首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and efficient regeneration protocol was established for soybean [Glycine max (L.) Merrill]. Cotyledonary node explants from 7-day-old in vitro seedlings were used as explants. The effect of different plant growth regulators [N 6 –benzyladenine (BA), kinetin (KT), thidiazuron (TDZ), gibberellic acid (GA3), zeatin riboside (ZTR), indole-3-acetic acid (IAA), and indole-3-butyric acid (IBA)] along with polyamines (Spermidine, spermine, and putrescine) were investigated at different stages of regeneration using direct organogenesis system. Exogenous spermidine (137.69 μM) in shoot induction medium containing optimal BA concentration (2.22 μM) induced maximum number of shoots (39.02 shoots/explant) compared to BA (2.22 μM) alone. Regenerated shoots elongated well in shoot elongation medium containing GA3 (1.45 μM) and spermine (74.13 μM), and developed profuse roots in root induction medium containing putrescine (62.08 μM). Rooted plantlets were successfully hardened and acclimatized with a survival rate of 92 %. The amenability of the standardized protocol using cultivar PK 416 was tested on four more Indian soybean cultivars JS 90–41, Hara soy, Co1, and Co2 of which PK 416 was found to be the best responding cultivar, with a maximum of 96.94 % shoot induction.  相似文献   

2.
Morphogenic responses of two accessions of African yam bean to different concentrations of plant growth regulator supplements to Murashige and Skoog basal medium was investigated to develop a more efficient regeneration system. Mature embryo explants were cultured on growth regulator-free and BAP + NAA supplemented media. Nodal cuttings excised from 4-week old shoots of the regenerated embryos were cultured on media containing varying concentrations and combinations of 6-benzyl aminopurine (BAP), kinetin and α-naphthalene acetic acid (NAA). Growth regulator-free medium favored embryo regeneration and growth over supplemented media and both enhanced shoot regeneration and rooting, but could not induce multiple shoot formation on embryo explants. Multiple shoots were produced by nodal explants and the highest average number of shoots (5.3 ± 2.3), leaves (7.7 ± 3.6), roots (3.7 ± 2.9) and root length (3.1 ± 0.0 cm) were obtained on a medium with 0.6 mg l?1 BAP + 0.03 mg l?1 NAA for accession TSs154, while in TSs5, highest number of shoots (3.2 ± 2.5) and leaves (5.9 ± 1.5) were induced by 2.0 mg l?1 Kinetin + 0.05 mg l?1 NAA. Such differential morphogenic responses to culture media underline the genotypic control of in vitro propagation of this crop. Embryo and nodal explants rooted directly on shoot regeneration media, and regenerated plantlets were successfully acclimatized. The efficient regeneration system obtained will enhance genetic improvement of African yam bean by facilitating molecular genetic transformation for advanced breeding.  相似文献   

3.
A comparative performance of two explants types (CN and Nodal) for their efficiency to induce multiple shoot regeneration in Clitoria ternatea has been carried out. Thidiazuron (TDZ) in different concentrations (0.05–2.5 μM) was used as a supplement to the Murashige and Skoog’s (MS) basal media. Explant type apart, two factors viz. concentration and exposure duration to TDZ played an important role in affecting multiple shoot regeneration. Cotyledonary node explants produced the best results at 0.1 μM TDZ, while in nodal explants the highest rate of shoot formation was achieved on MS medium supplemented with 1.0 μM TDZ. In both the explants, shoot multiplication increased when the regenerated shoots were subcultured on hormone free MS medium after 4 weeks of exposure to TDZ. Among the two, cotyledonary node explants produced considerably higher number of shoots at a comparatively lower concentration of TDZ than nodal explants. The regenerated shoots rooted best on MS medium containing 1.0 μM indole-3-butyric acid (IBA) and were successfully established in pots containing garden soil with 88 % survival rate. All the regenerated plants showed normal morphology and growth characteristics.  相似文献   

