共查询到20条相似文献,搜索用时 0 毫秒
1.
Prudent R López-Ramos M Moucadel V Barette C Grierson D Mouawad L Florent JC Lafanechère L Schmidt F Cochet C 《Biochimica et biophysica acta》2008,1780(12):1412-1420
Protein kinase CK2 is a Ser/Thr kinase, with a constitutive activity, that is considered as a promising target for cancer therapy. The currently available CK2 inhibitors lack the potency and the pharmacological properties necessary to be suitable and successful in clinical settings. We report the development of new potent CK2 inhibitors from salicylaldehyde derivatives identified by automated screening of a proprietary small-molecule library. Docking simulations and analysis of the structure-activity relationship for the hits allowed to determine their binding modes on CK2, and to carry out the optimization of their structures. This strategy led to the discovery of potent CK2 inhibitors with novel structures, one of which was able to inhibit CK2 activity in living cells and promote tumor cell death. The essential features required for potent CK2 inhibitory activity of this class of compounds are discussed. 相似文献
2.
Pagano MA Bain J Kazimierczuk Z Sarno S Ruzzene M Di Maira G Elliott M Orzeszko A Cozza G Meggio F Pinna LA 《The Biochemical journal》2008,415(3):353-365
CK2 (casein kinase 2) is a very pleiotropic serine/threonine protein kinase whose abnormally high constitutive activity has often been correlated to pathological conditions with special reference to neoplasia. The two most widely used cell permeable CK2 inhibitors, TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole), are marketed as quite specific CK2 blockers. In the present study we show, by using a panel of approx. 80 protein kinases, that DMAT and its parent compound TBI (or TBBz; 4,5,6,7-tetrabromo-1H-benzimidazole) are potent inhibitors of several other kinases, with special reference to PIM (provirus integration site for Moloney murine leukaemia virus)1, PIM2, PIM3, PKD1 (protein kinase D1), HIPK2 (homeodomain-interacting protein kinase 2) and DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase 1a). In contrast, TBB is significantly more selective toward CK2, although it also inhibits PIM1 and PIM3. In an attempt to improve selectivity towards CK2 a library of 68 TBB/TBI-related compounds have been tested for their ability to discriminate between CK2, PIM1, HIPK2 and DYRK1a, ending up with seven compounds whose efficacy toward CK2 is markedly higher than that toward the second most inhibited kinase. Two of these, K64 (3,4,5,6,7-pentabromo-1H-indazole) and K66 (1-carboxymethyl-2-dimethylamino-4,5,6,7-tetrabromo-benzimidazole), display an overall selectivity much higher than TBB and DMAT when tested on a panel of 80 kinases and display similar efficacy as inducers of apoptosis. 相似文献
3.
Golub AG Bdzhola VG Kyshenia YV Sapelkin VM Prykhod'ko AO Kukharenko OP Ostrynska OV Yarmoluk SM 《Molecular and cellular biochemistry》2011,356(1-2):107-115
Serine/threonine protein kinase CK2 controls vast variety of fundamental processes in cell life; however, despite long period of study, its functional role is not completely determined. CK2 has a significant pathogenic potential and its activity is strictly associated with the development of various kinds of disorders. There are a growing number of facts that inhibitors of CK2 could be used as pharmaceutical agents for the cancer treatment, viral infections, and inflammatory diseases. In this article, we report structural and biological data on the novel synthetic flavonol derivatives, 3-hydroxy-4'-carboxyflavones, possessing a high inhibitory activity toward CK2. With the aid of combinatorial organic synthesis, molecular modeling techniques and biochemical in vitro tests, we studied the structure-activity relationships of flavonol derivatives and developed binding model describing their key intermolecular interactions with the CK2 ATP-binding site. Obtained data show that the synthetic 3-hydroxy-4'-carboxyflavones possess the highest activity among flavonol inhibitors of CK2 known till date. 相似文献
4.
5.
