH-cytochrome c reductase in the microsomes was digested with the proteases while serum albumin was effectively protected from the digestion. It is thus proposed that NADPH-cytochrome c reductase synthesized on the membrane bound ribosomes is not transported to the vesicular cavity but directly to the outer surface of the microsomal membrane in a form which is accessible to the proteases.  相似文献   

13.
The trypsin sensitivity of the mitochondrial N-acetylglucosaminyl and mannosyltransferase activities involved in the N-glycoprotein biosynthesis through dolichol intermediates as well as the N-acetylglucosaminyl-transferase activity involved in direct N-glycosylation were examined in mitochondria and isolated outer mitochondrial membrane preparations. The trypsin action on mitochondrial membrane was checked by measuring the activities of marker enzymes (rotenone-insensitive NADH cytochrome c reductase, adenylate kinase, and monoamine oxidase). Glycosyl-transferase activities of both N-glycosylation pathways were insensitive to trypsin action and consequently were located in the outer mitochondrial membrane. Based on the activator effect of the trypsin on these enzyme activities, the results suggested two distinct orientations of their active sites. As regards the N-glycoprotein biosynthesis pathway through dolichol intermediates, the dolicholphosphoryl-mannose and dolichol-pyrophosphoryl-di-N-acetylchitobiose synthases would be oriented outside while the oligomannosyl-synthase and the oligomannosyl-transferase would be rather oriented inside in the outer membrane. The N-acetylglucosaminyl-transferase involved in the direct transfer of N-acetylglucosamine from its nucleotide donor to a proteinic acceptor would be oriented outside in the outer membrane.  相似文献   

14.
Treatment of yeast mitochondria with digitonin was used in order to prepare an inner membrane-matrix fraction preserving its permeability properties. The incubation time of mitochondria with digitonin was an essential parameter for the selective solubilization of the outer membrane. The incubation of mitochondria for l min at different concentrations of digitonin led to a three-step release of mitochondrial enzymes: (a) at low concentrations of digitonin, adenylate kinase was released; (b) higher concentrations were required to solubilize kynurenine hydroxylase, an outer membrane marker; (c) inner membrane markers (succinate dehydrogenase and oligomycin-sensitive adenosine triphosphatase) and matrix markers (fumarase and isocitrate dehydrogenase) were significantly released at concentrations of digitonin higher than 0.4 mg/mg of protein. The electron microscopic aspects of yeast mitoplasts (inner membrane-matrix fraction obtained by treatment with 0.4 mg of digitonin) showed an orthodox and a twisted configuration. These new organelles retained respiratory control when assayed with ethanol as the substrate. Their selective permeability properties were preserved as shown by isoosmotic swelling in potassium or ammonium salt solutions.  相似文献   

15.
A microsomal Mg-ATPase from the gastric mucosa of dog, cat and frog has a Km for ATP in the region 20–25 μM and by the value of this coefficient can be differentiated from the mitochondrial Mg-ATPase. The microsomal Mg-ATPase from dog gastric mucosa can be stimulated by gramicidin, nigericin and valinomycin in a KCl medium. This Mg-ATPase seems to be located in the ion impermeable membrane of microsomal vesicles and ATP hydrolysis driven changes of the outer pH can be observed. The data are consistent with the ATP hydrolysis driven entry of H+ ions across the vesicle membrane.  相似文献   

16.
Enzyme distribution in potato mitochondria was investigatedby selectively disrupting the outer and inner membranes withdigitonin. Antimycin-insensitive NADH-cytochrome c reductase,an outer membrane marker, was released at low digitonin concentrations(0.1 mg mg–1 mitochondrial protein). Soluble matrix enzymes,fumarase and malate dehydrogenase were released at 0.3–0.4mg digitonin mg–1 protein, as the inner membrane ruptured.Very little (about 10%) cytochrome oxidase activity was released,even at higher digitonin concentrations, in accord with thisenzyme being an integral inner membrane protein. By this criterionadenylate kinase is also firmly bound to the inner membrane.Evidence indicates that it faces the intermembrane space. Malic enzyme activity was released by the same digitonin concentrationthat released fumarase and malate dehydrogenase, indicatingthat malic enzyme is a soluble matrix enzyme. No activity wasreleased at low digitonin concentrations which selectively breakthe outer membrane, showing that malic enzyme is not presentin the intermembrane space. Considerable catalase activity (20—40 µmol O2 min–1mg–1 protein) was associated with washed mitochondrialpreparations, but 95% of this was lost upon purification ofmitochondria. The remaining activity was firmly bound to themitochondrial membranes.  相似文献   

