首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of culture aeration rate on production and antioxidant property of exopolysaccharide (EPS) by Armillaria mellea were investigated in a 5‐L stirred‐tank bioreactor where an optimal biomass aeration rate of 1.2 vvm with 0.22 g/g cell yield and 0.6 vvm EPS formation rate with 7.66 mg/g product yield were achieved. A two‐stage aeration process to maximize the biomass and EPS productions proceeded with a 1.55‐fold enhancement (from 4.28 to 6.65 g/L) in biomass formation and a 2.68‐fold enhancement (from 86.9 to 233.2 mg/L) in the EPS production, as compared with those from the aeration rate of 0.3 vvm. The molecular weights of EPS in cultures of different aeration rates are closely correlated with their protein/polysaccharide ratios (R2=0.830) and EC50 (EC50, the effective concentration where the antioxidant property is 50%) values in antioxidant activity (R2=0.960), reducing power (R2=0.894) and chelating ability (R2=0.954). EPS from the two‐stage aeration rate culture shows a strong antioxidant property by the conjugated diene method, reducing power and chelating ability on ions. Therefore, we present results to regulate and to optimize A. mellea cultures to efficiently produce biomass and EPS. The fermented EPS has the potential to be used as for antioxidant‐related functional foods and pharmaceutical industries.  相似文献   

2.
The effect of oxidative stress on indole alkaloids accumulation by cell suspensions and root cultures of Uncaria tomentosa in bioreactors was investigated. Hydrogen peroxide (H2O2, 200 μM) added to U. tomentosa cell suspension cultures in shaken flasks induced the production of monoterpenoid oxindole alkaloids (MOA) up to 40.0 μg/L. In a stirred tank bioreactor, MOA were enhanced by exogenous H2O2 (200 μM) from no detection up to 59.3 μg/L. Root cultures grew linearly in shaken flasks with a μ=0.045 days?1 and maximum biomass of 12.08±1.24 g DW/L (at day 30). Roots accumulated 3α‐dihydrocadambine (DHC) 2354.3±244.8 μg/g DW (at day 40) and MOA 348.2±32.1 μg/g DW (at day 18). Exogenous addition of H2O2 had a differential effect on DHC and MOA production in shaken flasks. At 200 μM H2O2, MOA were enhanced by 56% and DHC by 30%; while addition of 800 and 1000 μM H2O2, reduced by 30–40% DHC accumulation without change in MOA. Root cultures in the airlift reactor produced extracellular H2O2 with a characteristic biphasic profile after changing aeration. Maximum MOA was 9.06 mg/L at day 60 while at this time roots reached ca. 1 mg/L of DHC. Intracellular H2O2 in root cultures growing in the bioreactor was 0.87 μmol/g DW compared to 0.26 μmol/g DW of shaken flasks cultures. These results were in agreement with a higher activity of the antioxidant enzymes superoxide dismutase and peroxidase by 6‐ and 2‐times, respectively. U. tomentosa roots growing in the airlift bioreactor were exposed to an oxidative stress and their antioxidant system was active allowing them to produce oxindole alkaloids.  相似文献   

3.
Plants can assimilate nitrogen from soil pools of both ammonium and nitrate, and the relative levels of these two nitrogen sources are highly variable in soil. Long‐term ammonium nutrition is known to cause damage to Arabidopsis that has been linked to mitochondrial oxidative stress. Using hydroponic cultures, we analysed the consequences of rapid shifts between nitrate and ammonium nutrition. This did not induce growth retardation, showing that Arabidopsis can compensate for the changes in redox metabolism associated with the variations in nitrogen redox status. During the first 3 h of ammonium treatment, we observed distinct transient shifts in reactive oxygen species (ROS), low‐mass antioxidants, ROS‐scavenging enzymes, and mitochondrial alternative electron transport pathways, indicating rapid but temporally separated changes in chloroplastic, mitochondrial and cytosolic ROS metabolism. The fast induction of antioxidant defences significantly lowered intracellular H2O2 levels, and thus protected Arabidopsis leaves from oxidative stress. On the other hand elevated extracellular ROS production in response to ammonium supply may be involved in signalling. The response pattern displays an intricate plasticity of Arabidopsis redox metabolism to minimise stress in responses to nutrient changes.  相似文献   