Bretner M Najda-Bernatowicz A Łebska M Muszyńska G Kilanowicz A Sapota A 《Molecular and cellular biochemistry》2008,316(1-2):87-89
Derivatives of 4,5,6,7-tetrabromobenzotriazole (TBBt) and 4,5,6,7-tetrabromobenzimidazole (TBBi) with IC(50) in the low micromolar range and with high selectivity belong to the most promising inhibitors of protein kinase CK2 (casein kinase 2). Treatment of various cell lines with TBBt, TBBi or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) affected cell viability with simultaneous induction of apoptosis. The inhibitory activity of newly synthesized hydroxyalkyl derivatives of TBBi and TBBt depends on the length of the alkyl chain. The hydroxypropyl substituted derivatives show higher or similar inhibitory activity than the parent compounds when tested with human protein kinase CK2. To test the distribution of this class of compounds in mammals, [(14)C] TBBi was synthesized. 相似文献
6.
Haddach M Pierre F Regan CF Borsan C Michaux J Stefan E Kerdoncuff P Schwaebe MK Chua PC Siddiqui-Jain A Macalino D Drygin D O'Brien SE Rice WG Ryckman DM 《Bioorganic & medicinal chemistry letters》2012,22(1):45-48
Protein kinase CK2 is a potential drug target for many diseases including cancer and inflammation disorders. The crystal structure of clinical candidate CX-4945 1 with CK2 revealed an indirect interaction with the protein through hydrogen bonding between the NH of the 3-chlorophenyl amine and a water molecule. Herein, we investigate the relevance of this hydrogen bond by preparing several novel tricyclic derivatives lacking a NH moiety at the same position. This SAR study allowed the discovery of highly potent CK2 inhibitors. 相似文献
7.
Laudet B Barette C Dulery V Renaudet O Dumy P Metz A Prudent R Deshiere A Dideberg O Filhol O Cochet C 《The Biochemical journal》2007,408(3):363-373
X-ray crystallography studies, as well as live-cell fluorescent imaging, have recently challenged the traditional view of protein kinase CK2. Unbalanced expression of catalytic and regulatory CK2 subunits has been observed in a variety of tissues and tumours. Thus the potential intersubunit flexibility suggested by these studies raises the likely prospect that the CK2 holoenzyme complex is subject to disassembly and reassembly. In the present paper, we show evidence for the reversible multimeric organization of the CK2 holoenzyme complex in vitro. We used a combination of site-directed mutagenesis, binding experiments and functional assays to show that, both in vitro and in vivo, only a small set of primary hydrophobic residues of CK2beta which contacts at the centre of the CK2alpha/CK2beta interface dominates affinity. The results indicate that a double mutation in CK2beta of amino acids Tyr188 and Phe190, which are complementary and fill up a hydrophobic pocket of CK2alpha, is the most disruptive to CK2alpha binding both in vitro and in living cells. Further characterization of hotspots in a cluster of hydrophobic amino acids centred around Tyr188-Phe190 led us to the structure-based design of small-peptide inhibitors. One conformationally constrained 11-mer peptide (Pc) represents a unique CK2beta-based small molecule that was particularly efficient (i) to antagonize the interaction between the CK2 subunits, (ii) to inhibit the assembly of the CK2 holoenzyme complex, and (iii) to strongly affect its substrate preference. 相似文献
8.
Interactions of protein kinase CK2 subunits 总被引:3,自引:0,他引:3
Korn I Gutkind S Srinivasan N Blundell TL Allende CC Allende JE 《Molecular and cellular biochemistry》1999,191(1-2):75-83
Several approaches have been used to study the interactions of the subunits of protein kinase CK2. The inactive mutant of CK2 that has Asp 156 mutated to Ala (CK2A156) is able to bind the CK2 subunit and to compete effectively in this binding with wild-type subunits and . The interaction between CK2A156 and CK2 was also demonstrated by transfection of epitope-tagged cDNA constructs into COS-7 cells. Immunoprecipitation of epitope-tagged CK2A156 coprecipitated the subunit and vice-versa. The assay of the CK2 activity of the extracts obtained from cells transiently transfected with these different subunits yielded some surprising results: The CK2 specific phosphorylating activity of these cells transfected with the inactive CK2A156 was considerably higher than the control cells transfected with vectors alone. Assays of the immunoprecipitated CK2A156 expressed in these cells, however, demonstrated that the mutant was indeed inactive. It can be concluded that transfection of the inactive CK2A156 affects the endogenous activity of CK2. Transfection experiments with CK2 and subunits and CK2A156 were also used to confirm the interaction of CK2 with the general CDK inhibitor p21WAF1/CIP1 co-transfected into these cells. Finally a search in the SwissProt databank for proteins with properties similar to those derived from the amino acid composition of CK2 indicated that CK2 is related to protein phosphatase 2A and to other phosphatases as well as to a subunit of some ion-transport ATPases. 相似文献
9.