4.
Improvements to in vitro organogenesis are essential for optimizing shoot development and understanding basic physiological processes. The addition of polyamines (PAs) to the culture medium has been used to modulate organogenesis in plants, and this work evaluated the effects of exogenous PAs on direct organogenesis from apical and cotyledonary nodal Cedrela fissilis explants as well as the effects of putrescine (Put) on endogenous PA levels and variations in protein abundance. The effects of exogenous Put, spermidine, and spermine at 0, 0.5, 1, 2.5, or 5 mM on shoot development were tested. The comparison of the tested PAs to the control treatment revealed that 2.5 mM Put significantly increased the length of shoots from cotyledonary nodal explants, which are more sensitive than apical nodal explants, and treatment with 2.5 mM Put significantly increased the endogenous total free-PA and free-Put levels in shoots compared with the control (no Put). A comparative proteomic analysis of shoots indicated that 2.5 mM Put significantly changed the abundance of proteins, primarily metabolic and cellular proteins associated with stress and energy processes such as cell division. These results show that Put functions in endogenous PA metabolism and alters protein abundance, thereby contributing to shoot development in C. fissilis.  相似文献   

5.
Different vegetative parts of Brassica alboglabra seedlings and mature plants were used as explants in culture.A high frequency (60–100%) of shoot regeneration was obtained from hypocotyl explants, nodal stem segments, internodal segments and shoot apices cultured on Murashige-Skoog basal medium. Addition of 6-benzylaminopurine and kinetin increased the average number of shoots per explant. When detached and transferred to basal medium, the shoots readily developed roots. Regenerated plantlets could be successfully transplanted in soil.  相似文献   

6.
Plant regeneration from the nodal explants of 1-month-old in vitro grown plants and cotyledonary node explants of 15-days-old seedlings of Sterculia urens is reported. Nodal explants were grown on MS medium supplemented with various growth regulators like BA, KIN and TDZ. For shoot induction 13.3 μM BA, 0.9 μM TDZ and 9.3 μM KIN were found optimum. Among the three growth regulators 0.90 μM TDZ was used for the growth of cotyledonary node explants. An average of 8.6 shoots per node and 11.2 shoots per cotyledonary node were observed in 4 to 5 weeks. These shoots were subsequently rooted in vitro on half strength MS medium containing various concentrations of auxins like IBA and NAA. The best concentrations for rooting of shoots were 19.7 μM IBA and 16.1 μM NAA. Plantlets were acclimatized to ex vitro conditions and established in the field.  相似文献   

7.
A rapid and efficient plant propagation system through shoot tip explants was established in Vitex trifolia L., a medicinally important plant belonging to the family Verbenaceae. Multiple shoots were induced directly on Murashige and Skoog (MS) medium consisting of different cytokinins, 6-benzyladenine (BA), kinetin (Kin) and 2-isopentenyl adenine (2-iP), BA at an optimal concentration of 5.0 μM was most effective in inducing multiple shoots where 90 % explants responded with an average shoot number (4.4±0.1) and shoot length (2.0±0.1 cm) after 6 weeks of culture. Inclusion of NAA in the culture medium along with the optimum concentration of BA promoted a higher rate of shoot multiplication and length of the shoot, where 19.2±0.3 well-grown healthy shoots with an average shoot length of 4.4±0.1 cm were obtained on completion of 12 weeks culture period. Ex vitro rooting was achieved best directly in soilrite when basal portion of the shoots were treated with 500 μM indole-3-butyric acid for 15 min which was the most effective in inducing roots, as 95 % of the microshoots produced roots. Plantlets went through a hardening phase in a controlled plant growth chamber, prior to ex-vitro transfer. Micropropagated plants grew well, attained maturity and flowered with 92 % survival rate. The results of this study provide the first report on in vitro plant regeneration of Vitex trifolia L. using shoot tip explants.  相似文献   

