首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Affinity tags are vital tools for the production of high-throughput recombinant proteins. Several affinity tags, such as the hexahistidine tag, maltose-binding protein, streptavidin-binding peptide tag, calmodulin-binding peptide, c-Myc tag, glutathione S-transferase and FLAG tag, have been introduced for recombinant protein production. The fragment crystallizable (Fc) domain of the IgG1 antibody is one of the useful affinity tags that can facilitate detection, purification and localization of proteins and can improve the immunogenicity, modulatory effects, physicochemical and pharmaceutical properties of proteins. Fcγ recombinant forms a group of recombinant proteins called Fc-fusion proteins (FFPs). FFPs are widely used in drug discovery, drug delivery, vaccine design and experimental research on receptor–ligand interactions. These fusion proteins have become successful alternatives to monoclonal antibodies for drug developments. In this review, the physicochemical, biochemical, immunological, pharmaceutical and therapeutic properties of recombinant FFPs were discussed as a new generation of bioengineering strategies.  相似文献   

2.
The detection and purification of proteins are often time-consuming and frequently involve complicated protocols. The addition of a peptide tag to recombinant proteins can make this process more efficient. Many of the commonly used tags, such as Flag™, Myc, HA and V5 are recognized by specific monoclonal antibodies and therefore, allow immunoaffinity-based purification. Enhancing the current scope of flexibility in using diverse peptide tags, we report here the development of a novel, short polypeptide tag (Tab2) for detection and purification of recombinant proteins. The Tab2 epitope corresponds to the NH2-terminal seven amino acid residues of human TGF. A monoclonal anti-Tab2 antibody was raised and characterized. To investigate the potential of this peptide sequence as a novel tag for recombinant proteins, we expressed several different recombinant proteins containing this tag in E. coli, baculovirus, and mammalian cells. The data presented demonstrates the Tab2 tag–anti-Tab2 antibody combination is a reliable tool enabling specific Western blot detection, FACS analysis, and immunoprecipitation as well as non-denaturing protein affinity purification.  相似文献   

3.
A strategy is described for production of monoclonal antibodies against recombinant proteins that are produced using the baculovirus expression system and that requires no prior purification of the protein of interest. Crude lysates prepared from cultured Sf9 insect cells infected with recombinant or control baculoviruses are absorbed to nitrocellulose filters and used in a dot-immunobinding assay for screening hybridomas. The monoclonal antibody-producing hybridomas are derived by immunization of mice with a synthetic peptide corresponding to a hydrophilic region in the recombinant protein of interest. By using the baculovirus-produced recombinant protein as the screening antigen and by comparing antibody binding to filters containing control Sf9 lysates, hybridomas are identified that produce monoclonal antibodies with specific reactivity for the recombinant protein of interest and that can then subsequently be used to assist in the large-scale purification of the recombinant protein from baculovirus-infected cells. We applied this method to recombinant 26-kDa human Bcl-2 (B-cell lymphoma/leukemia-2), an integral membrane oncoprotein that regulates programmed cell death ("apoptosis") in hematolymphoid cells through unknown mechanisms. Two mouse monoclonal antibodies were produced that specifically bound the recombinant Bcl-2 baculoprotein in both solution and solid-phase assays.  相似文献   

4.
The purification of "difficult" proteins for structural and functional studies remains a challenge. A widely used approach is their production as fusions with an affinity tag, so that a generic tag-based purification protocol can be applied. Alternatively, immuno-affinity using a protein-specific antibody allows purification of unmodified proteins in a single step, if mild elution conditions can be identified for dissociating the complex without disrupting the folding of the protein. Here, we describe a quantitative structure activity relationship (QSAR) strategy to predict optimized elution conditions from a mathematical model that relates target/antibody dissociation to environmental changes. We illustrate the strategy with the E6 protein of the human papilloma virus (HPV) 16, a highly unstable protein central to HPV-induced carcinogenesis. Surface plasmon resonance (SPR) was used to measure the kinetics of dissociation of an E6 peptide from an E6-specific antibody in a set of multivariate conditions, where three environmental factors (pH, NaCl concentration, and temperature) were varied. The QSAR model indicated that dissociation is favored at pH < 5, which is detrimental to E6 folding, and also at pH > or = 10 if the temperature is high. We verified that the conclusions of the QSAR study with the peptide were valid for the scFv1F4/E6 protein complex, and that the recovered protein was capable of mediating p53 degradation. Finally, we demonstrated that the optimized elution conditions (pH 10, 35 degrees C) were adequate for purifying the recombinant E6 protein from crude cell extracts.  相似文献   