Subcellular localization of protein kinase CK2 总被引:17,自引:0,他引:17
More than 46 years ago, Burnett and Kennedy first described protein kinase CK2 (formerly known as casein kinase 2) in liver extracts. Since then, protein kinase CK2 has been investigated in many organisms from yeast to man. It is now well established that protein kinase CK2 is a pleiotropic and ubiquitous serine or threonine kinase, which is highly conserved during evolution. A great number of studies deal with substrates of CK2, but the fact that over 160 substrates exist is more confusing than elucidatory. The holoenzyme is composed of two regulatory beta-subunits and two catalytic alpha- or alpha'-subunits. There is now increasing evidence for individual functions of the subunits that are different from their functions in the holoenzyme. Furthermore, more and more studies describe interacting partners of the kinase that may be decisive in the regulation of this enzyme. A big step forward has been the determination of the crystal structure of the two subunits of protein kinase CK2. Now the interactions of the catalytic subunit of CK2 with ATP as well as GTP and the interaction between the regulatory subunits can be explained. However, cellular functions of protein kinase CK2 still remain unclear. In the present review we will focus our interest on the subcellular localization of protein kinase CK2. Protein kinase CK2 is found in many organisms and tissues and nearly every subcellular compartment. There is ample evidence that protein kinase CK2 has different functions in these compartments and that the subcellular localization of protein kinase CK2 is tightly regulated. Therefore studying the subcellular localization of protein kinase CK2 may be a key to its function. 相似文献
10.
BTF3 is a potential new substrate of protein kinase CK2 总被引:2,自引:0,他引:2
11.
Murine protein kinase CK2: Gene and oncogene 总被引:26,自引:0,他引:26
Xu X Landesman-Bollag E Channavajhala PL Seldin DC 《Molecular and cellular biochemistry》1999,191(1-2):65-74
Protein kinase CK2 (casein kinase II) is a serine-threonine protein kinase with a wide range of substrates, many of which are involved in cell cycle regulation. CK2 activity is elevated in a variety of human tumors and we have used a transgenic mouse model to demonstrate that dysregulated expression of CK2 can induce lymphoma. Thus, CK2 fulfills the definition of an oncogene: A mutated, dysregulated, or mis-expressed gene that contributes to cancer in a dominant fashion. CK2 cooperates in transforming cells with other lymphoid oncogenes such as myc and tal-1, and here we show cooperativity with loss of the tumor suppressor gene p53. To understand more about the physiological and pathological role of CK2, we are cloning the murine CK2 cDNA and gene. CK2 will be used to generate transgenic and knockout mice and the regulatory elements for gene expression will be analyzed. 相似文献
12.
Faust M Kartarius S Schwindling SL Montenarh M 《Biochemical and biophysical research communications》2002,292(1):13-19
PTP-FERM is a protein tyrosine phosphatase (PTP) of Caenorhabditis elegans containing a FERM domain and a PDZ domain. Here we report the characterization of PTP-FERM and the essential role of its FERM domain in the localization of PTP-FERM in the worm. There are at least three alternatively spliced PTP-FERM isoforms, all of which contain a band 4.1/FERM domain, a PDZ domain, and a catalytic domain. PTP-FERM possessed phosphatase activity. PTP-FERM was expressed predominantly in neurons in the nerve ring and the ventral nerve cord. PTP-FERM was found in the nerve processes and to be enriched in the peri-membrane region. Studies using various deletion mutants revealed that the FERM domain was essential and sufficient for the subcellular localization. These results suggest the essential role of the FERM domain in the function of PTP-FERM in the neurons of C. elegans. 相似文献
13.
