首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In South African Afrikaners, three point mutations in the gene coding for the low-density lipoprotein (LDL)-receptor are responsible for more than 95% of the cases of familial hypercholesterolemia (FH). To investigate whether one or more of these mutations originated in The Netherlands, a large group of Dutch heterozygous FH patients was screened for the presence of these three mutations. Of these, a missense mutation in exon 9 of the LDL-receptor gene, resulting in a substitution of Met for Val408, responsible for 15% of FH in Afrikaners, was found in 19 (1.5%) of 1268 FH patients of Dutch descent. Nine of the patients carrying the exon 9 mutation on one allele shared the LDL-receptor DNA haplotype with an FH patient from South Africa, who was homozygous for the same mutation. This would suggest that the mutation in these patients and in the South African patient have a common ancestral background. The remaining ten FH patients all shared a common haplotype, partly identical to the Afrikaner haplotype, which chould have arisen from a single recombinational event. This mutation has not been described in persons other than of Dutch ancestry and supports the hypothesis that this mutation in exon 9 originated in The Netherlands and, in all likelihood, was introduced into South Africa by early Dutch settlers in the seventeenth century.  相似文献   

2.
Using an automated fluorescent single-strand conformation polymorphism (SSCP) analysis of the entire coding region, promoter zone, and exon-intron junctions of the low-density lipoprotein (LDL) receptor gene, we examined 80 DNA samples of patients with familial hypercholesterolemia (FH) from Petrozavodsk. We revealed mutations that might cause FH in five probands, including FH-North Karelia (c.925-931del7) mutation and four previously unknown mutations. These novel mutations included a transversion c.618T>G (p.S206R), one nucleotide insertion c.195_196insT (p.FsV66:D129X), a complex gene rearrangement c.192del10/ins8 (p.FsS65:D129X), and a single nucleotide deletion c.2191delG (p.FsV731:V736X). Three out of four novel mutations produce an open reading frame shift and the premature termination of translation. An analysis of the cDNA sequence of the LDL receptor showed that this might result in the formation of a transmembrane-domain-deficient receptor that is unable to bind and internalize the ligand. Our results suggest the absence of a strong founder effect associated with FH in the Petrozavodsk population.  相似文献   

3.
4.
Five low-density lipoprotein receptor gene (LDLR) restriction fragment length polymorphisms (RFLPs: TaqI, intron 4; HincII, exon 12; AvaII, exon 13; MspI and NcoI, exon 18) were investigated in 131 individuals from five Brazilian Indian tribes. All markers were polymorphic in this ethnic group. In the whole sample of Amerindians, 13 (41%) of the 32 expected haplotypes were identified, but only three were shared by all tribes. The Xavante, Suruí, Zoró, and Gavi?o tribes, who had been studied for anthropometry, were grouped according to their genotypes, and the corresponding mean values were examined. Significant associations were observed between HincII *H-, AvaII *A+, MspI *M-, and NcoI *N+ and the body mass index (BMI), triceps and subscapular skinfolds, and the arm fat index (AFI). Haplotypes were derived for these four RFLPs, and (*H-/*A+/*M-/*N+) haplotype carriers were compared with noncarriers of this haplotype with equally significant results for the three parameters (BMI, P=0.021; skinfold thickness, P<0.001; AFI, P=0.005). These results suggest that the LDLR gene has some influence over adipose tissue deposition.  相似文献   