4.
In the present study, singlet oxygen (1O2) scavenging activity of tocopherol and plastochromanol was examined in tocopherol cyclase‐deficient mutant (vte1) of Arabidopsis thaliana lacking both tocopherol and plastochromanol. It is demonstrated here that suppression of tocopherol and plastochromanol synthesis in chloroplasts isolated from vte1 Arabidopsis plants enhanced 1O2 formation under high light illumination as monitored by electron paramagnetic resonance spin‐trapping spectroscopy. The exposure of vte1 Arabidopsis plants to high light resulted in the formation of secondary lipid peroxidation product malondialdehyde as determined by high‐pressure liquid chromatography. Furthermore, it is shown here that the imaging of ultra‐weak photon emission known to reflect oxidation of lipids was unambiguously higher in vte1 Arabidopsis plants. Our results indicate that tocopherol and plastochromanol act as efficient 1O2 scavengers and protect effectively lipids against photooxidative damage in Arabidopsis plants.  相似文献   

5.
Sphaeralcea angustifolia is a plant used for the treatment of inflammatory processes. Scopoletin, tomentin, and sphaeralcic acid were identified as the compounds with anti‐inflammatory and immunomodulatory effects. Successful establishment of the cell culture in Erlenmeyer flasks has been reported previously. The aim of this study was to evaluate the ability of cells in suspension from S. angustifolia grown in a stirred tank bioreactor and demonstrate their capacity to produce bioactive compounds. Cells in suspension grown at 200 rpm reached a maximal cell biomass in dry weight at 19.11 g/L and produced 3.47 mg/g of sphaeralcic acid. The mixture of scopoletin and tomentin was only detected at the beginning of the culture (12.13 μg/g). Considering that the profile of dissolved oxygen during the cultures was lesser than 15%, it is possible that the low growth at 100 rpm could be due to oxygen limitations or to cell sedimentation. At 400 rpm, a negative effect on cell viability could be caused by the increase in the hydrodynamic stress, including the impeller tip, average shear rate, and Reynolds number. The sphaeralcic acid content in the cell suspension of S. angustifolia obtained in the bioreactor was two orders of magnitude greater than that reported for the culture grown in Erlenmeyer flasks.  相似文献   

6.
Low temperatures and high light cause imbalances in primary and secondary reactions of photosynthesis, and thus can result in oxidative stress. Plants employ a range of low‐molecular weight antioxidants and antioxidant enzymes to prevent oxidative damage, and antioxidant defence is considered an important component of stress tolerance. To figure out whether oxidative stress and antioxidant defence are key factors defining the different cold acclimation capacities of natural accessions of the model plant Arabidopsis thaliana, we investigated hydrogen peroxide (H2O2) production, antioxidant enzyme activity and lipid peroxidation during a time course of cold treatment and exposure to high light in four differentially cold‐tolerant natural accessions of Arabidopsis (C24, Nd, Rsch, Te) that span the European distribution range of the species. All accessions except Rsch (from Russia) had elevated H2O2 in the cold, indicating that production of reactive oxygen species is part of the cold response in Arabidopsis. Glutathione reductase activity increased in all but Rsch, while ascorbate peroxidase and superoxide dismutase were unchanged and catalase decreased in all but Rsch. Under high light, the Scandinavian accession Te had elevated levels of H2O2. Te appeared most sensitive to oxidative stress, having higher malondialdehyde (MDA) levels in the cold and under high light, while only high light caused elevated MDA in the other accessions. Although the most freezing‐tolerant, Te had the highest sensitivity to oxidative stress. No correlation was found between freezing tolerance and activity of antioxidant enzymes in the four accessions investigated, arguing against a key role for antioxidant defence in the differential cold acclimation capacities of Arabidopsis accessions.  相似文献   