Distinctive features of plant protein kinase CK2 总被引:6,自引:0,他引:6
In plants, protein kinase CK2 is involved in different processes that control many aspects of metabolism and development. In mammals and yeast the enzyme is a heterotretamer composed of two types of subunits. During years the subunit composition of the maize protein kinase CK2 enzyme has been a source of controversy. We have recently characterized the maize holoenzyme subunits. Our results show that multiple catalytic and regulatory subunits are expressed in maize and are able to specifically interact with other and subunits suggesting a high level of heterogeneity in the typical heterotetrameric structure. Here, we summarize data available on plant CK2 enzymes, in order to clarify the distinctive features and functions of plant protein kinase CK2. 相似文献
14.
Martić S Tackenburg S Bilokin Y Golub A Bdzhola V Yarmoluk S Kraatz HB 《Analytical biochemistry》2012,421(2):617-621
An electrochemical method based on the bioorganometallic Fc-ATP cosubstrate for kinase-catalyzed phosphorylation reactions was used for monitoring casein kinase 2 (CK2) phosphorylations in the absence and presence of five indole/quinolone-based potential inhibitors. Fc-phosphorylation of immobilized peptide RRRDDDSDDD on Au surfaces resulted in a current density at approximately 460 ± 10 mV. An electrochemical redox signal was significantly decreased in the presence of inhibitors. In addition, the electrochemical signal was concentration dependent with respect to the potential inhibitors 1 to 5, which proved to be viable CK2 drug targets with estimated IC50 values in the nanomolar range. 相似文献
15.
Intermolecular contact sites in protein kinase CK2 总被引:1,自引:0,他引:1
Chemical crosslinking and analysis of CNBr-digested fusion products by immunoblotting with sequence-specific antibodies identifies an interaction between positions 55-70 of subunit (55-70) and 65-80 of subunit (65-80). This has been supported by crosslinking of subunits with peptides 65-80 and 55-70, by binding of subunits to immobilized peptides, and by the hindrance of coprecipitation with peptide-raised antibodies (anti-65-80; anti-55-70). Functionally, 55-70 is a negative regulatory region for the kinase activity of subunit . The opposite, stimulatory property of subunit has been assigned to its C-terminal part. Subdivision of peptide 155-181, that has stimulatory effect, into overlapping peptides and assaying for a binding and binding competition revealed a tight physical contact at 162-175. This region, however, is non-stimulatory indicating binding a necessary but not sufficient quality for stimulation. A contact might exist to regions surrounding C147 and/or C220 at subunit a as indicated by crosslinking and peptide competition. The crosslinking data also confirm a - contact in CK2 holoenzyme. Effects by non-ionic detergents show hydrophobic interactions to play an important role in catalytic activity adjustment. 相似文献
16.
