首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An extracellular secreted chitinase gene from Aeromonas hydrophila was cloned in Escherichia coli, and the gene product was detected in the culture medium. Like the natural chitinase protein, the excreted chitinase had a molecular weight of approximately 85,000 and was subject to catabolite repression by glucose.  相似文献   

2.
The chitinase producing Penicillium sp. LYG 0704 was procured from soil of the Chonnam National University crop field. The chitinase activity was detected after the first day which increased gradually and reached its maximum after 3 days of cultivation. The chitinase was purified from a culture medium by precipitation with isopropanol and column chromatography with Mono Q and Butyl-Sepharose. The molecular mass of chitinase was estimated to be 47 kDa by SDS–PAGE. Optimal pH and temperature were 5.0 and 40 °C, respectively. The N-terminal amino acid sequence of the enzyme was determined to be 1AGSYRSVAYFVDWAI15. The fully cloned gene, 1287 bp in size, encoded a single peptide of 429 amino acids. BLAST search of the chitinase gene sequence showed similarity with chitinase of Aspergillus fumigatus Af293 chitinase gene (58%) and A. fumigatus class V chitinase ChiB1 gene (56%).  相似文献   

3.
4.
昆虫杆状病毒几丁质酶及其应用研究进展   总被引:2,自引:0,他引:2  
杆状病毒几丁质酶基因(chitinase,,ChiA)是晚期表达的非必需基因,高度保守。表达产物几丁质酶分为3个区:N-端信号肽区,中部酶活性区和C-末端酶内质网结合区。该酶同时具有内切和外切几丁质酶活性,主要功能是水解昆虫体内的几丁质,促进虫体液化;作为组织蛋白酶原(pro-V-Cath)的分子伴侣,参与其加工和运输过程; 影响多角体的形成,并与细胞的裂解有关;还与病毒侵染机制相关联。杆状病毒ChiA与细菌ChiA源于共同的祖先,而昆虫ChiA则可能直接来自杆状病毒。在害虫生物防治中,杆状病毒ChiA可直接作为杀虫剂,或作为苏云金杆菌和杆状病毒等微生物杀虫剂的增效剂使用;杆状病毒ChiA可转入植物,获得具有持续杀虫及抗病活性的转基因植物;将杆状病毒ChiA的内质网定位序列删除、突变,或在病毒基因组中插入外源ChiA,重组病毒的杀虫活性增强。通过基因工程手段,删除病毒基因组ChiAV-Cath,可改善杆状病毒表达系统对分泌蛋白和膜结合蛋白的表达。  相似文献   

5.
Finger millet plants conferring resistance to leaf blast disease have been developed by inserting a rice chitinase (chi11) gene through Agrobacterium-mediated transformation. Plasmid pHyg-Chi.11 harbouring the rice chitinase gene under the control of maize ubiquitin promoter was introduced into finger millet using Agrobacterium strain LBA4404 (pSB1). Transformed plants were selected and regenerated on hygromycin-supplemented medium. Transient expression of transgene was confirmed by GUS histochemical staining. The incorporation of rice chitinase gene in R0 and R1 progenies was confirmed by PCR and Southern blot analyses. Expression of chitinase gene in finger millet was confirmed by Western blot analysis with a barley chitinase antibody. A leaf blast assay was also performed by challenging the transgenic plants with spores of Pyricularia grisea. The frequency of transient expression was 16.3% to 19.3%. Stable frequency was 3.5% to 3.9%. Southern blot analysis confirmed the integration of 3.1 kb chitinase gene. Western blot analysis detected the presence of 35 kDa chitinase enzyme. Chitinase activity ranged from 19.4 to 24.8. In segregation analysis, the transgenic R1 lines produced three resistant and one sensitive for hygromycin, confirming the normal Mendelian pattern of transgene segregation. Transgenic plants showed high level of resistance to leaf blast disease compared to control plants. This is the first study reporting the introduction of rice chitinase gene into finger millet for leaf blast resistance.  相似文献   

6.
The gene (chiD) encoding the precursor of chitinase D was found to be located immediately upstream of the chiA gene, encoding chitinase A1, which is a key enzyme in the chitinase system of Bacillus circulans WL-12. Sequencing analysis revealed that the deduced polypeptide encoded by the chiD gene was 488 amino acids long and the distance between the coding regions of the chiA and chiD genes was 103 bp. Remarkable similarity was observed between the N-terminal one-third of chitinase D and the C-terminal one-third of chitinase A1. The N-terminal 47-amino-acid segment (named ND) of chitinase D showed a 61.7% amino acid match with the C-terminal segment (CA) of chitinase A1. The following 95-amino-acid segment (R-D) of chitinase D showed 62.8 and 60.6% amino acid matches, respectively, to the previously reported type III-like repeating units R-1 and R-2 in chitinase A1, which were shown to be homologous to the fibronectin type III sequence. A 73-amino-acid segment (residues 247 to 319) located in the putative activity domain of chitinase D was found to show considerable sequence similarity not only to other bacterial chitinases and class III higher-plant chitinases but also to Streptomyces plicatus endo-beta-N-acetylglucosaminidase H and the Kluyveromyces lactis killer toxin alpha subunit. The evolutionary and functional meanings of these similarities are discussed.  相似文献   