5.
The ability to express and purify large quantity of proteins in bacteria has greatly impacted many aspects of biological research. These include their use as a source of reagent for biochemical and biophysical studies as well as a source of antigen for antibody production. Currently many different expression systems are available and new ones are being developed. These systems allow inducible expression of a desired protein as a fusion with an affinity tag for simple purification. The affinity tags can generally be removed by specific proteases which recognize cleavage sites engineered between the affinity tag and the desired protein. Presence of tags that encode epitopes of specific antibodies provide additional means for identification of recombinant proteins. This review provides an overview of some of the most commonly utilized expression systems and examples of the use of these proteins in biochemical and biophysical studies. I will also describe other available systems which may provide suitable alternative for expression of recombinant proteins.  相似文献   

6.
Expression of recombinant proteins often takes advantage of peptide tags expressed in fusion to allow easy detection and purification of the expressed proteins. However, as the fusion peptides most often are flexible appendages at the N- or C-terminal, proteolytic cleavage may result in removal of the tag sequence. Here, we evaluated the functionality and stability of 14 different combinations of commonly used tags for purification and detection of recombinant antibody fragments. The tag sequences were inserted in fusion with the c-terminal end of a domain antibody based on the HEL4 scaffold in a phagemid vector. This particular antibody fragment was able to refold on the membrane after blotting, allowing us to detect c-terminal tag breakdown by use of protein A in combination with detection of the tags in the specific constructs. The degradation of the c-terminal tags suggested specific sites to be particularly prone to proteolytic cleavage, leaving some of the tag combinations partially or completely degraded. This specific work illustrates the importance of tag design with regard to recombinant antibody expression in E. coli, but also aids the more general understanding of protein expression.  相似文献   

7.
《MABS-AUSTIN》2013,5(6):1551-1559
Expression of recombinant proteins often takes advantage of peptide tags expressed in fusion to allow easy detection and purification of the expressed proteins. However, as the fusion peptides most often are flexible appendages at the N- or C-terminal, proteolytic cleavage may result in removal of the tag sequence. Here, we evaluated the functionality and stability of 14 different combinations of commonly used tags for purification and detection of recombinant antibody fragments. The tag sequences were inserted in fusion with the c-terminal end of a domain antibody based on the HEL4 scaffold in a phagemid vector. This particular antibody fragment was able to refold on the membrane after blotting, allowing us to detect c-terminal tag breakdown by use of protein A in combination with detection of the tags in the specific constructs. The degradation of the c-terminal tags suggested specific sites to be particularly prone to proteolytic cleavage, leaving some of the tag combinations partially or completely degraded. This specific work illustrates the importance of tag design with regard to recombinant antibody expression in E. coli, but also aids the more general understanding of protein expression.  相似文献   

8.
Novel analogs of human monocyte chemoattractant protein 1 (MCP-1) were designed, synthesized and characterized to be used as tools to generate monoclonal antibodies as potential human therapeutics. MCP-1 and three analogs were synthesized by step-wise Fmoc solid phase synthesis. After oxidation to form the two-disulfide bonds, affinity chromatography using an immobilized mouse anti-human MCP-1 monoclonal antibody (mAb) was utilized for a simple and highly effective purification procedure for the proteins. The final products were extensively characterized and compared with recombinant human MCP-1 (rhMCP-1). All proteins showed identical binding with mouse anti-human MCP-1 mAbs as measured by surface plasmon resonance. Synthetic MCP-1 and the analogs were comparable to recombinant MCP-1 in competition radio-ligand binding to CCR2 receptors on THP-1 cells, and MCP-1-induced, calcium mobilization and chemotaxis assays.  相似文献   