8.
The physiological and antioxidant response to salinity was studied in pomegranate (Punica granatum L.) by exposing in vitro growing shoots of the Italian variety Profeta Partanna to 125 or 250 mM NaCl for 10 and 20 days. 250 mM NaCl significantly reduced shoot length, leaf area and water content of the shoots, regardless the length of the salt treatment,with respect to the control and to the 125 mM NaCl treatment. After 20 days the shoots treated with 250 mM NaCl also showed a significant reduction in relative growth rate (RGR) together with marked necroses and abscission of the oldest leaves. Salt treatments significantly decreased the contents of chlorophylls and carotenoids in both exposure times, depending on NaCl concentration. Proline, total phenolic compounds and ellagic acid did not increase or even decrease with the salt treatments. The levels of lipid peroxidation decreased, ascorbate peroxidase (APX) activity significantly increased in both treatment times and concentrations, while guaiacol peroxidase (G-POD) activity significantly increased in shoots treated with 250 mM NaCl for 20 days suggesting the rapid involvement of APX in controlling the oxidative stress in this species, even at low salt concentrations, and a delayed complementary role of G-POD.  相似文献   

9.
The effects of magnetic field (MF) treatments of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress were investigated under controlled conditions. Soybean seeds were exposed to a 1.0 Hz sinusoidal uniform pulsed magnetic field (PMF) of 1.5 µT for 5 h/day for 20 days. Non‐treated seeds were considered as controls. For callus regeneration, the embryonic axis explants were taken from seeds and inoculated in a saline medium with a concentration of 10 mM NaCl for calli growth analysis and biochemical changes. The combined treatment of MF and salt stress was found to significantly increase calli fresh weight, total soluble sugar, total protein, and total phenol contents, but it decreased the ascorbic acid, lipid peroxidation, and catalase activity of calli from magnetically exposed seeds compared to the control calli. PMF treatment significantly improved calli tolerance to salt stress in terms of an increase in flavonoid, flavone, flavonole, alkaloid, saponin, total polyphenol, genistein, and daidzein contents under salt stress. The results suggest that PMF treatment of soybean seeds has the potential to counteract the adverse effects of salt stress on calli growth by improving primary and secondary metabolites under salt stress conditions. Bioelectromagnetics 33:670–681, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Growth, osmotic adjustment, antioxidant enzyme defense and the principle medicinal component bacoside A were studied in the in vitro raised shoot cultures of Bacopa monnieri, a known medicinal plant, under different concentrations of NaCl [0.0 (control), 50, 100, 150 or 200 mM]. A sharp increase in Na+ content was observed at 50 mM NaCl level and it was about 6.4-fold higher when compared with control. While Na+ content increased in the shoots with increasing levels of NaCl in the medium, both K+ and Ca2+ concentrations decreased. Significant reduction was observed in shoot number per culture; shoot length, fresh weight (FW), dry weight (DW) and tissue water content (TWC) when shoots were exposed to increasing NaCl concentrations (50–200 mM) as compared with the control. Decrease in TWC was not significant at higher NaCl level (150 and 200 mM). At 200 mM NaCl, growth of shoots was adversely affected and microshoots died under prolonged stress. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in the controls in contrast to sharp increase of it in NaCl-stressed shoots. Higher amounts of free proline, glycinebetaine and total soluble sugars (TSS) accumulated in NaCl-stressed shoots indicating that it is a glycinebetaine accumulator. About 2.11-fold higher H2O2 content was observed at 50 mM NaCl as compared with control and it reached up to 7.1-folds more at 200 mM NaCl. Antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase) also increased with a rise in NaCl level. Increase in bacoside A, a triterpene saponin content was observed only up to 100 mM NaCl level. Higher salt concentrations inhibited the accumulation of bacoside A. It appears from the data that accumulation of osmolytes, ions and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa under salt stress.  相似文献   