5.
6.
The role of the cellular receptor for the low-density lipoproteins (LDL) in cholesterol transport was initially defined through the study of nonhepatic cells in vitro. Since the liver is central in plasma lipoprotein metabolism, an investigation of hepatic lipoprotein receptors is important for understanding normal lipoprotein transport. Utilizing human hepatic and fibroblast membranes, the characteristics of receptors for LDL from hepatic and nonhepatic tissues were directly compared. Human hepatic membranes reversibly bound LDL within 5 min. Although both fibroblast and hepatic membranes saturably bound LDL at 37 degrees C, the fibroblast LDL receptor affinity (Kd = 2.5 X 10(-8) M) and number (5.5 X 10(12) sites/mg membrane protein) were greater than the hepatic receptor affinity (Kd = 10.8 X 10(-8) M) and number (0.5 X 10(12) sites/mg membrane protein). In contrast to the fibroblast LDL receptor which was unable to bind LDL in the presence of EDTA, the hepatic LDL receptor binding of LDL was only partially blocked by EDTA. The binding of LDL to its hepatic receptor is highly temperature-dependent, and studies utilizing both radiolabeled LDL and colloidal gold-labeled LDL indicate that little, if any, binding of LDL hepatic membranes occur at 0-4 degrees C. The hepatic membrane receptor(s) (Mr approximately equal to 270 000 and 330 000) differ from that of the fibroblast LDL receptor (Mr approximately equal to 130 000) and these proteins are present in hepatic membranes from a patient lacking the fibroblast LDL receptor. These data indicate that an expressed hepatic LDL receptor has unique properties different from those of the fibroblast LDL receptor and that the expressed protein(s) is genetically distinct from the fibroblast receptor.  相似文献   

7.
8.
Many low-density lipoprotein (LDL) receptor mutations have been identified and characterized, demonstrating a high degree of allelic heterogeneity at this locus. The ability to identify mutant LDL-receptor genes for prenatal diagnosis of familial hypercholesterolemia (FH) or to study the role of the LDL-receptor gene in polygenic hypercholesterolemia requires the use of closely linked restriction fragment lenghth polymorphisms (RFLPs). In the present study nine different RFLPs (TaqI, StuI, HincII, BstEII, AvaII, PvuII, MspIA, MspIB, and NcoI) and a sequence variation at Arg450 were used to clarify the characteristics of the LDL-receptor gene in Koreans. A total of 978 LDL-receptor alleles from 244 members of 43 different pedigrees (15 normal and 28 FH pedigrees) and 245 individuals (187 normal and 58 FH) were analyzed. Frequencies of these polymorphisms did not differ significantly between controls and FH patients. Individually, seven sites--TaqI, BstEII, AvaII, MspIA, MspIB, NcoI and Arg450--had heterozygosity indices ranging from 0.3610 to 0.4601, whereas the PvuII site displayed low levels of polymorphism and StuI was monomorphic. Haplotypes were constructed for 215 individuals of 13 normal and 24 FH pedigrees using the nine polymorphisms. Of 512 (= 2(9)) possible combinations for the nine polymorphic sites, 39 unique haplotypes were detected. The frequency distribution of individual haplotypes ranged from 1/155 (0.65%) to 40/155 (25.8%). The four most common haplotypes accounted for 59.4% of those sampled. Statistical analysis of the haplotypes indicated marked linkage disequilibrium for these 10 sites and throughout the region containing the LDL-receptor gene. Owing to the high degree of linkage disequilibrium over the entire locus, not all RFLPs were informative. We rank each RFLP according to its informativeness and present a strategy for the optimal selection of RFLPs for pedigree analysis.  相似文献   

9.
10.
Summary DNA sequencing of enzymatically-amplified exons of the low-density lipoprotein receptor gene from several individuals revealed a polymorphism in exon 10 of the gene. The codon for arginine 450 was converted from AGG to AGA in some alleles.  相似文献   

11.

Background

In the Netherlands, a screening programme was set up in 1994 in order to identify all patients with familial hypercholesterolaemia (FH). After 15 years of screening, we evaluated the geographical distribution, possible founder effects and clinical phenotype of the 12 most prevalent FH gene mutations.

Methods

Patients who carried one of the 12 most prevalent mutations, index cases and those identified between 1994 and 2009 through the screening programme and whose postal code was known were included in the study. Low-density lipoprotein cholesterol (LDL-C) levels at the time of screening were retrieved. The prevalence of identified FH patients in each postal code area was calculated and visualised in different maps.

Results

A total of 10,889 patients were included in the study. Mean untreated LDL-C levels ranged from 4.4 to 6.4 mmol/l. For almost all mutations, a region of high prevalence could be observed. In total, 51 homozygous patients were identified in the Netherlands, of which 13 true homozygous for one of the 12 most prevalent mutations. The majority of them were living in high-prevalence areas for that specific mutation.