9.
10.
A critical and often limiting step in understanding the function of host and viral proteins is the identification of interacting cellular or viral protein partners. There are many approaches that allow the identification of interacting partners, including the yeast two hybrid system, as well as pull down assays using recombinant proteins and immunoprecipitation of endogenous proteins followed by mass spectrometry identification1. Recent studies have highlighted the utility of double-affinity tag mediated purification, coupled with two specific elution steps in the identification of interacting proteins. This approach, termed Tandem Affinity Purification (TAP), was initially used in yeast2,3 but more recently has been adapted to use in mammalian cells4-8.As proof-of-concept we have established a tandem affinity purification (TAP) method using the well-characterized eukaryotic translation initiation factor eIF4E9,10.The cellular translation factor eIF4E is a critical component of the cellular eIF4F complex involved in cap-dependent translation initiation10. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence. The TAP tag used in the current study is composed of two Protein G units and a streptavidin binding peptide separated by a Tobacco Etch Virus (TEV) protease cleavage sequence8. To forgo the need for the generation of clonal cell lines, we developed a rapid system that relies on the expression of the TAP-tagged bait protein from an episomally maintained plasmid based on pMEP4 (Invitrogen). Expression of tagged murine eIF4E from this plasmid was controlled using the cadmium chloride inducible metallothionein promoter.Lysis of the expressing cells and subsequent affinity purification via binding to rabbit IgG agarose, TEV protease cleavage, binding to streptavidin linked agarose and subsequent biotin elution identified numerous proteins apparently specific to the eIF4E pull-down (when compared to control cell lines expressing the TAP tag alone). The identities of the proteins were obtained by excision of the bands from 1D SDS-PAGE and subsequent tandem mass spectrometry. The identified components included the known eIF4E binding proteins eIF4G and 4EBP-1. In addition, other components of the eIF4F complex, of which eIF4E is a component were identified, namely eIF4A and Poly-A binding protein. The ability to identify not only known direct binding partners as well as secondary interacting proteins, further highlights the utility of this approach in the characterization of proteins of unknown function.  相似文献   

11.
The 9E10 antibody epitope (EQKLISEEDL) derives from a protein sequence in the human proto-oncogen p62(c-myc) and is widely used as a protein fusion tag. This myc-tag is a powerful tool in protein localization, immunochemistry, ELISA or protein purification. Here, we characterize the myc-tag epitope by substitutional analysis and length variation using peptide spot synthesis on cellulose. The key amino acids of this interaction are the core residues LISE. The shortest peptide with a strong binding signal is KLISEEDL. Dissociation constants of selected peptide variants to the antibody 9E10 were determined. scFv constructs with the shortest possible myc-tags were successfully detected by Western blot and ELISA, giving a signal comparable to that of the original myc-tag.  相似文献   

12.
The envelope glycoproteins E1 and E2 of rubella virus (RV) were engineered to display the FLAG epitope tag and a polyhistidine tag, at their amino and carboxy termini, respectively. These modified envelope proteins were produced in Sf9 insect cells utilizing baculovirus expression vectors, the E1 and E2 vectors giving rise to protein products of about 58 and 42 kDa, respectively. The recombinant proteins were purified by immobilized metal-ion affinity chromatography and reconstituted into liposomes via their hydrophobic transmembrane anchors. The liposomes were prepared by detergent dialysis in the presence of europium-DTPA chelate, enabling the subsequent measurement of the binding of the resultant proteoliposomes to the antibodies by time resolved fluorescence. RV mimicking proteoliposomes were recognized by antibodies specific for the E1 and E2 proteins, as well as the FLAG epitope tag. This type of virosome may prove useful for studies on the basic biological events of an RV infection or as diagnostic reagents.  相似文献   

13.
Peptide tags have proven useful for the detection and purification of recombinant proteins. However cross reactions of antibodies raised to the tag are frequently observed due to the presence of host proteins containing all or parts of the tag. In this report we have identified a unique viral peptide sequence, R-tag, that by blast searches is absent from the commonly expression hosts Arabidopsis thaliana, Escherichia coli, Pichia pastoris and mouse myeloma cell NSO. We have prepared monoclonal antibodies to this peptide and confirmed the absence of this peptide sequence from the above genomes by Western blotting. We have also modified protein expression vectors to incorporate this sequence as a fusion tag in expressed proteins and shown its use to successfully purify recombinant proteins by immunoaffinity procedures.  相似文献   