11.
Lack of competence of seedling explants for efficient shoot proliferation in recalcitrant grain legume cowpea restricts its genetic manipulation for crop improvement. This study aimed at establishing a protocol to increase the shoot proliferation efficiency during the regeneration of transgenic cowpea plants. Here, we describe how seedling preconditioning in thidiazuron (TDZ) could stimulate the transformation process (by 3.5-fold), shoot proliferation potential of cotyledonary node (by a factor of fourfold) and accelerate the transgenic shoot regeneration. We investigated the effect of TDZ and 6-benzyladenine (BA) at high dose (5?C20???M) in the induction phase of regeneration by preconditioning seedlings for different durations (2?C6?days) with the aim of improving shoot proliferation competence from cultured explants. Cotyledonary node explants from preconditioned seedlings were cultured on MSB5 medium supplemented with 5???M BA and 0.5???M kinetin for 4?weeks. Best response in terms of maximum shoot proliferation (7.1 shoots per explants), and greatest shoot length (2.6?cm) were obtained with explants derived from seedlings preconditioned in 10???M TDZ for 4?days. This enhanced shoot proliferation ability was maintained through three subsequent 4-week long regeneration passages. On comparison of the transformation rate in absence and presence of seedling preconditioning (in 10???M TDZ for 4?days), a significant enhancement from 0.6 to 2.1% was observed. The promotive effect of seedling preconditioning had a direct beneficial effect on transgenic plant recovery time leading to a reduction of more than 2?weeks. The protocol was found applicable to seven cowpea genotypes.  相似文献   

12.
Common centaury (Centaurium erythraea Rafn.) is a plant species that can inhabit saline soils. It is known as a plant with high spontaneous regeneration potential in vitro. In the present work we evaluated shoots and roots salinity tolerance of non-transformed and three AtCKX transgenic centaury lines to graded NaCl concentrations (0, 50, 100, 150, 200 mM) in vitro. Overexpression of AtCKX genes in transgenic centaury plants resulted in an altered cytokinins (CKs) profile leading to a decline of bioactive CK levels and, at the same time, increased contents of storage CK forms, inactive CK forms and/or CK nucleotides. Significant increment of fresh shoot weight was obtained in shoots of non-transformed and AtCKX1 transgenic line only on medium supplemented with 50 mM NaCl. However two analysed AtCKX2 transgenic lines reduced shoot growth at all NaCl concentrations. In general, centaury roots showed higher tolerance to salinity than shoots. Non-transformed and AtCKX1 transgenic lines tolerated up to 100 mM NaCl without change in frequency of regeneration and number of regenerated plants. Roots of two analysed AtCKX2 transgenic lines showed different regeneration potential under salt stress. Regeneration of transgenic AtCKX2-26 shoots even at 200 mM NaCl was recorded. Salinity stress response of centaury shoots and roots was also evaluated at biochemical level. Free proline, malondialdehyde and hydrogen peroxide content as well as antioxidative enzymes activities were investigated in shoots and roots after 1, 2, 4 and 8 weeks. In general, adition of NaCl in culture medium elevated all biochemical parameters in centaury shoots and in roots. Considering that all analysed AtCKX transgenic centaury lines showed altered salt tolerance to graded NaCl concentrations in vitro it can be assumed that CKs might be involved in plant defence to salt stress conditions.  相似文献   

13.
Direct plant regeneration from different explants, micropropagation and determination of secondary metabolites were studied in the critically endangered endemic Rhaponticoides mykalea (Hub.-Mor.) M.V. Agab & Greuter. Seed germination was achieved by damaging the seed coat and cultivating the embryos on Woody Plant Medium (WPM), of which 40% germinated. The epicotyls and cotyledonary petioles of seedlings were used as initial explants and direct shoot regeneration was obtained on WPM containing 2.22 μM 6-benzyladenine (BA). WPM medium supplemented with 2.22 μM BA and 4.92 μM indole-3-butyric acid (IBA) significantly improved the production of multiple shoots, resulting in an average of 5.6 shoots per explants. The highest rooting of shoots (35.6%) was observed with WPM medium containing 19.68 μM IBA with 990 μM putrescine. Plantlets with well-developed roots were transferred to soil and acclimatised within a plant growth chamber. Acclimatised plants showed 100% survival rate and remained healthy. As a part of our study, the content of secondary metabolites in three tissue culture regenerated lines were determined by HPLC analysis. Chlorogenic acid, Quercetin and scutellarin were confirmed secondary metabolites of R. mykalea.  相似文献   