Maria Mar Marquès-Bueno Jordi Moreno-Romero Lindy Abas Roberto de Michele M Carmen Martínez 《Plant signaling & behavior》2011,6(10):1603-1605
Studies performed in different organisms have highlighted the importance of protein kinase CK2 in cell growth and cell viability. However, the plant signaling pathways in which CK2 is involved are largely unknown. We have reported that a dominant-negative mutant of CK2 in Arabidopsis thaliana shows phenotypic traits that are typically linked to alterations in auxin-dependent processes. We demonstrated that auxin transport is, indeed, impaired in these mutant plants, and that this correlates with misexpression and mislocalization of PIN efflux transporters and of PINOID. Our data establishes a link between CK2 activity and the regulation of auxin homeostasis in plants, strongly suggesting that CK2 might be required at multiple points of the pathways regulating auxin fluxes.Key words: protein kinase CK2, root development, auxin, PIN, PINOIDThe plant hormone auxin plays critical roles in plant growth and development.1 The most abundant natural auxin is the indol-3-acetic acid (IAA), which is synthesized in young apical tissues and then transported to the growing zones of the stem and root. The major route for long distance IAA movement is via the vascular tissue, but, additionally, a slower transport via cell-to-cell (called polar transport) is critical to generate auxin gradients within tissues. Formation of correct auxin gradients is thought to be essential for many plant developmental processes.2 In recent years, the IAA transporters have been identified, establishing the molecular basis to understand how auxin transport is regulated. In particular, the identification of the family of plasma-resident PIN proteins, the members of which function as IAA efflux carriers, and the knowledge of their polar localization in the plasma membrane (PM), contributed to generate models predicting the direction of IAA fluxes.3,4The factors that govern PIN targeting to a particular membrane domain are still not understood. It is known that PIN proteins constitutively undergo cycles of exocytosis and endocytosis to and from the PM, using distinct sorting and recycling endosome trafficking pathways.5–7 Phosphorylation/dephosphorylation by the Ser/Thr kinase PINOID (PID) and the protein phosphatase 2A, respectively, controls PIN proteins apical/basal localization at the PM, via the GNOM-mediated vesicle trafficking system.8 Interestingly, PID is a member of the plant AGC kinases, and, as it happens with its mammals AGC counterparts, is activated by a membrane-associated 3-phosphoinositide-dependent kinase (PDK1).9 Moreover, a functional similarity between PIN polar localization in response to auxin and glucose receptor (GLUT4) asymmetrical distribution in response to insulin, has been pointed out.10 In both cases, cargo proteins (GLUT4 and PIN, respectively) are transported from endosomal vesicles to PM and the process is mediated by PDK1-activated AGC kinases.Protein kinase CK2 is a Ser/Thr kinase evolutionary conserved in eukaryotes, which plays key roles in cell survival, cell division and other cellular processes. A loss-of-function mutant of CK2 in Arabidopsis, obtained by overexpression of a CK2α-inactive subunit, confirmed the essential role of this protein kinase for plant viability.11 Moreover, CK2mut plants showed a dramatic decrease of lateral root formation, inhibition of root growth and overproliferation of root hairs. We have further demonstrated that auxin transport is impaired in this plants, which is concomitant with missexpression of most of the PM-resident PIN proteins, and of PID.12 In addition, PIN proteins accumulated in endosomal vesicles and auxin gradients were disturbed, both in roots and shoots of CK2mut plants. In particular, root columella cells were depleted of auxin, although the maximum at the quiescent center was unchanged. Starch granule staining with lugol revealed that columella cells retained their fate, although their organization and/or cell shape were clearly affected (Fig. 1).Open in a separate windowFigure 1Lugol-stained starch granules in uninduced (−Dex) and Dex-induced (+Dex) CK2mut roots. In the central part of the figure, a sketch of the main morphogenetic characteristics of mutant roots (right plantlet) as compared to wild-type roots (left plantlet) is shown. Note the shorter roots, wavy phenotype, absence of lateral roots and overproliferation of root hairs in mutant plants.Our results strongly suggest that CK2 is a regulator of auxin-dependent responses, most likely by participating in the regulation of auxin transport. Strikingly, depletion of CK2 activity inhibits some auxin-dependent physiological responses whereas it enhances others. For instance, whereas shoot phototropism was completely absent, root gravitropism was enhanced.12 Figure 2 shows a time-course of DR5rev::GFP-derived signal after changing the gravity vector, in mutant and control Arabidopsis roots. The progressive auxin translocation to the lower side of the root after