14.
目的:酪氨酸蛋白激酶NOK/STYKl具有很强的促肿瘤形成和转移能力,被认为是很有前途的肿瘤治疗靶点。由于NOK含有一个跨膜区,且富含疏水性氨基酸,其表达和纯化非常困难,直接影响了对其功能及相关分子机理的深入研究。本研究目的是获得可溶的且纯度较高的NOK胞内区融合蛋白ANOK(AA:49—422),为后续抗体的制备和功能研究奠定重要基础。方法:含有△NOK基因的原核表达载体,转入E-coliBL21中,IPTG诱导蛋白表达,通过亲和层析获得可溶的△NOK融合蛋白。融合蛋白经凝血酶酶切后,凝胶过滤层析分离标签蛋白获得z~NOK蛋白。同时,我们还通过Bac-to-Bac系统获得含有ANOK基因的杆状病毒,感染sO细胞,尝试在真核细胞中表达目的蛋白。结果:通过在sf9昆虫细胞和大肠杆菌表达系统中盐浓度等各种条件的摸索,首次获得了可溶的且纯度较高的NOK胞内区融合蛋白(ANOK—GST)和一定量去除标签的ANOK蛋白。本研究中与大肠杆菌相比,昆虫细胞并不适合△NOK的纯化。结论:我们建立了一套优化的NOK蛋白表达和纯化体系,从而为后续抗体制备和各种体内外生化实验等功能研究奠定基础,为研究NOK在肿瘤中的作用和药物筛选创造条件。同时丰富了整个RTKs家族作用机制的探索,进一步促进了以RTKs为靶点的治疗手段在临床上的应用。  相似文献   

15.
Protein tagging with a peptide is a commonly used technique to facilitate protein detection and to carry out protein purification. Flexibility with respect to the peptide tag is essential since no single tag suites all purposes. This report describes the usage of two short peptides from the SARS-associated coronavirus nucleocapsid (SARS-N) protein as protein tags. Plasmids for the generation of tagged proteins were generated by ligating synthetic oligonucleotides for the peptide-coding regions downstream of the protein coding sequence. The data show recognition of prokaryotically expressed HIV-1 Gag/p24 fusion protein by Western blot and efficient affinity purification using monoclonal antibodies against the tags. The SARS peptide antibody system described presents an alternative tagging opportunity in the growing field of protein science.  相似文献   

16.
High throughput methods for recombinant protein production using E. coli typically involve the use of affinity tags for simple purification of the protein of interest. One drawback of these techniques is the occasional need for tag removal before study, which can be hard to predict. In this work, we demonstrate two high throughput purification methods for untagged protein targets based on simple and cost-effective self-cleaving intein tags. Two model proteins, E. coli beta-galactosidase (βGal) and superfolder green fluorescent protein (sfGFP), were purified using self-cleaving versions of the conventional chitin-binding domain (CBD) affinity tag and the nonchromatographic elastin-like-polypeptide (ELP) precipitation tag in a 96-well filter plate format. Initial tests with shake flask cultures confirmed that the intein purification scheme could be scaled down, with >90% pure product generated in a single step using both methods. The scheme was then validated in a high throughput expression platform using 24-well plate cultures followed by purification in 96-well plates. For both tags and with both target proteins, the purified product was consistently obtained in a single-step, with low well-to-well and plate-to-plate variability. This simple method thus allows the reproducible production of highly pure untagged recombinant proteins in a convenient microtiter plate format.  相似文献   