14.
A procedure for the regeneration of fertile plants by organogenesis from tissue cultures of soybeans, Glycine max is described. Seeds were germinated on reduced inorganic salt MS medium containing 5M BA. Cotyledonary nodes were excised and cultured on the same medium. Presence of BA in the medium during seed germination and culture of nodal explants was required for multiple shoot and shoot-bud formation. Histological analyses established the de novo nature of shoot regeneration. Separate reduction of the concentration of inorganic salts or substitution of sucrose for fructose during culture had minimal effects on the regeneration response. Conversely, if the BA was reduced, the inhibition response could not be overcome by increased salt concentration or altered carbon source.Abbreviations BA benzyladenine - IAA indoleacetic acid - SAS secondary axillary shoots - MS Murashige and Skoog (1962) medium  相似文献   

15.
In vitro plantlet regeneration systems for the seed geranium (Pelargonium x hortorum Bailey) using cotyledon, hypocotyl and root explants were optimized by studying the influence of seedling age, growth regulators and excision orientation on organogenesis. Indole-3-acetic acid combined with zeatin yielded the highest rate of shoot production on cotyledon explants (0.2–2 shoots per explant). More shoots were produced on explants cut from the most basal region of cotyledons from 2 to 4-day-old seedlings than from older seedlings or more distal cut sites. Hypocotyl explants produced the highest number of shoots, up to 40 shoots per explant, on indole-3-acetic acid (2.8–5.6 mM) + zeatin (4.6 mM) or thidiazuron (4.5 mM). Maximum shoot formation (0.3–1.4 shoots per explant) on root explants occurred when they were cultured on medium containing zeatin. Regenerated shoots rooted best on a basal medium containing no growth regulators. There were substantial differences among cultivars in shoot formation from each of the explant systems.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA naphthaleneacetic acid - TDZ thidiazuron  相似文献   

16.
The interactive effects of salinity stress (40, 80, 120 and 160 mM NaCl) and ascorbic acid (0.6 mM), thiamin (0.3 mM) or sodium salicylate (0.6 mM) were studied in wheat (Triticum aestivum L.). The contents of cellulose, lignin of either shoots or roots, pectin of root and soluble sugars of shoots were lowered with the rise of NaCl concentration. On the other hand, the contents of hemicellulose and soluble sugars of roots, starch and soluble proteins of shoots, proline of either shoots or roots, and amino acids of roots were raised. Also, increasing NaCl concentration in the culture media increased Na+ and Ca2+ accumulation and gradually lowered K+ and Mg2+ concentration in different organs of wheat plant. Grain soaking in ascorbic acid, thiamin or sodium salicylate could counteract the adverse effects of NaCl salinity on the seedlings of wheat plant by suppression of salt stress induced accumulation of proline.  相似文献   