7.
徐香玲  李集临  马兴红 《植物研究》2002,22(3):T002-T003
构建了一个含有多个调控序列的带有几丁质酶基因的植物表达载体,通过发根农杆菌的Ri质粒介导转化烟草的三个品种:K326,RG11,VA116,在卡那霉素抗性培养基上筛选,获得了7株再生植株,以PCR检测、DNA斑点杂交证明表达载体构建成功,几丁质酶基因导入烟草并整合到烟草基因组中。  相似文献   

8.
9.
The temporal and spatial expression of a bean chitinase promoter has been investigated in response to fungal attack. Analysis of transgenic tobacco plants containing a chimeric gene composed of a 1.7-kilobase fragment carrying the chitinase 5B gene promoter fused to the coding region of the gus A gene indicated that the chitinase promoter is activated during attack by the fungal pathogens Botrytis cinerea, Rhizoctonia solani, and Sclerotium rolfsii. Although induction of [beta]-glucuronidase activity was observed in tissues that had not been exposed to these phytopathogens, the greatest induction occurred in and around the site of fungal infection. The increase in [beta]-glucuronidase activity closely paralleled the increase in endogenous tobacco chitinase activity produced in response to fungal infection. Thus, the chitinase 5B-gus A fusion gene may be used to analyze the cellular and molecular details of the activation of the host defense system during pathogen attack.  相似文献   

10.
Insect resistance of transgenic tobacco expressing an insect chitinase gene   总被引:24,自引:0,他引:24  
Chitinase expression in the insect gut normally occurs only during moulting, where the chitin of the peritrophic membrane is presumably degraded. Thus, insects feeding on plants that constitutively express an insect chitinase gene might be adversely affected, owing to an inappropriately timed exposure to chitinase. This hypothesis was tested by introducing a cDNA encoding a tobacco hornworm (Manduca sexta) chitinase (EC 3.2.1.14) into tobacco via Agrobacterium tumefaciens-mediated transformation. A truncated but enzymatically active chitinase was present in plants expressing the gene. Segregating progeny of high-expressing plants were compared for their ability to support growth of tobacco budworm (Heliothis virescens) larvae and for feeding damage. Both parameters were significantly reduced when budworms fed on transgenic tobacco plants expressing high levels of the chitinase gene. In contrast, hornworm larvae showed no significant growth reduction when fed on the chitinase-expressing transgenics. However, both budworm and hornworm larvae, when fed on chitinase-expressing transgenic plants coated with sublethal concentrations of a Bacillus thuringiensis toxin, were significantly stunted relative to larvae fed on toxin-treated non-transgenic controls. Foliar damage was also reduced. Plants expressing an insect chitinase gene may have agronomic potential for insect control  相似文献   

11.
Methods for the detection of bacterial chitinase activity were compared. The soluble substrate p-nitrophenyl-ß-D-N,N diacetyl chitobiose (NDC) was more sensitive in detecting purified chitinase of Serratia marcescens than assays measuring degradation of a solid chitin substrate by either radiochemical or colorimetric means. A chimaeric gene containing a S. marcescens chitinase gene under control of a Cauliflower Mosaic Virus 35S promoter and nopaline synthase terminator sequences was constructed and transferred to tobacco tumour cells using Agrobacterium tumefaciens as a vector. The rate of hydrolysis of the NDC substrate was three fold greater with cell extracts of both pooled and individual tumours carrying the chimaeric chitinase gene than in control tumours. It was calculated from the enzyme activity data that the foreign bacterial chitinase contributed 0.1% of the total soluble protein in transformed plant cells. This level of expression of this gene was not detectable using the less sensitive assays employing solid chitin substrate. These results indicate that NDC is a preferable substrate for assaying bacterial chitinase in transformed plant cells.  相似文献   

12.
The chitinase gene chiA was identified on the Clostridium thermocellum genome downstream of the endoglucanase gene celA. It contains a catalytic module of glycosyl hydrolase family 18 and a cellulosomal dockerin module. Chi18A hydrolyzes aryl-acetyl-chito-oligosaccharides preferentially. In denaturing electrophoresis of purified cellulosomes, a single chitinase activity band was identified in zymograms and Western blots, indicating that Chi18A is the only chitinase in the cellulosome.  相似文献   