gravistimulation is more rapid and sustained in mutant than in control roots, which is likely responsible for the enhanced response to gravity found in mutant roots. Based on these results, we postulate that CK2 might act at different points of the auxin-induced regulatory pathway. As far as is known, the core module that regulates auxin transport is constituted by the protein kinase PID and a protein of the NPH3-domain family. NPH3-containing proteins play important roles in phototropic and gravitropic responses, and regulate polarity and endocytosis of PIN proteins.13 As has been proposed by other authors, the participation of one AGC kinase and one NPH3-like protein upstream of an ARF factor might be a common theme in response to different stimulus that are signaled by auxin.14 We propose that one of the functions of CK2 is the regulation of the activity of core proteins (Fig. 3). Mammalian AGC kinases are well known substrates of CK2 and CK2-dependent phosphorylation is critical for a full display of their activity. The PID and the NPH3-containing protein sequences contain numerous acidic-based motifs that are predicted CK2 phosphorylation sites. Moreover, according to Arabidopsis phosphoproteome databases, several members of the NPH3-containing protein family are predicted to be phosphorylated.15 In addition, we do not discard the possibility that other proteins involved in PIN transport might also be regulated by CK2-dependent phosphorylation. Experiments are in progress in our laboratory to assess the regulatory role of CK2 in auxin transport.Open in a separate windowFigure 2Time course of auxin relocation during root gravitropic response, as visualized by DR5rev::GFP fluorescence. Root pictures were taken at the indicated times after changing the direction of the gravity vector. Translocation of auxin to the lower part of the root is more rapid in Dex-induced CK2mut plants. Arrows indicate asymmetrical DR5::GFP fluorescence.Open in a separate windowFigure 3Proposed model for the role of CK2 in regulating auxin transport. The core module that regulates auxin transport (shown here as a black box) is constituted by the protein kinase PID and a protein of the NPH3-domain family. PID regulates apical-basal targeting of PIN proteins, by phosphorylating conserved Ser residues present in PIN hydrophilic loops.16 On the other hand, the family of NPH3-containing proteins regulates polarity and endocytosis of PIN proteins.13 There is also a functional similarity between the intracellular transport of PIN proteins and that of the glucose receptor (GLUT4),10 two processes that are signaled by AGC kinases. We propose that CK2 might be a regulator of the activity of the core proteins, by phosphorylating either the AGC kinase and/or the NPH3-containing protein. Mammalian CK2 is a known regulator of the activity of AGC kinases and other proteins participating in signaling pathways, such as in the Wnt/β-catenin signaling pathway.17 相似文献
17.
Five isoforms of CK2 may exist simultaneously in yeast cells: free catalytic subunits CK2α', CK2α and three holoenzymatic structures composed of αα'ββ', α(2)ββ' and α'(2)ββ'. Each isolated and purified form exhibits properties typical for CK2, but they differ in substrate specificity as well as in sensitivity to specific modulators. All five isoforms of protein kinase CK2 from Saccharomyces cerevisiae were examined for their binding capacity with ATP/GTP and two commonly used ATP-competitive inhibitors TBB and TBI. Enzymes were tested with protein substrates differently interacting with CK2 subunits: Elf1, Fip1, Svf1, P2B and synthetic peptide. Obtained results show that K(m) for ATP varies from 2.4-53 μM for Elf1/CK2α' and Svf1/CK2α, respectively. Similar differences can be seen in case when GTP was used as phosphate donor. The inhibitory effect depends on composition of CK2/substrate complexes. Highest sensitivity to TBB shows all complexes containing αα'ββ' isoform with K (i) values between 0.2 and 1.1 μM. The prospect that TBB and TBI could be utilized to discriminate between different molecular forms of CK2 in yeast cells was examined. Both inhibitors, TBB as well as TBI, decreases cell growth to extents devoting interactions with different CK2 isoforms present in the cell but the presence of β/β'-dimer has a high importance towards sensitivity. Conceivably, a given inhibitor concentration can inhibit only selected CK2-mediated processes in the cell. 相似文献
18.
Regulation of histone deacetylase 2 by protein kinase CK2 总被引:10,自引:0,他引:10
19.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(3):338-343
AbstractThe synthesis and in vitro evaluation of 40 new 2-phenylisothiazolidin-3-one-1,1-dioxide derivatives are described. The optimization based on biological screening data and molecular modeling resulted in a 10-fold increase in inhibitory activity compared with previously reported inhibitors of this class and led to the identification of 3-{[2-chloro-4-(1,1-dioxido-3-oxoisothiazolidin-2-yl)benzoyl]amino}benzoic acid, a potent inhibitor of human protein kinase CK2 (?C50?=?1.5?μM). 相似文献