17.
The possible use of in vitro shoot morphogenesis and shoot apex culture to evaluate salt tolerance in cultivated tomato (Lycopersicon esculentum Mill.) has been analyzed, using two cultivars with similar salt tolerance, Pera and Hellfrucht frühstamm (HF). The effect of salt on shoot regeneration was studied by culturing leaf explants on media supplemented with 0, 43, 86, 129 and 172 mM NaCl. The presence of NaCl in the regeneration media at 86 mM strongly inhibited shoot regeneration in the cultivar HF, but not in Pera. However, the substitution of NaCl by mannitol, maintaining the same water potential in the culture media, decreased the regeneration percentage in Pera but did not affect HF. Shoot apices of both cultivars were also subcultured at 6-week intervals, for 4 subcultures, at the same NaCl concentrations as used in the previous experiment, and the shoot growth, leaf and root number, rooted shoot and shoot necrosis were recorded at the end of each subculture. Root formation was the parameter most affected by salt in both cultivars, Pera being more sensitive than HF. The substitution of NaCl by mannitol significantly increased the percentage of rooted shoots in Pera after four subcultures, and slightly decreased this percentage in HF. Shoot necrosis was only observed in the last subculture at NaCl higher than 86 mM, the percentage of necrotic shoots being higher in Pera than in HF (75% and 45%, respectively). The lack of agreement between the results obtained with the in vitro tests, e.g., adventitious shoot formation and growth of apical stem sections, suggests that this approach may not be a reliable tool to evaluate salt tolerance in cultivated tomato. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Summary This study reports a protocol for successful micropropagation of Decalepis arayalpathra (Joseph and Chandras) Venter. (Janakia arayalpathra Joseph and Chandrasekhran; Periplocaceae), a critically endangered and endemic ethnomedicinal plant in the southern forests of the Western Ghats which is overexploited for its tuberous medicinal roots by the local Kani tribes. Natural regeneration is rare and conventional propagation is difficult. Conservation of the species through micropropagation was attempted. The nodal explants of greenhouse-raised plants, were more desirable than cotyledonary nodal explants of aseptic seedlings. The basal nodes (73%) of 12–16-wk-old greenhouse-grown plants cultured in Murashige and Skoog (MS) medium containing 12.96 μM 6-benzyladenine (BA), 2.48 μM 2-isopentenyladenine (2-ip) and 2.68 μM α-naphthaleneacetic acid (NAA) formed 16–17 cm long unbranched robust solitary shoots in 8 wk. Cotyledonary nodal explants cultured in the same medium showed multiple shoot formation and axillary branching. But the shoots were thin, fragile and not suitable for mass propagation. Single nodes of a solitary shoot subcultured on MS medium containing 2.22 μM BA and 0.24 μM 2-ip together produced 9.8±0.3 nodes from 18.0±0.6 cm long shoots within 5–6 wk. The basal nodes of the shoots so formed were repeatedly subcultured to increase the stock of propagules while the 2.5–3.0 cm terminal cuttings were used for rooting. The best root induction (68%) and survival (86%) was achieved on half-strength MS medium supplemented with 1.07 μM NAA. Field-established plants showed uniform growth and phenotypic similarity to parental stock.  相似文献   

19.
Nitric oxide (NO) plays diverse roles in the growth and development of plants. The effects of a NO donor, sodium nitroprusside (SNP), on shoot multiplication and regeneration of Vanilla planifolia Andrews have been studied. Nodal segments of V. planifolia were used as explants to initiate shoots. The number of shoots per explant showed a significant increase in the presence of SNP and more than 93% of explants formed shoots. Supplementation of 10.0 μM SNP to Murashige and Skoog (MS) basal medium containing 1.0 mg/L 6-benzylaminopurine (BAP) produced the highest number of shoots per explant (10.33) after 60 d of culture. However, in this treatment, shoot length (3.76 cm) was less than in the other treatments, except for the plant growth regulator-free MS medium. MS medium containing only 1.0 mg/L BAP produced the highest shoot length (4.49 cm) with a mean number of 6.26 shoots per explant. These findings indicate that NO stimulated shoot development and may be considered as an intermediary of adventitious shoot regeneration, as has been suggested for other plant species.  相似文献   

20.
A rapid and efficient protocol for the large‐scale propagation of a potential medicinal plant, Mucuna pruriens, through in vitro culture of nodal segment explants obtained from 15‐day‐old aseptic seedlings is described. Of the three different cytokinins, 6‐benzyladenine (BA), kinetin (Kin) and 2‐isopentenyl adenine (2‐iP) evaluated as supplements to Murashige and Skoog (MS) medium, BA at an optimal concentration of 5.0 μM was effective in inducing multiple shoots. Strength of the basal media also influenced the efficiency of shoot regeneration. The frequency of shoot regeneration tended to increase when the salt concentration in the basal media was reduced. Highest number of multiple shoots (23.3) and maximum average length (5.6 cm) were standardised on half‐strength MS medium supplemented with 5.0 μM BA along with 0.5 μM α‐naphthalene acetic acid (NAA) at pH 5.8. Rooting was best induced in shoots excised from proliferated shoot cultures on MS medium augmented with an optimal concentration of 1.0 μM indole‐3‐butyric acid (IBA). The in vitro‐raised plantlets with well‐developed shoots and roots were successfully established in earthen pots containing garden soil and were grown in greenhouse with 90% survival rate. The results of this study provide the first report on in vitro plant regeneration of M. pruriens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号