Conclusions

Phenotypes with regard to LDL-C levels varied between the 12 most prevalent FH mutations. For most of these mutations, a founder effect was observed. Our observations can have implications with regard to the efficiency of molecular screening and physician’s perception of FH and to the understanding of the prevalence and distribution of homozygous patients in the Netherlands.  相似文献   

12.
Castanospermine, a plant alkaloid that inhibits the glycoprotein processing enzyme glucosidase I, has been used to inhibit N-linked oligosaccharide modification, resulting in the production of glycoproteins having Glc3Man7-9(GlcNAc)2 oligosaccharides. This alkaloid caused a significant inhibition of LDL endocytosis in cultured primate smooth muscle cells and human skin fibroblasts. At an optimum concentration of 250 micrograms/mL, castanospermine caused a 40% decrease in cell surface receptor-mediated LDL binding at 4 degrees C, with no apparent change in affinity. Further, the inhibitor had no direct effect on LDL metabolism. This inhibition of LDL receptor expression and function occurred only when the drug was present during de novo receptor synthesis, i.e., during up-regulation. Although the number of cell surface LDL receptors was significantly reduced in the presence of castanospermine, the total number of receptors in the cell was only slightly reduced, indicating that castanospermine induced a redistribution rather than a reduction in the number of receptors. Similarly, subcellular fractionation studies confirmed that castanospermine treatment of fibroblasts results in an altered distribution of receptor activity compared with controls. These findings are consistent with the conclusion that the decrease in specific LDL binding to cells grown in the presence of castanospermine is due to intracellular redistribution of the LDL receptor so that more receptor remains in internal compartments as a result of a diminished rate of transport.  相似文献   

13.
The Lebanese allele in the low-density lipoprotein receptor gene is one of the alleles which results in the disease familial hypercholesterolemia. We describe a rapid method for detection of the Lebanese allele, using the polymerase chain reaction to amplify part of exon 13, intron 14 and all of exon 14. The amplified DNA is then digested with HinfI which distinguishes between the normal and Lebanese alleles. A previously unidentified HinfI site is described in the intron. HinfI fragments are separated using polyacrylamide gel electrophoresis, and visualized by ethidium bromide staining.  相似文献   

14.
Summary The low-density lipoprotein (LDL) receptor genes from 18 unrelated Japanese heterozygotes and 1 homozygote with classical familial hypercholesterolemia were analyzed by Southern blot hybridization using fragments of the human LDL receptor cDNA as probes. Four different deletion mutations were detected among 20 mutant LDL receptor genes (20%); they were characterized by restriction mapping. None of these mutations has previously been reported in Caucasian patients with FH: three of the mutations were novel and one was similar to the detetion mutation of FH-Tonami described previously in Japanese patients. In three of the four deletion mutations, the rearrangements were related to intron 15 of the LDL receptor gene, in which many Alu sequences exist. The data suggest that a wide range of molecular heterogeneity exists even in major rearrangements resulting in deletions in the LDL receptor gene. The data also support the hypothesis that there are preferential sites within the LDL receptor gene for major rearrangements resulting in deletions. The possibility that a higher frequency of deletion mutations occurs in classical FH than previously suspected is discussed.  相似文献   

15.
The low-density lipoprotein receptor: ligands, debates and lore   总被引:3,自引:0,他引:3  
Like pieces belonging to a large mosaic, the structures of low-density lipoprotein receptor (LDL-R) modules have been elucidated one by one in recent years. LDL-Rs localized on hepatocytes play an important role in removing cholesterol-transporting LDL particles from the plasma by receptor-mediated endocytosis. Key steps in this process involve the LDL-R binding LDL at neutral pH at the cell surface and, after internalization, releasing it again at acidic pH in the endosomes. How the modules of the LDL-R might interact within the intact receptor to carry out ligand binding and release has been revealed by the recent crystal structure of the extracellular domain of the LDL-R.  相似文献   