13.
Previous results [E. Cabib, A. Sburlati, B. Bowers & S. J. Silverman (1989) Journal of Cell Biology 108, 1665-1672] strongly suggested that the lysis observed in daughter cells of Saccharomyces cerevisiae defective in chitin synthase 1 (Chs1) was caused by a chitinase that partially degrades the chitin septum in the process of cell separation. Consequently, it was proposed that in wild-type cells, Chs1 acts as a repair enzyme by replenishing chitin during cytokinesis. The chitinase requirement for lysis has been confirmed in two different ways: (a) demethylallosamidin, a more powerful chitinase inhibitor than the previously used allosamidin, is also a much better protector against lysis and (b) disruption of the chitinase gene in chs1 cells eliminates lysis. Reintroduction of a normal chitinase gene, by transformation of those cells with a suitable plasmid, restores lysis. The percentage of lysed cells in strains lacking Chs1 was not increased by elevating the chitinase level with high-copy-number plasmids carrying the hydrolase gene. Furthermore, the degree of lysis varied in different chs1 strains; lysis was abolished in chs1 mutants containing the scs1 suppressor. These results indicate that, in addition to chitinase, lysis requires other gene products that may become limiting.  相似文献   

14.
以西瓜尖镰孢菌诱导、提纯的豇豆抗真菌 I类几丁质酶 N端前 1 0个氨基酸序列测定的基础上 ,设计合成了引物 ,运用 PCR等分子生物学技术 ,从豇豆基因组中分离克隆了该特异几丁质酶成熟蛋白基因 ,测定分析了其全序列。该新基因全长 894bp,无内含子 ;具 Aat I、Aat II、Bgl I、Dpn I、Dpn II、Eco R II、Hae I、Hae II、Hae III、Hinf I、Hpa II、Mae II、Mae III、Nba I、Oxa I和 Sst IV酶切位点 43个 ;豇豆、Vigna unguiculata、菜豆、豌豆、烟草、小麦、水稻的同源性依次递减。扩增克隆了菜豆几丁质酶信号肽基因 ,并将其与豇豆几丁质酶成熟蛋白基因连接 ,再与 p BI1 2 1重组 ,成功构建了特异几丁质酶基因的植物表达载体 ,为进一步培育抗真菌病转基因西瓜新品种打下了坚实基础。  相似文献   

15.
莱氏野村菌Cq菌株几丁质酶基因的克隆与表达分析   总被引:2,自引:0,他引:2  
【目的】为揭示昆虫病原真菌分泌的几丁质酶对宿主感染致病时的作用,对莱氏野村菌Cq菌株几丁质酶基因进行了克隆与表达,并检测了表达产物的活性。【方法】采用CTAB法提取菌体DNA,设计特异性引物,多次PCR扩增克隆莱氏野村菌Cq菌株几丁质酶基因全序列,并克隆基因的ORF片段chit1,与载体pPIC9K相连接,构建表达载体pPIC9K-Chit1,转入毕赤酵母感受态细胞中,然后通过1.5mg/L浓度的G418筛选及PCR验证,将阳性转化子进行诱导培养,对发酵液分别进行酶活性测定试验、几丁质酶透明圈验证试验和SDS-PAGE电泳检测。【结果】莱氏野村菌Cq菌株几丁质酶基因全长序列为2756bp(NCBI登录号:EU795711),PCR扩增得到开放阅读框ORF片段chit1为1827bp,其中包含3个内含子,5′端非编码区长76bp,3′端非编码区240bp,编码424个氨基酸的几丁质酶前体,理论信号肽剪切位点在Gly(20)与Leu(21)之间;毕赤酵母重组细胞发酵液中几丁质酶活性随着发酵时间的延长而增加,72h达到最大值482.5U/100μL,透明圈活性验证试验显示,在含1%的几丁质平板上可出现明显的透明圈,表达产物SDS-PAGE电泳检测其分子量为41.0kDa。【结论】本研究克隆到莱氏野村菌Cq菌株几丁质酶基因,其ORF成功重组到毕赤酵母中并表达出有活性的几丁质酶。基因表达产物的利用对进一步研究病原真菌染病昆虫的机制等具有重要意义。  相似文献   

