首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determinethe mechanism of fatty acid modulation of rabbit pulmonary arterylarge-conductance Ca2+-activated K+(BKCa) channel activity, we studied effects of fatty acidsand other lipids on channel activity in excised patches withpatch-clamp techniques. The structural features of the fatty acidrequired to increase BKCa channel activity (or averagenumber of open channels, NPo) were identified tobe the negatively charged head group and a sufficiently long (C > 8) carbon chain. Positively charged lipids like sphingosine, which havea sufficiently long alkyl chain (C  8), produced a decrease inNPo. Neutral and short-chain lipids did notalter NPo. Screening of membrane surface chargewith high-ionic-strength bathing solutions (330 mM K+ or130 mM K+, 300 mM Na+) did not alter themodulation of the BKCa channel NPoby fatty acids and other charged lipids, indicating that channelmodulation is unlikely to be due to an alteration of the membraneelectric field or the attraction of local counterions to the channel.Fatty acids and other negatively charged lipids were able to modulate BKCa channel activity in bathing solutions containing 0 mMCa2+, 20 mM EGTA, suggesting that calcium is not requiredfor this modulation. Together, these results indicate that modulationof BKCa channels by fatty acids and other charged lipidsmost likely occurs by their direct interaction with the channel proteinitself or with some other channel-associated component.

  相似文献   

2.
Ethanol inhibition of large-conductance,Ca2+-activated K+ (BKCa) channelsin aortic myocytes may contribute to the direct contraction of aorticsmooth muscle produced by acute alcohol exposure. In this tissue,BKCa channels consist of pore-forming (bslo) and modulatory () subunits. Here, modulation of aortic myocyteBKCa channels by acute alcohol was explored by expressingbslo subunits in Xenopus oocytes, in the absenceand presence of 1-subunits, and studying channelresponses to clinically relevant concentrations of ethanol in excisedmembrane patches. Overall, average values of bslo channelactivity (NPo, with N = no. ofchannels present in the patch; Po = probability of a single channel being open) in response to ethanol(3-200 mM) mildly decrease when compared with pre-ethanol,isosmotic controls. However, channel responses show qualitativeheterogeneity at all ethanol concentrations. In the majority of patches(42/71 patches, i.e., 59%), a reversible reduction inNPo is observed. In this subset, the maximaleffect is obtained with 100 mM ethanol, at whichNPo reaches 46.2 ± 9% of control. Thepresence of 1-subunits, which determines channel sensitivity to dihydrosoyaponin-I and 17-estradiol, fails to modifyethanol action on bslo channels. Ethanol inhibition of bslo channels results from a marked increase in the meanclosed time. Although the voltage dependence of gating remainsunaffected, the apparent effectiveness of Ca2+ to gate thechannel is decreased by ethanol. These changes occur withoutmodifications of channel conduction. In conclusion, a new molecularmechanism that may contribute to ethanol-induced aortic smooth musclecontraction has been identified and characterized: a functionalinteraction between ethanol and the bslo subunit and/or itslipid microenvironment, which leads to a decrease in BKCachannel activity.

  相似文献   

3.
The effect ofCa2+/calmodulin-dependent protein kinase II (CaMKII)stimulation on unitary low voltage-activated (LVA) T-type Ca2+ channel currents in isolated bovine adrenalglomerulosa (AG) cells was measured using the patch-clamp technique. Incell-attached and inside-out patches, LVA channel activity wasidentified by voltage-dependent inactivation and a single-channelconductance of ~9 pS in 110 mM BaCl2 orCaCl2. In the cell-attached patch, elevation of bathCa2+ from 150 nM to 1 µM raised intracellularCa2+ in K+-depolarized (140 mM) cells andevoked an increase in the LVA Ca2+ channel probability ofopening (NPo) by two- to sixfold. This augmentation was associated with an increase in the number of nonblanksweeps, a rise in the frequency of channel opening in nonblank sweeps,and a 30% reduction in first latency. No apparent changes in thesingle-channel open-time distribution, burst lengths, or openings/burstwere apparent. Preincubation of AG cells with lipophilic or peptideinhibitors of CaMKII in the cell-attached or excised (inside-out)configurations prevented the rise in NPo elicited by elevated Ca2+ concentration.Furthermore, administration of a mutant recombinant CaMKIIexhibiting cofactor-independent activity in the absence of elevatedCa2+ produced a threefold elevation in LVA channelNPo. These data indicate that CaMKII activity isboth necessary and sufficient for LVA channel activation byCa2+.