17.
In mammalian cells, increases in calcium concentration cause increases in oxidative phosphorylation. This effect is mediated by the activation of four mitochondrial dehydrogenases by calcium ions; FAD-glycerol 3-phosphate dehydrogenase, pyruvate dehydrogenase, NAD-isocitrate dehydrogenase and oxoglutarate dehydrogenase. FAD-glycerol 3-phosphate dehydrogenase, being located on the outer surface of the inner mitochondrial membrane, is exposed to fluctuations in cytoplasmic calcium concentration. The other three enzymes are located within the mitochondrial matrix.While the kinetic properties of all of these enzymes are well characterised, the molecular basis for their regulation by calcium is not. This review uses information derived from calcium binding studies, analysis of conserved calcium binding motifs and comparison of amino acid sequences from calcium sensitive and non-sensitive enzymes to discuss how the recent cloning of several subunits from the four dehydrogenases enhances our understanding of the ways in which these enzymes bind calcium. FAD-glycerol 3-phosphate dehydrogenase binds calcium ions through a domain which is part of the polypeptide chain of the enzyme. In contrast, it is possible that the calcium sensitivity of the other dehydrogenases may involve separate calcium binding subunits.  相似文献   

18.
The location of hexokinase at the surface of brain mitochondria was investigated by electron microscopy using immuno-gold labelling techniques. The enzyme was located where the two mitochondrial limiting membranes were opposed and contact sites were possible. Disruption of the outer membrane by digitonin did not remove bound hexokinase and creatine kinase from brain mitochondria, although the activity of outer membrane markers and adenylate kinase decreased, suggesting a preferential location of both enzymes in the contact sites. In agreement with that, a membrane fraction was isolated from osmotically lysed rat brain mitochondria in which hexokinase and creatine kinase were concentrated. The density of this kinase-rich fraction was specifically increased by immuno-gold labelling of hexokinase, allowing a further purification by density gradient centrifugation. The fraction was composed of inner and outer limiting membrane components as shown by the specific marker enzymes, succinate dehydrogenase and NADH-cytochrome-c-oxidase (rotenone insensitive). As reported earlier for the enriched contact site fraction of liver mitochondria the fraction from brain mitochondria contained a high activity of glutathione transferase and a low cholesterol concentration. Moreover, the contacts showed a higher Ca2+ binding capacity in comparison to outer and inner membrane fractions. This finding may have regulatory implications because glucose phosphorylation via hexokinase activated the active Ca2+ uptake system and inhibited the passive efflux, resulting in an increase of intramitochondrial Ca2+.  相似文献   

19.
The structural changes accompanying digitonin-induced release of enzymes and metabolites from isolated hepatocytes have been studied by scanning and transmission electron microscopy. In the initial phase, characterized by total release of the cytosolic marker enzyme, lactate dehydrogenase, the plasma membrane was immediately damaged, rapidly followed by extensive damage to the endoplasmic reticulum. The shape of the cell, however, was maintained, and the mitochondria and nucleus remained tightly held together by the cytoskeleton. Mitochondria remained intact initially, whereas the cytosol became less electron dense and the nuclear chromatin was more dispersed. An intermediate phase was characterized by total release of adenylate kinase and most of the glucose-6-phosphatase, marker enzymes for the mitochondrial intermembrane space and the endoplasmic reticulum, respectively. The outer mitochondrial membrane was ruptured, but mitochondria maintained their normal matrix electron density. In the final phase, characterized by the beginning of citrate synthase release from the mitochondrial matrix space, the mitochondria became swollen, and only the nucleus, inner and outer mitochondrial membranes, and the cytoskeleton could be clearly distinguished. Although the plasma membrane could not be readily discerned in electron micrographs after the initial phase, the plasma membrane marker enzyme 5′-nucleotidase remained associated with digitonin-treated hepatocytes. Acetyl-CoA carboxylase was released much more slowly than lactate dehydrogenase, indicating some severe restriction on its release. The release of acetyl-CoA carboxylase closely paralleled the release of glucose-6-phosphatase. The controlled exposure of hepatocytes to digitonin, therefore, leads to the sequential release of soluble, compartmentalized cellular components and some membrane-bound components, but the mitochondrial membrane, cytoskeleton and the nucleoskeleton survive even long-term digitonin treatment.  相似文献   