16.
【目的】地衣芽孢杆菌MY75菌株的几丁质酶基因的异源表达,并对表达蛋白的特性进行研究。【方法】制备MY75菌株培养上清粗蛋白,利用酶谱分析确定具有几丁质酶活的蛋白分子量。将该蛋白进行飞行时间质谱分析,确定其部分氨基酸序列,设计PCR引物对MY75菌株的几丁质酶基因进行克隆及异源表达。对表达蛋白的最适反应温度及pH,温度耐受性及金属离子对酶活力的影响等特性进行了研究,并测定了表达蛋白对真菌孢子萌发的抑制活性和对甜菜夜蛾幼虫的杀虫增效作用。【结果】酶谱分析证明MY75菌株培养上清液中仅含有一种55kDa的几丁质酶。将该编码基因chiMY克隆及序列分析后发现,基因长度为1797bp,编码599个氨基酸。在大肠杆菌中异源表达的几丁质酶ChiMY蛋白的分子量为67kDa。质谱分析证明,55kDa蛋白与67kDa蛋白序列相同。ChiMY最适pH和最适温度分别为7.0和50°C,为中性几丁质酶。Li+,Na+,和Mg2+离子对表达蛋白的酶活力具有促进作用,Mn2+,Cr3+,Zn2+和Ag+离子则能显著抑制酶活力,Cu2+和Fe3+离子完全抑制酶活性。生物测定的结果显示,异源表达的MY75几丁质酶能够抑制小麦赤霉及黑曲霉的孢子萌发,并且对苏云金芽孢杆菌的杀虫活力具有增效作用。【结论】地衣芽孢杆菌MY75菌株中仅有一种55kDa几丁质酶,其编码基因能够在大肠杆菌中大量表达,表达蛋白分子量与野生型蛋白之间有显著差异,由此证明MY75菌株中存在着几丁质酶的剪切加工过程。明确了地衣芽孢杆菌几丁质酶ChiMY具有抑制真菌活性及杀虫增效作用。上述全部研究结论在国内首次报道。  相似文献   

17.
A chitinase gene (pCHi58) encoding a 58 kDa chitinase was isolated from theSerratia marcescens KCTC 2172 cosmid library. The chitinase gene consisted of a 1686 bp open reading frame that encoded 562 amino acids.Escherichia coil harboring the pChi58 gene secreted a 58 kDa chitinase into the culture supernatant. The 58 kDa chitinase was purified using a chitin affinity column and mono-S column. A nucleotide andN-terminal amino acid sequence analysis showed that the 58 kDa chitinase had a leader peptide consisting of 23 amino acids which was cleaved prior to the 24th alanine. The 58 KDa chitinase exhibited a 98% similarity to that ofS. marcescens QMB 1466 in its nuclotide sequence. The chitinolytic patterns of the 58 kDa chitinase released N,N′-diacetyl chitobiose (NAG2) as the major hydrolysis end-product with a trace amount ofN-acetylglucosamine. When a 4-methylumbellyferyl-N-acetylglucosamin monomer, dimmer, and tetramer were used as substrates, the 58 kDa chitinase did not digest the 4-Mu-NAG monomer (analogue of NAG2), thereby indicating that the 58 kDa chitinase was likely an endochitinase. The optimum reaction temperature and pH of the enzyme were 50°C and 5.0, respectively.  相似文献   

18.
The Medicago truncatula (Gaertn.) ecotypes Jemalong A17 and R108-1 differ in Sinorhizobium meliloti-induced chitinase gene expression. The pathogen-inducible class IV chitinase gene, Mtchit 4, was strongly induced during nodule formation of the ecotype Jemalong A17 with the S. meliloti wild-type strain 1021. In the ecotype R108-1, the S. meliloti wild types Sm1021 and Sm41 did not induce Mtchit 4 expression. On the other hand, expression of the putative class V chitinase gene, Mtchit 5, was found in roots of M. truncatula cv. R108-1 nodulated with either of the rhizobial strains. Mtchit 5 expression was specific for interactions with rhizobia. It was not induced in response to fungal pathogen attack, and not induced in roots colonized with arbuscular mycorrhizal (AM) fungi. Elevated Mtchit 5 gene expression was first detectable in roots forming nodule primordia. In contrast to Mtchit 4, expression of Mtchit 5 was stimulated by purified Nod factors. Conversely, Mtchit 4 expression was strongly elevated in nodules formed with the K-antigen-deficient mutant PP699. Expression levels of Mtchit 5 were similarly increased in nodules formed with PP699 and its parental wild-type strain Sm41. Phylogenetic analysis of the deduced amino acid sequences of Mtchit 5 (calculated molecular weight = 41,810 Da, isoelectric point pH 7.7) and Mtchit 4 (calculated molecular weight 30,527 Da, isoelectric point pH 4.9) revealed that the putative Mtchit 5 chitinase forms a separate clade within class V chitinases of plants, whereas the Mtchit 4 chitinase clusters with pathogen-induced class IV chitinases from other plants. These findings demonstrate that: (i) Rhizobium-induced chitinase gene expression in M. truncatula occurs in a plant ecotype-specific manner, (ii) Mtchit 5 is a putative chitinase gene that is specifically induced by rhizobia, and (iii) rhizobia-specific and defence-related chitinase genes are differentially influenced by rhizobial Nod factors and K antigens.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号