17.
Affinity tags have become highly popular tools for purifying recombinant proteins from crude extracts by affinity chromatography. Besides, short peptides are excellent ligands for affinity chromatography, as they are not likely to cause an immune response in case of leakage into the product, they are more stable than antibodies to elution and cleaning conditions and they usually have very acceptable selectivity. Hydropathically complementary peptides designed de novo show enough selectivity to be used successfully as peptide ligands for protein purification from crude extracts. Recognition specificity and selectivity in the interaction between the complementary peptide pair His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu and Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe have been demonstrated by other authors. In this work, we designed a recombinant protein purification method using a peptide affinity tag that binds to a peptide-binding partner immobilized on a chromatographic matrix. The enhanced green fluorescent protein expressed (EGFP) in Escherichia coli was used as the model. The peptide Gly-Gly-Gly-His-Leu-Leu-Phe-Pro-Ile-Ile-Ile-Ala-Ala-Ser-Leu was synthesized by solid phase using the Fmoc chemistry and immobilized in NHS-Sepharose (PC-Sepharose). Gly residues were added as a spacer arm at the N terminus. The EGFP was expressed either with the fusion tag Lys-Asn-Tyr-Pro-Lys-Lys-Lys-Met-Glu-Lys-Arg-Phe on the C terminus (EGFP-CPTag) or without any fusion tag. After cell disruption, the extract was directly applied to the PC-Sepharose column equilibrated with 20mM sodium phosphate buffer, pH 7.0. The adsorbed EGFP-CPTag was then eluted with 1M Tris. The yield was 98% and the purification factor 4.6. By contrast, EGFP without tag pass through without interacting with the PC-Sepharose column. The method designed can be applied for the purification of other recombinant proteins.  相似文献   

18.
This work combines two well-established technologies to generate a breakthrough in protein production and purification. The first is the production of polyhydroxybutyrate (PHB) granules in engineered strains of Escherichia coli. The second is a recently developed group of self-cleaving affinity tags based on protein splicing elements known as inteins. By combining these technologies with a PHB-specific binding protein, a self-contained protein expression and purification system has been developed. In this system, the PHB-binding protein effectively acts as an affinity tag for desired product proteins. The tagged product proteins are expressed in E. coli strains that also produce intracellular PHB granules, where they bind to the granules via the PHB-binding tag. The granules and attached proteins can then be easily recovered following cell lysis by simple mechanical means. Once purified, the product protein is self-cleaved from the granules and released into solution in a substantially purified form. This system has been successfully used at laboratory scale to purify several active test proteins at reasonable yield. By allowing the bacterial cells to effectively produce both the affinity resin and tagged target protein, the cost associated with the purification of recombinant proteins could be greatly reduced. It is expected that this combination of improved economics and simplicity will constitute a significant breakthrough in both large-scale production of purified proteins and enzymes and high-throughput proteomics studies of peptide libraries.  相似文献   

19.
20.
Diagnosis of infectious diseases often requires demonstration of antibodies to the microbe (serology). A large set of antigens, covering viruses, bacteria, fungi and parasites may be needed. Recombinant proteins have a prime role in serological tests. Suspension arrays offer high throughput for simultaneous measurement of many different antibodies. We here describe a rational process for preparation, purification and coupling to beads of recombinant proteins prepared in Escherichia coli derivate Origami B, to be used in a serological Luminex suspension array. All six Gag and Env proteins (p10, p12, p15, p30, gp70 and p15E), from the xenotropic murine leukemia virus-related virus (XMRV), were prepared, allowing the creation of a multiepitope XMRV antibody assay. The procedure is generic and allows production of protein antigens ready for serological testing in a few working days. Instability and aggregation problems were circumvented by expression of viral proteins fused to a carrier protein (thioredoxin A; TrxA), purification via inclusion body formation, urea solubilization, His tag affinity chromatography and direct covalent coupling to microspheres without removal of the elution buffer. The yield of one preparation (2–10 mg fusion protein per 100 ml culture) was enough for 20–100 coupling reactions, sufficing for tests of many tens of thousands of sera. False serological positivity due to antibodies binding to TrxA and to traces of E. coli proteins remaining in the preparation could be reduced by preabsorption of sera with free TrxA and E. coli extract. The recombinant antigens were evaluated using anti-XMRV antibodies. Although hybrid proteins expressed in E. coli in this way will not have the entire tertiary structure and posttranslational modifications of the native proteins, they contain a large subset of the epitopes associated with them. The described strategy is simple, quick, efficient and cheap. It should be applicable for suspension array serology in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号