  相似文献   

4.
Two populations,Ca2+-dependent(BKCa) andCa2+-independentK+ (BK) channels of largeconductance were identified in inside-out patches of nonlabor and laborfreshly dispersed human pregnant myometrial cells, respectively.Cell-attached recordings from nonlabor myometrial cells frequentlydisplayed BKCa channel openings characterized by a relatively low open-state probability, whereas similar recordings from labor tissue displayed either no channel openings or consistently high levels of channel activity that oftenexhibited clear, oscillatory activity. In inside-out patch recordings,Ba2+ (2-10 mM),4-aminopyridine (0.1-1 mM), andShaker B inactivating peptide("ball peptide") blocked theBKCa channel but were much lesseffective on BK channels. Application of tetraethylammonium toinside-out membrane patches reduced unitary current amplitude ofBKCa and BK channels, withdissociation constants of 46 mM and 53 µM, respectively.Tetraethylammonium applied to outside-out patches decreased the unitaryconductance of BKCa and BKchannels, with dissociation constants of 423 and 395 µM,respectively. These results demonstrate that the properties of humanmyometrial large-conductance K+channels in myocytes isolated from laboring patients are significantly different from those isolated from nonlaboring patients.

  相似文献   

5.
We used the patch-clamp technique tostudy the effect of cGMP on the 18-pS K channel in the basolateralmembrane of the rat cortical collecting duct. Addition of 100 µM8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP)increased the activity of the 18-pS K channel, defined byNPo, by 95%. In contrast, applying 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) hasno effect on channel activity. The effect of 8-Br-cGMP was observed only in cell-attached but not in inside-out patches. Application of 1 µM KT-5823, an inhibitor of the cGMP-dependent protein kinase (PKG),not only reduced the channel activity, but also completely abolishedthe stimulatory effect of 8-Br-cGMP, suggesting that the 18-pS Kchannel is not a cGMP-gated K channel. Addition of H-89, an agent thatalso blocks the PKG, mimicked the effect of KT-5823. To examine thepossibility that the effect of 8-Br-cGMP is the result of inhibitingcGMP-dependent phosphodiesterase (PDE) and, accordingly, increasingcAMP or cGMP levels, we explored the effect on the 18-pS K channel ofIBMX, an agent that inhibits the PDE. The addition of 100 µM IBMX hadno significant effect on channel activity in cell-attached patches.Moreover, in the presence of IBMX, 8-Br-cGMP increased the channelactivity to the same extent as that observed in the absence of IBMX,suggesting that the effect of cGMP is not mediated by inhibiting thecGMP-dependent PDE. That the effect of cGMP is mediated by stimulatingPKG was further indicated by experiments in which application ofexogenous PKG restored the channel activity when it decreased after the excision of the patches. In contrast, adding exogenous cAMP-dependent protein kinase catalytic subunit failed to reactivate therun-down channels. We conclude that cGMP stimulates the 18-pS channel, and the effect of cGMP is mediated by PKG.

  相似文献   

6.
TheCl secretory response ofcolonic cells to Ca2+-mediatedagonists is transient despite a sustained elevation of intracellular Ca2+. We evaluated the effects ofsecond messengers proposed to limit Ca2+-mediatedCl secretion on thebasolateral membrane,Ca2+-dependentK+ channel(KCa) in colonic secretorycells, T84. Neither protein kinase C (PKC) nor inositoltetrakisphosphate (1,3,4,5 or 3,4,5,6 form) affectedKCa in excised inside-out patches.In contrast, arachidonic acid (AA; 3 µM) potently inhibitedKCa, reducingNPo, the productof number of channels and channel open probability, by 95%. Theapparent inhibition constant for this AA effect was 425 nM. AAinhibited KCa in the presence ofboth indomethacin and nordihydroguaiaretic acid, blockers of thecyclooxygenase and lipoxygenase pathways. In the presence of albumin,the effect of AA on KCa wasreversed. A similar effect of AA was observed onKCa during outside-out recording.We determined also the effect of thecis-unsaturated fatty acid linoleate,the trans-unsaturated fatty acidelaidate, and the saturated fatty acid myristate. At 3 µM, all ofthese fatty acids inhibited KCa,reducing NPo by 72-86%. Finally, the effect of the cytosolic phospholipaseA2 inhibitorarachidonyltrifluoromethyl ketone(AACOCF3) on thecarbachol-induced short-circuit current(Isc) responsewas determined. In the presence ofAACOCF3, the peakcarbachol-inducedIsc response wasincreased ~2.5-fold. Our results suggest that AA generation inducedby Ca2+-mediated agonists maycontribute to the dissociation observed between the rise inintracellular Ca2+ evoked by theseagonists and the associatedCl secretory response.

