首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Two regulons, soxRS and marRAB, are associated with resistance to quinolones or multiple antibiotic in Salmonella enterica serovar Typhimurium. These regulons are activated by nitric oxide and redox-cycling drugs, such as paraquat and cause on activation of the acrAB-encoded efflux pump. In this study, we investigated the effect of nitric oxide (NO) alone and in combination with ofloxacin, ciprofloxacin, and pefloxacin against S. typhimurium clinical isolates and mutant strains in vitro. We did not observe synergistic effect against clinical isolates and SH5014 (parent strain of acr mutant), while we found synergistic effect against PP120 (soxRS mutant) and SH7616 (an acr mutant) S. typhimurium for all quinolones. Our results suggest that the efficiencies of some antibiotics, including ofloxacin, ciprofloxacin, and pefloxacin are decreased via activation of soxRS and marRAB regulons by NO in S. enterica serovar Typhimurium. Further studies are warranted to establish the interaction of NO with the genes of Salmonella and, with multiple antibiotic resistance.  相似文献   

4.
5.
A random library of Escherichia coli MG1655 genomic fragments fused to a promoterless green fluorescent protein (GFP) gene was constructed and screened by differential fluorescence induction for promoters that are induced after exposure to a sublethal high hydrostatic pressure stress. This screening yielded three promoters of genes belonging to the heat shock regulon (dnaK, lon, clpPX), suggesting a role for heat shock proteins in protection against, and/or repair of, damage caused by high pressure. Several further observations provide additional support for this hypothesis: (i). the expression of rpoH, encoding the heat shock-specific sigma factor sigma(32), was also induced by high pressure; (ii). heat shock rendered E. coli significantly more resistant to subsequent high-pressure inactivation, and this heat shock-induced pressure resistance followed the same time course as the induction of heat shock genes; (iii). basal expression levels of GFP from heat shock promoters, and expression of several heat shock proteins as determined by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins extracted from pulse-labeled cells, was increased in three previously isolated pressure-resistant mutants of E. coli compared to wild-type levels.  相似文献   

6.
7.
Heat and various inhibitory chemicals were tested in Escherichia coli for the ability to cause accumulation of adenylylated nucleotides and to induce proteins of the heat shock (htpR-controlled), the oxidation stress (oxyR-controlled), and the SOS (lexA-controlled) regulons. Under the conditions used, heat and ethanol initiated solely a heat shock response, hydrogen peroxide and 6-amino-7-chloro-5,8-dioxoquinoline (ACDQ) induced primarily an oxidation stress response and secondarily an SOS response, nalidixic acid and puromycin induced primarily an SOS and secondarily a heat shock response, isoleucine restriction induced a poor heat shock response, and CdCl2 strongly induced all three stress responses. ACDQ, CdCl2, and H2O2 each stimulated the synthesis of approximately 35 proteins by factors of 5- to 50-fold, and the heat shock, oxidation stress, and SOS regulons constituted a minor fraction of the overall cellular response. The pattern of accumulation of adenylylated nucleotides during these treatments was inconsistent with a simple role for these nucleotides as alarmones sufficient for triggering the heat shock response, but was consistent with a role in the oxyR-mediated response.  相似文献   

8.
9.
10.
A random library of Escherichia coli MG1655 genomic fragments fused to a promoterless green fluorescent protein (GFP) gene was constructed and screened by differential fluorescence induction for promoters that are induced after exposure to a sublethal high hydrostatic pressure stress. This screening yielded three promoters of genes belonging to the heat shock regulon (dnaK, lon, clpPX), suggesting a role for heat shock proteins in protection against, and/or repair of, damage caused by high pressure. Several further observations provide additional support for this hypothesis: (i) the expression of rpoH, encoding the heat shock-specific sigma factor σ32, was also induced by high pressure; (ii) heat shock rendered E. coli significantly more resistant to subsequent high-pressure inactivation, and this heat shock-induced pressure resistance followed the same time course as the induction of heat shock genes; (iii) basal expression levels of GFP from heat shock promoters, and expression of several heat shock proteins as determined by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins extracted from pulse-labeled cells, was increased in three previously isolated pressure-resistant mutants of E. coli compared to wild-type levels.  相似文献   

11.
12.
13.
14.
15.
16.
Vasil'eva SV  Makhova EV 《Genetika》2003,39(8):1033-1038
Oxidative stress formed in Escherichia coli cells is known to bring about a complex induction of alternative DNA repair processes, including SOS, SoxRS, and heat-shock response (HSR). The modification by heat shock of the expression of sfiA and soxS genes induced by oxidative agents H2O2, menadione and 4-nitroquinoline-1-oxide (4NQO) was studied for the first time. Quantitative parameters of gene expression were examined in E. coli strains with fused genes (promoters) sfiA::lacZ and soxS::lacZ. The expression of these genes induced by cell treatment with H2O2, but not menadione or 4NQO, was shown to decrease selectively after exposure to heat shock. Since genetic activity of menadione and 4NQO depends mainly on the formation of superoxide anion O2-, it is assumed that the effect of selective inhibition by heat-shock of sfiA and soxS gene expression in experiments with H2O2 is connected with activity of DnaK heat shock protein, which, unlike other heat-shock proteins, cannot be induced by superoxide anion O2-.  相似文献   

17.
18.
Mammalian cells coexpress a family of heat shock factors (HSFs) whose activities are regulated by diverse stress conditions to coordinate the inducible expression of heat shock genes. Distinct from HSF1, which is expressed ubiquitously and activated by heat shock and other stresses that result in the appearance of nonnative proteins, the stress signal for HSF2 has not been identified. HSF2 activity has been associated with development and differentiation, and the activation properties of HSF2 have been characterized in hemin-treated human K562 erythroleukemia cells. Here, we demonstrate that a stress signal for HSF2 activation occurs when the ubiquitin-proteasome pathway is inhibited. HSF2 DNA-binding activity is induced upon exposure of mammalian cells to the proteasome inhibitors hemin, MG132, and lactacystin, and in the mouse ts85 cell line, which carries a temperature sensitivity mutation in the ubiquitin-activating enzyme (E1) upon shift to the nonpermissive temperature. HSF2 is labile, and its activation requires both continued protein synthesis and reduced degradation. The downstream effect of HSF2 activation by proteasome inhibitors is the induction of the same set of heat shock genes that are induced during heat shock by HSF1, thus revealing that HSF2 affords the cell with a novel heat shock gene-regulatory mechanism to respond to changes in the protein-degradative machinery.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号