7.
Aims: To study the optimization of submerged culture conditions for exopolysaccharide (EPS) production by Armillaria mellea in shake‐flask cultures and also to evaluate the performance of an optimized culture medium in a 5‐l stirred tank fermenter. Methods and Results: Shake flask cultures for EPS optimal nutritional production contained having the following composition (in g l?1): glucose 40, yeast extract 3, KH2PO4 4 and MgSO4 2 at an optimal temperature of 22°C and an initial of pH 4·0. The optimal culture medium was then cultivated in a 5‐l stirred tank fermenter at 1 vvm (volume of aeration per volume of bioreactor per min) aeration rate, 150 rev min?1 agitation speed, controlled pH 4·0 and 22°C. In the optimal culture medium, the maximum EPS production in a 5‐l stirred tank fermenter was 588 mg l?1, c. twice as great as that in the basal medium. The maximum productivity for EPS (Qp) and product yield (YP/S) were 42·02 mg l?1 d?1 and 26·89 mg g?1, respectively. Conclusions: The optimal culture conditions we proposed in this study enhanced the EPS production of A. mellea from submerged cultures. Significance and Impact of the Study: The optimal culturing conditions we have found will be a suitable starting point for a scale‐up of the fermentation process, helping to develop the production of related medicines and health foods from A. mellea.  相似文献   

8.
The relationship between drought, oxidative stress and leaf senescence was evaluated in field‐grown sage (Salvia officinalis L.), a drought‐susceptible species that shows symptoms of senescence when exposed to stress. Despite the photoprotection conferred by the xanthophyll cycle, drought‐stressed senescing leaves showed enhanced lipid peroxidation, chlorophyll loss, reduced photosynthetic activity and strong reductions of membrane‐bound chloroplastic antioxidant defences (i.e. β‐carotene and α‐tocopherol), which is indicative of oxidative stress in chloroplasts. H2O2 accumulated in drought‐stressed senescing leaves. Subcellular localization studies showed that H2O2 accumulated first in xylem vessels and the cell wall and later in the plasma membrane of mesophyll cells, but not in chloroplasts, indicating reactive oxygen species other than H2O2 as direct responsible for the oxidative stress observed in the chloroplasts of drought‐stressed senescing leaves. The strong degradation of β‐carotene and α‐tocopherol suggests an enhanced formation of singlet oxygen as the putative reactive oxygen species responsible for oxidative stress to senescing chloroplasts. This study demonstrates that oxidative stress in chloroplasts mediates drought‐induced leaf senescence in sage growing in Mediterranean field conditions.  相似文献   

9.
A novel milliliter‐scale stirred tank bioreactor was developed for the cultivation of mycelium forming microorganisms on a 10 milliliter‐scale. A newly designed one‐sided paddle impeller is driven magnetically and rotates freely on an axis in an unbaffled reaction vessel made of polystyrene. A rotating lamella is formed which spreads out along the reactor wall. Thus an enhanced surface‐to‐volume ratio of the liquid phase is generated where oxygen is introduced via surface aeration. Volumetric oxygen transfer coefficients (kLa) > 0.15 s?1 were measured. The fast moving liquid lamella efficiently prevents wall growth and foaming. Mean power consumption and maximum local energy dissipation were measured as function of operating conditions in the milliliter‐scale stirred tank bioreactor (V = 10 mL) and compared to a standard laboratory‐scale stirred tank bioreactor with six‐bladed Rushton turbines (V = 2,000 mL). Mean power consumption increases with increasing impeller speed and shows the same characteristics and values on both scales. The maximum local energy dissipation of the milliliter‐scale stirred tank bioreactor was reduced compared to the laboratory‐scale at the same mean volumetric power input. Hence the milliliter impeller distributes power more uniformly in the reaction medium. Based on these data a reliable and robust scale‐up of fermentation processes is possible. This was demonstrated with the cultivation of the actinomycete Streptomyces tendae on both scales. It was shown that the process performances were equivalent with regard to biomass concentration, mannitol consumption and production of the pharmaceutical relevant fungicide nikkomycin Z up to a process time of 120 h. A high parallel reproducibility was observed on the milliliter‐scale (standard deviation < 8%) with up to 48 stirred tank bioreactors operated in a magnetic inductive drive. Rheological behavior of the culture broth was measured and showed a highly viscous shear‐thinning non‐Newtonian behavior. The newly developed one‐sided paddle impellers operated in unbaffled reactors on a 10 milliliter‐scale with a magnetic inductive drive for up to 48 parallel bioreactors allows for the first time the parallel bioprocess development with mycelium forming microorganisms. This is especially important since these kinds of cultivations normally exhibit process times of 100 h and more. Thus the operation of parallel stirred tank reactors will have the potential to reduce process development times drastically. Biotechnol. Bioeng. 2010; 106: 443–451. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
Summary Production of lipase from recombinant Staphylococcus carnosus pLipPS2 was studied in standard stirred tank bioreactors. Only low lipase activity was obtained under conventional operating conditions, i.e., moderate to high stirring speeds and aeration rates for keeping the dissolved oxygen concentration at high levels. Additional targetted experiments indicated that the reason for the observed low lipase activity is lipase inactivation due to surface forces and shear stress at the gas/liquid interface. Therefore, a cultivation strategy is proposed that minimizes gas/liquid interfacial area and maximizes the driving concentration for O2 mass transfer by controlling the dissolved oxygen to low values by gentle stirring and low aeration rates. Thus, high lipase activities can be obtained even in larger scale standard stirred tank bioreactors. Offprint requests to: W.-D. Deckwer  相似文献   