  相似文献   

7.
We havepreviously demonstrated that the protein level of c-Src, anonreceptor type of protein tyrosine kinase (PTK), was higher in therenal medulla from rats on a K-deficient (KD) diet than that in rats ona high-K (HK) diet (Wang WH, Lerea KM, Chan M, and Giebisch G. Am J Physiol Renal Physiol 278: F165-F171, 2000).We have now used the patch-clamp technique to investigate the role ofPTK in regulating the apical K channels in the medullary thickascending limb (mTAL) of the rat kidney. Inhibition of PTK withherbimycin A increased NPo, a product of channelnumber (N) and open probability (Po),of the 70-pS K channel from 0.12 to 0.42 in the mTAL only from rats ona KD diet but had no significant effect in tubules from animals on a HKdiet. In contrast, herbimycin A did not affect the activity of the30-pS K channel in the mTAL from rats on a KD diet. Moreover, additionof N-methylsulfonyl-12,12-dibromododec-11-enamide, an agentthat inhibits the cytochrome P-450-dependent production of20-hydroxyeicosatetraenoic acid, further increasedNPo of the 70-pS K channel in the presence ofherbimycin A. Furthermore, Western blot detected the presence ofPTP-1D, a membrane-associated protein tyrosine phosphatase (PTP), inthe renal outer medulla. Inhibition of PTP with phenylarsine oxide(PAO) decreased NPo of the 70-pS K channel inthe mTAL from rats on a HK diet. However, PAO did not inhibit theactivity of the 30-pS K channel in the mTAL. The effect of PAO on the70-pS K channel was due to indirectly stimulating PTK becausepretreatment of the mTAL with herbimycin A abolished the inhibitoryeffect of PAO. Finally, addition of exogenous c-Src reversibly blockedthe activity of the 70-pS K channel in inside-out patches. We concludethat PTK and PTP have no effect on the low-conductance K channels inthe mTAL and that PTK-induced tyrosine phosphorylation inhibits,whereas PTP-induced tyrosine dephosphorylation stimulates, the apical70-pS K channel in the mTAL.

  相似文献   

8.
Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM) cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca2+-activated K+ (BKCa) channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we examined the effect of apelin-13 on BKCa channel activity in VSM cells, freshly isolated from rat middle cerebral arteries. In whole-cell patch clamp mode, apelin-13 (0.001-1 μM) caused concentration-dependent inhibition of BKCa in VSM cells. Apelin-13 (0.1 µM) significantly decreased BKCa current density from 71.25±8.14 pA/pF to 44.52±7.10 pA/pF (n=14 cells, P<0.05). This inhibitory effect of apelin-13 was confirmed by single channel recording in cell-attached patches, in which extracellular application of apelin-13 (0.1 µM) decreased the open-state probability (NPo) of BKCa channels in freshly isolated VSM cells. However, in inside-out patches, extracellular application of apelin-13 (0.1µM) did not alter the NPo of BKCa channels, suggesting that the inhibitory effect of apelin-13 on BKCa is not mediated by a direct action on BKCa. In whole cell patches, pretreatment of VSM cells with LY-294002, a PI3-kinase inhibitor, markedly attenuated the apelin-13-induced decrease in BKCa current density. In addition, treatment of arteries with apelin-13 (0.1 µM) significantly increased the ratio of phosphorylated-Akt/total Akt, indicating that apelin-13 significantly increases PI3-kinase activity. Taken together, the data suggest that apelin-13 inhibits BKCa channel via a PI3-kinase-dependent signaling pathway in cerebral artery VSM cells, which may contribute to its regulatory action in the control of vascular tone.  相似文献   

9.
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3.