20.
Experiments were performed to localize the hepatic microsomal enzymes of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol biosynthesis to the cytoplasmic or lumenal surface of microsomal vesicles. Greater than 90 percent of the activities of fatty acid-CoA ligase (EC 6.2.1.3), sn-glycerol 3-phosphate acyltransferase (EC 2.3.1.15), lysophosphatidic acid acyltransferase, diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2), and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) was inactivated by proteolysis of intact microsomal vesicles. The phosphatidic acid phosphatase (EC 3.1.3.4) was not inactivated by any of the protease tested. Under conditions employed, <5 percent of the luminal mannose-6-phosphatase (EC 3.1.3.9) activity was lost. After microsomal integrity was disrupted with detergents, protease treatment resulted in a loss of >74 percent of the mannose-6-phosphatase activity. The latency of the mannose-6-phosphatase activity was not affected by protease treatment. Mannose-6-phosphatase latency was not decreased by the presence of the assay components of several of the lipid biosynthetic activities, indicating that those components did not disrupt the microsomal vesicles. None of the lipid biosynthetic activities appeared latent. The presence of a protease-sensitive component of these biosynthetic activities on the cytoplasmic surface of microsomal vesicles, and the absence of latency for any of these biosynthetic activities suggest that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum. The location of biosynthetic activities within the transverse plane of the endoplasmic reticulum is of particular interest for enzymes whose products may be either secreted or retained within the cell. Phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol account for the vast majority of hepatic glycerolipid biosynthesis. The phospholipids are utilized for hepatic membrane biogenesis and for the formation of lipoproteins, and the triacylglycerols are incorporated into lipoproteins or accumulate within the hepatocyte in certain disease states (14). The enzymes responsible for the biosynthesis of these glycerolipids (Scheme I) from fatty acids and glycerol-3P have all been localized to the microsomal subcellular fraction (12, 16, 29, 30). Microsomes are derived from the endoplasmic reticulum and are sealed vesicles which maintain proper sidedness. (11, 22). The external surface of these vesicles corresponds to the cytoplasmic surface of the endoplasmic reticulum. Macromolecules destined for secretion must pass into the lumen of the endoplasmic reticulum (5, 23). Uncharged molecules of up to approximately 600 daltons are able to enter the lumen of rat liver microsomes, but macromolecules and charged molecules of low molecular weight do not cross the vesicle membrane (10, 11). Because proteases neither cross the microsomal membrane nor destroy the permeability barrier of the microsomal vesicles, only the enzymes and proteins located on the cytoplasmic surface of microsomal vesicles are susceptible to proteolysis unless membrane integrity is disrupted (10, 11). By use of this approach, several enzymes and proteins have been localized in the transverse plane of microsomal membranes (11). With the possible exception of cytochrome P 450, all of the enzymes and proteins investigated were localized asymmetrically by the proteolysis technique (11). By studies of this type, as well as by product localization, glucose-6-phosphate (EC 3.1.3.9) has been localized to the luminal surface of microsomal vesicles (11) and of the endoplasmic reticulum (18, 19). All microsomal vesicles contain glucose-6-phosphatase (18, 19) which can effectively utilize mannose-6-P as a substrate, provided the permeability barrier of the vesicles has been disrupted to allow the substrate access to the active site located on the lumenal surface (4). An exact correspondence between mannose- 6-phosphate activity and membrane permeability to EDTA has been established (4). The latency of mannose-6-phosphatase activity provides a quantitative index of microsomal integrity (4.) Few of the microsomal enzymes in the synthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol have been solubilized and/or purified, and little is known about the topography of these enzymes in the transverse or lateral planes of the endoplasmic reticulum. An asymmetric location of these biosynthetic enzymes on the cytoplasmic or lumenal surface of microsomal vesicles may provide a mechanism for regulation of the glycerolipids to be retained or secreted by the cell, and for the biogenesis of asymmetric phospholipid bilayers. In this paper, we report investigations on the localization of all seven microsomal enzymes (Scheme I) in the biosynthesis of triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, using the protease technique with mannose-6-phosphatase serving as luminal control activity. The latency of these lipid biosynthetic enzymes was also investigated, using the latency of mannose-6-phosphatase as an index of microsomal integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号