11.
In high-density plant cell cultures, mixing and mass transfer are two key issues, which should be emphasized for process optimization. In this work, both mixing and oxygen transfer characteristics of cell suspensions ofTaxus chinensis were studied in a new centrifugal impeller bioreactor with a working volume of 1.2 L. The mixing time (t M) and the volumetric oxygen transfer coefficient (K L a) under different operational conditions were determined in both tap water and cell suspensions of 100–400 g fresh weight/L (i.e., 5.65–23.1 g DW/L). At an aeration rate of 0.1 L/min,t M decreased from 10.6s at 30 rpm to 2.89 s at 200 rpm under 100 g FW/L, and from 9.63 s (120 rpm) to 4.05 s (300 rpm) under 400 g FW/L. Compared with the effect of agitation, aeration was less significant to the suspension mixing. At a relatively high agitation speed (e.g., 200 rpm),t M remained almost the same even though aeration rate was changed from 0.1 to 0.4 L/min. Thet M value increased slowly from 3.98 to 5.26 s at 120 rpm when the cell density was raised from 100 to 250 g FW/L. A rapid increase of botht M and the suspension viscosity was observed at a cell density above 300 g FW/L. As expected, theK L a value increased with an increase of aeration rate and agitation speed, but decreased with an increase of cell density. The quantitative data obtained here are useful to investigate the effect of mixing stress on the cell physiology and metabolism ofTaxus chinensis in the bioreactor. This paper is dedicated by JJZ to his colleague Prof. Jun-Tang Yu on the occasion of his 70 birthday.  相似文献   

12.
Mass transfer, mixing times and power consumption were measured in rigid disposable stirred tank bioreactors and compared to those of a traditional glass bioreactor. The volumetric mass transfer coefficient and mixing times are usually determined at high agitation speeds in combination with sparged aeration as used for single cell suspension and most bacterial cultures. In contrast, here low agitation speeds combined with headspace aeration were applied. These settings are generally used for cultivation of mammalian cells growing adherent to microcarriers. The rigid disposable vessels showed similar engineering characteristics compared to a traditional glass bioreactor. On the basis of the presented results appropriate settings for adherent cell culture, normally operated at a maximum power input level of 5 W m?3, can be selected. Depending on the disposable bioreactor used, a stirrer speed ranging from 38 to 147 rpm will result in such a power input of 5 W m?3. This power input will mix the fluid to a degree of 95% in 22 ± 1 s and produce a volumetric mass transfer coefficient of 0.46 ± 0.07 h?1. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1269–1276, 2014  相似文献   