  相似文献   

10.
Cell-attached and cell-free configurations of the patch-clamptechnique were used to investigate the conductive properties andregulation of the major K+channels in the basolateral membrane of outer hair cells freshly isolated from the guinea pig cochlea. There were two majorvoltage-dependent K+ channels. ACa2+-activatedK+ channel with a high conductance(220 pS,PK/PNa = 8) was found in almost 20% of the patches. The inside-out activityof the channel was increased by depolarizations above 0 mV andincreasing the intracellular Ca2+concentration. External ATP or adenosine did not alter thecell-attached activity of the channel. The open probability of theexcised channel remained stable for several minutes without rundown andwas not altered by the catalytic subunit of protein kinase A (PKA)applied internally. The most frequentK+ channel had a low conductanceand a small outward rectification in symmetricalK+ conditions (10 pS for inwardcurrents and 20 pS for outward currents, PK/PNa = 28). It was found significantly more frequently in cell-attached andinside-out patches when the pipette contained 100 µM acetylcholine. It was not sensitive to internalCa2+, was inhibited by4-aminopyridine, was activated by depolarization above 30 mV,and exhibited a rundown after excision. It also had a slow inactivationon ensemble-averaged sweeps in response to depolarizing pulses. Thecell-attached activity of the channel was increased when adenosine wassuperfused outside the pipette. This effect also occurred with permeantanalogs of cAMP and internally applied catalytic subunit of PKA. Bothchannels could control the cell membrane voltage of outer hair cells.

  相似文献   

11.
The effect of sphingosine-1-phosphate (S1P) on large-conductance Ca2+-activated K+ (BKCa) channels was examined in primary cultured human umbilical vein endothelial cells by measuring intracellular Ca2+ concentration ([Ca2+]i), whole cell membrane currents, and single-channel activity. In nystatin-perforated current-clamped cells, S1P hyperpolarized the membrane and simultaneously increased [Ca2+]i. [Ca2+]i and membrane potentials were strongly correlated. In whole cell clamped cells, BKCa currents were activated by increasing [Ca2+]i via cell dialysis with pipette solution, and the activated BKCa currents were further enhanced by S1P. When [Ca2+]i was buffered at 1 µM, the S1P concentration required to evoke half-maximal activation was 403 ± 13 nM. In inside-out patches, when S1P was included in the bath solution, S1P enhanced BKCa channel activity in a reversible manner and shifted the relationship between Ca2+ concentration in the bath solution and the mean open probability to the left. In whole cell clamped cells or inside-out patches loaded with guanosine 5'-O-(2-thiodiphosphate) (GDPS; 1 mM) using a patch pipette, GDPS application or pretreatment of cells with pertussis toxin (100 ng/ml) for 15 h did not affect S1P-induced BKCa current and channel activation. These results suggest that S1P enhances BKCa channel activity by increasing Ca2+ sensitivity. This channel activation hyperpolarizes the membrane and thereby increases Ca2+ influx through Ca2+ entry channels. Inasmuch as S1P activates BKCa channels via a mechanism independent of G protein-coupled receptors, S1P may be a component of the intracellular second messenger that is involved in Ca2+ mobilization in human endothelial cells. sphingolipid metabolites; intracellular second messenger; Ca2+ mobilization  相似文献   

12.
Rapamycin and FK-506 are immunosuppressive drugs thatbind a ubiquitous immunophilin, FKBP12, but immunosuppressivemechanisms and side effects appear to be different. Rapamycin bindsrenal FKBP12 to change renal transport. We used cell-attached patch clamp to examine rapamycin's effect on Na+ channels in A6cells. Channel NPo was 0.5 ± 0.08 (n = 6)during the first 5 min but fell close to zero after 20 min. Application of 1 µM rapamycin reactivated Na+ channels(NPo = 0.47 ± 0.1; n=6), but 1 µMFK-506 did not. Also, GF-109203X, a protein kinase C (PKC) inhibitor,mimicked the rapamycin-induced reactivation in a nonadditive manner.However, rapamycin did not reactivate Na+ channels if cellswere exposed to 1 µM FK-506 before rapamycin. In PKC assays,rapamycin was as effective as the PKC inhibitor; however, epithelialNa+ channel (ENaC) phosphorylation was low under baselineconditions and was not altered by PKC inhibitors or activators. Theseresults suggest that rapamycin activates Na+ channels bybinding FKBP12 and inhibiting PKC, and, in renal cells, despite bindingthe same immunophilin, rapamycin and FK-506 activate differentintracellular signaling pathways.