16.
Apolipoprotein E (apoE) is a ligand for members of the low-density lipoprotein receptor (LDLR) family and functions in plasma cholesterol homeostasis. A fluorescence-based assay has been employed in molecular studies of receptor-ligand interactions. Competition experiments revealed isoform-specific differences in binding of lipid-associated apoE N terminal (NT) domain to a recombinant soluble LDLR (sLDLR). In a similar manner, lipid--associated-but not lipid-free--full-length apoE3 showed binding activity to sLDLR. The molecular chaperone, receptor-associated protein, inhibited apoE3-NT-phospholipid complex binding to sLDLR. Kinetic studies of apoE3-NT-phospholipid complex interaction with sLDLR revealed time-dependent effects of apoE-NT isoform binding to sLDLR. The results reveal a discerning method for study of the molecular basis of ligand interactions that likely influence receptor function in maintenance of whole body cholesterol homeostasis.  相似文献   

17.
Small low-density lipoprotein (LDL) particles are a genetically influenced coronary disease risk factor. Lipoprotein lipase (LpL) is a rate-limiting enzyme in the formation of LDL particles. The current study examined genetic linkage of LDL particle size to the LpL gene in five families with structural mutations in the LpL gene. LDL particle size was smaller among the heterozygous subjects, compared with controls. Among heterozygous subjects, 44% were classified as affected by LDL subclass phenotype B, compared with 8% of normal family members. Plasma triglyceride levels were significantly higher, and high-density lipoprotein cholesterol (HDL-C) levels were lower, in heterozygous subjects, compared with normal subjects, after age and sex adjustment. A highly significant LOD score of 6.24 at straight theta=0 was obtained for linkage of LDL particle size to the LpL gene, after adjustment of LDL particle size for within-genotype variance resulting from triglyceride and HDL-C. Failure to adjust for this variance led to only a modest positive LOD score of 1.54 at straight theta=0. Classifying small LDL particles as a qualitative trait (LDL subclass phenotype B) provided only suggestive evidence for linkage to the LpL gene (LOD=1. 65 at straight theta=0). Thus, use of the quantitative trait adjusted for within-genotype variance, resulting from physiologic covariates, was crucial for detection of significant evidence of linkage in this study. These results indicate that heterozygous LpL deficiency may be one cause of small LDL particles and may provide a potential mechanism for the increase in coronary disease seen in heterozygous LpL deficiency. This study also demonstrates a successful strategy of genotypic specific adjustment of complex traits in mapping a quantitative trait locus.  相似文献   

18.
To determine whether differences in LDLr behavior in extra-hepatic tissues and whether extra-hepatic receptors could differentially contribute to cholesterol homeostasis under physiological conditions, we evaluated the presence and regulation of LDLr from both a gender and an aging perspective. We used the brain cortex, the gastrocnemius, and the heart ventricle of 3- and 12-month-old male and female rats. We observed a protein decrease of total LDLr in 12-month-old female rat brains that was completely restored by 17-β estradiol treatment. In the gastrocnemius, LDLr accumulates in the skeletal muscle in both male and female aged rats as a precursor probably due to a glycosylation impairment. In the heart, no modifications were observed in either older rats or rats of a specific gender. These data highlight a tissue-specific dysregulation of LDLr that is age- and gender-dependent.  相似文献   

19.
Positional cloning of two recessive mutations of the mouse that cause polysyndactyly (dan and mdig-Chr 2) confirmed that the gene encoding MEGF7/LRP4, a member of the low-density lipoprotein receptor family, plays an essential role in the process of digit differentiation. Pathologies observed in the mutant mice provide insight into understanding the function(s) of LRP4 as a negative regulator of the Wnt-beta-catenin signaling pathway and may help identify the genetic basis for common human disorders with similar phenotypes.  相似文献   

20.
Liver X receptor alpha (LXRalpha) is a member of the nuclear receptor superfamily that is activated by oxysterols, and plays a pivotal role in regulating the metabolism, transport and uptake of cholesterol. Here, we demonstrate that LXRalpha also regulates the low-density lipoprotein receptor (LDLR) gene, which mediates the endocytic uptake of LDL cholesterol in the liver. An LXR agonist induced the expression of LDLR in cultured hepatoblastoma cells. Moreover, the LDLR promoter contained an LXR response element that was recognized by LXRalpha/RXRalpha (retinoid X receptor alpha) heterodimers in hepatoblastoma cells. These results suggest a novel pathway whereby LXRalpha might modulate cholesterol metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号