13.
14.
Somatic embryos of Ipomoea batatas Lam. (sweet potato cv. White Star) were produced in an airlift bioreactor. This work describes the optimization of the embryogenic system on semisolid medium, followed by transfer of the system to liquid cultures and ultimately to the airlift bioreactor. The physiological age of embryogenic callus influenced the number and overall morphology of the embryo population in both semisolid and liquid medium. Maximum mature embryo production (35 embryos 10 mg-1 inoculum) was obtained from six-week-old callus at 30°C. Somatic embryogenesis occurred in liquid cultures containing 20 mM NH4NO3 and 30 mM KCl. Globular embryos formed and continued development in suspension producing viable, mature cotyledonary embryos by day 14. Embryo formation and development was limited in the bioreactor. Although shear stress was responsible for some embryogenic damage, the effect of purging the system with fresh air needed to be investigated. To isolate aeration effects from shear stress effects, atmospheric determinations were performed on shaker flask cultures. Initially the gas composition within the Erlenmeyer headspace was that of room air. Ethylene increased to a maximum of 6.4 ppm (day 16), maximum CO2, 21.2%, was also evident on day 16, and oxygen was depleted to a minimum of 8.1% by day 14. Purging the cultures with fresh air reduced the number of embryos formed; however, they were significantly longer than those formed in closed flasks. The gas response model of Ipomoea batatas will enable atmosphere replenishment in the bioreactor mimicking that of the shaker flask environment. Once the damaging effects of shear stress have been overcome, the regulation of bioreactor gasses should allow somatic embryo formation in the bioreactor comparable to that in shaker flasks.  相似文献   

15.
Enzymatic and non‐enzymatic antioxidants play important roles in the tolerance of abiotic stress. To increase the resistance of seeds to oxidative stress, At2S3 promoter from Arabidopsis was used to achieve overexpression of the antioxidants in a seed‐specific manner. This promoter was shown to be capable of driving the target gene to have a high level of expression in seed‐related organs, including siliques, mature seeds, and early seedlings, thus making its molecular farming applications in plants possible. Subsequently, genes encoding Mn‐superoxide dismutase (MSD1), catalase (CAT1), and homogentisate phytyltransferase (HPT1, responsible for the first committed reaction in the tocopherol biosynthesis pathway) were overexpressed in Arabidopsis under the control of the At2S3 promoter. Double overexpressers co‐expressing two enzymes and triple overexpressers were produced by cross pollination. Mn‐SOD and total CAT activities, as well as γ‐tocopherol content, significantly increased in the corresponding overproduction lines. Moreover, single MSD1‐transgene, double, and triple overexpressers displayed remarkably enhanced oxidative stress tolerance compared to wild type during seed germination and early seedling growth. Interestingly, an increase in the total CAT activity was also observed in the single MSD1‐transgenic lines as a result of MSD1 overexpression. Together, the combined increase in Mn‐SOD and CAT activities in seeds plays an essential role in the improvement of antioxidant capacity at early developmental stage in Arabidopsis.  相似文献   

16.
We previously developed an inverted frustoconical shaking bioreactor (IFSB) which had high mammalian cell culture performance when compared with a mechanically stirred tank reactor (STR) or a flat-bottom shaking bioreactor (FBSB). Here, we determined the mixing time (t) and volumetric oxygen transfer coefficient (k La) of this IFSB at various speeds, and simulated the fluid hydrodynamics, including the shear stress and specific surface area, by computational fluid dynamics. The shortest mixing time was observed in a STR. The maximum kLa value of 12/h was achieved in the IFSB at an aeration rate of 4 L/h, demonstrating that our IFSB has enhanced oxygen transfer capabilities needed to meet the demands of mammalian cells. Simulation studies revealed a 3% greater specific surface area and a 21% lower shear strain in the IFSB compared to an FBSB under the same conditions. Additionally, the conical angle of the vessel, which significantly affected cell growth and recombinant protein production, was tested here. We conclude that, compared to the STR and FBSB, the IFSB has an increased liquid surface area for oxygen uptake and exhaust CO2 stripping, an enhanced k La for cell robust growth to a high cell density, and a lower shear stress to alleviate cell damage.  相似文献   