  相似文献   

13.
To test thehypothesis that intracellular Ca2+activation of large-conductanceCa2+-activatedK+ (BK) channels involves thecytosolic form of phospholipase A2 (cPLA2), we first inhibited theexpression of cPLA2 by treating GH3 cells with antisenseoligonucleotides directed at the two possible translation start siteson cPLA2. Western blot analysis and a biochemical assay of cPLA2activity showed marked inhibition of the expression ofcPLA2 in antisense-treated cells.We then examined the effects of intracellularCa2+ concentration([Ca2+]i)on single BK channels from these cells. Open channel probability (Po) for thecells exposed to cPLA2 antisenseoligonucleotides in 0.1 µM intracellularCa2+ was significantly lower thanin untreated or sense oligonucleotide-treated cells, but the voltagesensitivity did not change (measured as the slope of thePo-voltagerelationship). In fact, a 1,000-fold increase in[Ca2+]ifrom 0.1 to 100 µM did not significantly increasePoin these cells, whereas BK channels from cells in the other treatmentgroups showed a normalPo-[Ca2+]iresponse. Finally, we examined the effect of exogenous arachidonic acidon thePoof BK channels from antisense-treated cells. Although arachidonic aciddid significantly increasePo,it did so without restoring the[Ca2+]isensitivity observed in untreated cells. We conclude that although [Ca2+]idoes impart some basal activity to BK channels inGH3 cells, the steepPo-[Ca2+]irelationship that is characteristic of these channels involves cPLA2.

  相似文献   

14.
Guanylyl cyclase stimulatory coupling to K(Ca) channels   总被引:1,自引:0,他引:1  
We coexpressed the human large-conductance, calcium-activated K(KCa) channel (- and -subunits) and rat atrialnatriuretic peptide (ANP) receptor genes in Xenopus oocytesto examine the mechanism of guanylyl cyclase stimulatory coupling tothe channel. Exposure of oocytes to ANP stimulated whole cellKCa currents by 21 ± 3% (at 60 mV), without alteringcurrent kinetics. Similarly, spermine NONOate, a nitric oxide donor,increased KCa currents (20 ± 4% at 60 mV) in oocytesexpressing the channel subunits alone. Stimulation of KCacurrents by ANP was inhibited in a concentration-dependent manner by apeptide inhibitor of cGMP-dependent protein kinase (PKG).Receptor/channel stimulatory coupling was not completely abolished bymutating the cAMP-dependent protein kinase phosphorylation site on the-subunit (S869; Nars M, Dhulipals PD, Wang YX, and Kotlikoff MI.J Biol Chem 273: 14920-14924, 1998) or by mutating a neighboring consensus PKG site (S855), but mutation of both residuesvirtually abolished coupling. Spermine NONOate also failed to stimulatechannels expressed from the double mutant cRNAs. These data indicatethat nitric oxide donors stimulate KCa channels throughcGMP-dependent phosphorylation and that two serine residues (855 and869) underlie this stimulatory coupling.

  相似文献   

15.
To better understand the mechanisms by which PKA-dependent phosphorylation regulates CFTR channel activity, we have assayed open probabilities (Po), mean open time, and mean closed time for a series of CFTR constructs with mutations at PKA phosphorylation sites in the regulatory (R) domain. Forskolin-stimulated channel activity was recorded in cell-attached and inside-out excised patches from transiently transfected Chinese hamster ovary cells. Wild-type CFTR and constructs with a single Ser-to-Ala mutation as well as octa (Ser-to-Ala mutations at 8 sites) and constructs with one or two Ala-to-Ser mutations were studied. In cell-attached patches, Ser-to-Ala mutations at amino acids 700, 795, and 813 decreased Po, whereas Ser-to-Ala mutations at 737 and 768 increased Po. In general, differences in Po were due to differences in mean closed time. For selected constructs with either high or low values of Po, channel activity was measured in excised patches. With 1 mM ATP, Po was similar to that observed in cell-attached patches, but with 10 mM ATP, all constructs tested showed elevated Po values. ATP-dependent increases in Po were due to reductions in mean closed time. These results indicate that R-domain phosphorylation affects ATP binding and not the subsequent steps of hydrolysis and channel opening. A model was developed whereby R-domain phosphorylation, in a site-dependent manner, alters equilibrium between forms of CFTR with low and high affinities for ATP. site-directed mutagenesis; kinase-dependent activation; cell-attached patch clamp; open probability; mean open time  相似文献   