17.
We performed laboratory experiments to investi‐gate whether the synthesis of the antioxidants α‐tocopherol (vitamin E) and β‐carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe‐ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K‐0591, both good producers of this compound, α‐tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv/Fm). On the other hand, β‐carotene accumulation was positively affected by higher Fv/Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K‐0591 and R. salina SCCAP K‐0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α‐tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β‐carotene performs immediate photo‐oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short‐term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α‐tocopherol and β‐carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo‐synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large‐scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.  相似文献   

18.
This work focused on determining the effect of dissolved oxygen concentration (DO) on growth and metabolism of BHK-21 cell line (host cell for recombinant proteins manufacturing and viral vaccines) cultured in two stirred tank bioreactors with different aeration-homogenization systems, as well as pH control mode. BHK-21 cell line adapted to single-cell suspension was cultured in Celligen without aeration cage (rotating gas-sparger) and Bioflo 110, at 10, 30 and 50 % air saturation (impeller for gas dispersion from sparger-ring). The pH was controlled at 7.2 as far as it was possible with gas mixtures. In other runs, at 30 and 50 % (DO) in Bioflo 110, the cells grew at pH controlled with CO2 and NaHCO3 solution. Glucose, lactate, glutamine, and ammonium were quantified by enzymatic methods. Cell concentration, size and specific oxygen consumption were also determined. When NaHCO3 solution was not used, the optimal DOs were 10 and 50 % air saturation for Celligen and Bioflo 110, respectively. In this condition maximum cell concentrations were higher than 4 × 106 cell/mL. An increase in maximum cell concentration of 36 % was observed in batch carried out at 30 % air saturation in a classical stirred tank bioreactor (Bioflo 110) with base solution addition. The optimal parameters defined in this work allow for bioprocess developing of viral vaccines, transient protein expression and viral vector for gene therapy based on BHK-21 cell line in two stirred tank bioreactors with different agitation–aeration systems.  相似文献   

19.
In a previous report, we showed that cell cultures of Harpagophytum procumbens, a South African plant with high medicinal value, accumulate high amounts of anti-inflammatory phenylethanoid glycosides during cultivation in shake-flasks. The aim of the present study was to transfer the phenylethanoid biosynthetic process to a 3-L stirred tank reactor and a 1-L glass-column bioreactor (operated with pulsed aeration). We found that, with stepwise increases in aeration, the stirred tank reactor yielded similar productivities of verbascoside (the major phenylethanoid glycoside in the cells) to those reported for shake-flask cultures (55.68 vs. 54.78 mg verbascoside/L/day, respectively). Transfer in the pulse-aerated column reactor resulted in 165.42 mg verbascoside/L/day, one of the highest yields reported to date. Further, to evaluate the physiological status of the suspended cells in the bioreactors cultures, we examined their hormone levels and compared them to those of cells in shake-flask cultures. While indole-3-acetic acid levels did not differ significantly between the bioreactor and shake-flask cultures, there were considerable differences in their levels of abscisic, jasmonic, and salicylic acids. These results are discussed with respect to relative stress levels in the different cultivation systems.  相似文献   

20.
Previously, Su et al. [Biotechnol Bioeng 42: 884–890 (1993)] reported improved production of rosmarinic acid by Anchusa officinalis in shake-flask cultures using a cultivation strategy that involved intermittent medium exchange. Implementation of this cultivation strategy in 2.5-1 stirred-tank bioreactor cultures is investigated in the present study. Intermittent cell/medium separation in the bioreactor was accomplished by means of automated in situ culture filtration. In the bioreactor culture, rosmarinic acid production was found very sensitive to agitation and aeration conditions as well as dissolved oxygen concentration. A maximum cell density of 35 g dry weight/l and a rosmarinic acid concentration of 3.7 g/l were obtained by maintaining the dissolved oxygen concentration above 30% air saturation, gradually raising the impeller tip speed from 34 cm/s to 72 cm/s, and keeping the aeration rate at 0.44 vvm while increasing the O2: air ratio in the gas feed stream to 4:1. This result is comparable with the data obtained from shake-flask cultures using the same culture strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号