16.
In smooth muscle of the gut, Gq-coupled receptor agonists activate preferentially PLC-1 to stimulate phosphoinositide (PI) hydrolysis and inositol 1,4,5-trisphosphate (IP3) generation and induce IP3-dependent Ca2+ release. Inhibition of Ca2+ mobilization by cAMP- (PKA) and cGMP-dependent (PKG) protein kinases reflects inhibition of PI hydrolysis by both kinases and PKG-specific inhibitory phosphorylation of IP3 receptor type I. The mechanism of inhibition of PLC-1-dependent PI hydrolysis has not been established. Neither Gq nor PLC-1 was directly phosphorylated by PKA or PKG in gastric smooth muscle cells. However, both kinases 1) phosphorylated regulator of G protein signaling 4 (RGS4) and induced its translocation from cytosol to plasma membrane, 2) enhanced ACh-stimulated association of RGS4 and Gq·GTP and intrinsic Gq·GTPase activity, and 3) inhibited ACh-stimulated PI hydrolysis. RGS4 phosphorylation and inhibition of PI hydrolysis were blocked by selective PKA and PKG inhibitors. Expression of RGS4(S52A), which lacks a PKA/PKG phosphorylation site, blocked the increase in GTPase activity and the decrease in PI hydrolysis induced by PKA and PKG. Blockade of PKA-dependent effects was only partial. Selective phosphorylation of G protein-coupled receptor kinase 2 (GRK2), which contains a RGS domain, by PKA augmented ACh-stimulated GRK2:Gq·GTP association; both effects were blocked in cells expressing GRK2(S685A), which lacks a PKA phosphorylation site. Inhibition of PI hydrolysis induced by PKA was partly blocked in cells expressing GRK2(S685A) and completely blocked in cells coexpressing GRK2(S685A) and RGS4(S52A) or Gq(G188S), a Gq mutant that binds GRK2 but not RGS4. The results demonstrate that inhibition of PLC-1-dependent PI hydrolysis by PKA is mediated via stimulatory phosphorylation of RGS4 and GRK2, leading to rapid inactivation of Gq·GTP. PKG acts only via phosphorylation of RGS4. regulators of G protein signaling; G protein-coupled receptor kinase 2; phospholipase C; cAMP-dependent protein kinase; cGMP-dependent protein kinase  相似文献   

17.
Mode 2 gating of L-type Ca channels is characterized by highchannel open probability(NPo) and longopenings. In cardiac myocytes, this mode is evoked physiologically intwo apparently different circumstances: membrane depolarization(prepulse facilitation) and activation of protein kinase A. To examinewhether the phosphorylation mechanism is involved duringprepulse-induced facilitation of cardiac L-type Ca channels, we usedisolated guinea pig ventricular myocytes to analyzedepolarization-induced modal gating behavior under different basallevels of phosphorylation. In control,NPo measured at 0 mV was augmented as the duration of prepulse to +100 mV was prolongedfrom 50 to 400 ms. This was due to the induction of mode 2 gatingbehavior clustered at the beginning of test pulses. Analysis of opentime distribution revealed that the prepulse evoked an extra component,the time constant of which is not dependent on prepulse duration. Whenisoproterenol (1 µM) was applied to keep Ca channels at an enhancedlevel of phosphorylation, basal NPo withoutprepulse was increased by a factor of 3.6 ± 2.2 (n = 6). Under these conditions,prepulse further increasedNPo by promotinglong openings with the same kinetics of transition to mode 2 gating(  200 ms at +100 mV). Likewise, recovery from mode 2 gating, asestimated by the decay of averaged unitary current, was not affectedafter -stimulation (  25 ms at 0 mV). The kinetic behaviorindependent from the basal level of phosphorylation or activity ofcAMP-dependent protein kinase suggests that prepulse facilitation ofthe cardiac Ca channel involves a mechanism directly related tovoltage-dependent conformational change rather than voltage-dependent phosphorylation.

  相似文献   

18.
The possiblerole of altered extracellular Ca2+concentration([Ca2+]o)in skeletal muscle fatigue was tested on isolated slow-twitch soleusand fast-twitch extensor digitorum longus muscles of the mouse. Thefollowing findings were made. 1) Achange from the control solution (1.3 mM[Ca2+]o)to 10 mM[Ca2+]o,or to nominally Ca2+-freesolutions, had little effect on tetanic force in nonfatigued muscle.2) Almost complete restoration oftetanic force was induced by 10 mM[Ca2+]oin severely K+-depressed muscle(extracellular K+ concentration of10-12 mM). This effect was attributed to a 5-mV reversal of theK+-induced depolarization andsubsequent restoration of ability to generate action potentials(inferred by using the twitch force-stimulation strength relationship).3) Tetanic force depressed bylowered extracellular Na+concentration (40 mM) was further reduced with 10 mM[Ca2+]o.4) Tetanic force loss at elevatedextracellular K+ concentration (8 mM) and lowered extracellular Na+concentration (100 mM) was partially reversed with 10 mM[Ca2+]oor markedly exacerbated with low[Ca2+]o.5) Fatigue induced by using repeatedtetani in soleus was attenuated at 10 mM[Ca2+]o(due to increased resting and evoked forces) and exacerbated at low[Ca2+]o.These combined results suggest, first, that raised[Ca2+]oprotects against fatigue rather than inducing it and, second, that aconsiderable depletion of[Ca2+]oin the transverse tubules may contribute to fatigue.

  相似文献   

19.
Recent results showing that large-conductance, calcium-activated K+ (BKCa) channels undergo direct tyrosine phosphorylation in the presence of c-Src tyrosine kinase have suggested the involvement of these channels in Src-mediated signaling pathways. Given the important role for c-Src in integrin-mediated signal transduction, we have examined the potential regulation of BKCa channels by proline-rich tyrosine kinase 2 (Pyk2), a calcium-sensitive tyrosine kinase activated upon integrin stimulation. Transient coexpression of murine BKCa channels with either wild-type Pyk2 or hematopoietic cell kinase (Hck), a Src-family kinase, led to an enhancement of BKCa channel activity over the range of 1–10 µM free calcium, whereas coexpression with catalytically inactive forms of either kinase did not significantly alter BKCa gating compared with channels expressed alone. In the presence of either wild-type Pyk2 or Hck, BKCa -subunits were found to undergo tyrosine phosphorylation, as determined by immunoprecipitation and Western blotting strategies. However, tyrosine phosphorylation of the BKCa -subunit was not detected for channels expressed alone or together with inactive forms of either Pyk2 or Hck. Interestingly, wild-type, but not inactive, Pyk2 was also present in BKCa channel immunoprecipitates, suggesting that Pyk2 may coassociate with the BKCa channel complex after phosphorylation. Collectively, the observed modulation and phosphorylation of BKCa channels by Pyk2 and a Src-family kinase may reflect a general cellular mechanism by which G protein-coupled receptor and/or integrin activation leads to the regulation of membrane ion channels. BK channels; tyrosine kinase; calcium; immunoprecipitation  相似文献   

20.
It has been suggested that L-type Ca2+ channels play an important role in cell swelling-induced vasoconstriction. However, there is no direct evidence that Ca2+ channels in vascular smooth muscle are modulated by cell swelling. We tested the hypothesis that L-type Ca2+ channels in rabbit portal vein myocytes are modulated by hypotonic cell swelling via protein kinase activation. Ba2+ currents (IBa) through L-type Ca2+ channels were recorded in smooth muscle cells freshly isolated from rabbit portal vein with the conventional whole cell patch-clamp technique. Superfusion of cells with hypotonic solution reversibly enhanced Ca2+ channel activity but did not alter the voltage-dependent characteristics of Ca2+ channels. Bath application of selective inhibitors of protein kinase C (PKC), Ro-31–8425 or Go-6983, prevented IBa enhancement by hypotonic swelling, whereas the specific protein kinase A (PKA) inhibitor KT-5720 had no effect. Bath application of phorbol 12,13-dibutyrate (PDBu) significantly increased IBa under isotonic conditions and prevented current stimulation by hypotonic swelling. However, PDBu did not have any effect on IBa when cells were first exposed to hypotonic solution. Furthermore, downregulation of endogenous PKC by overnight treatment of cells with PDBu prevented current enhancement by hypotonic swelling. These data suggest that hypotonic cell swelling can enhance Ca2+ channel activity in rabbit portal vein smooth muscle cells through activation of PKC. cell swelling; protein kinases; calcium current  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号