首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A concentric-cylinder airlift reactor, in which the annulus is a packed bed of glass fibers, has been developed in order to facilitate the scaleup and enhance the volumetric productivity of anchorage-dependent animal cell cultures. In this bio-reactor, oxygen-containing gas is sparged through the inner draft tube, causing bubble-free medium to flow through the fiber bed in the outer cylinder and providing both oxygenation and convective nutrient transfer to the cells. Several other desirable features for reactor operation are also provided by this design. Cell cultivations in this bioreactor have been successfully carried out and provide data for the feasibility of the large-scale cell cultivation.  相似文献   

2.
In high-density plant cell cultures, mixing and mass transfer are two key issues, which should be emphasized for process optimization. In this work, both mixing and oxygen transfer characteristics of cell suspensions ofTaxus chinensis were studied in a new centrifugal impeller bioreactor with a working volume of 1.2 L. The mixing time (t M) and the volumetric oxygen transfer coefficient (K L a) under different operational conditions were determined in both tap water and cell suspensions of 100–400 g fresh weight/L (i.e., 5.65–23.1 g DW/L). At an aeration rate of 0.1 L/min,t M decreased from 10.6s at 30 rpm to 2.89 s at 200 rpm under 100 g FW/L, and from 9.63 s (120 rpm) to 4.05 s (300 rpm) under 400 g FW/L. Compared with the effect of agitation, aeration was less significant to the suspension mixing. At a relatively high agitation speed (e.g., 200 rpm),t M remained almost the same even though aeration rate was changed from 0.1 to 0.4 L/min. Thet M value increased slowly from 3.98 to 5.26 s at 120 rpm when the cell density was raised from 100 to 250 g FW/L. A rapid increase of botht M and the suspension viscosity was observed at a cell density above 300 g FW/L. As expected, theK L a value increased with an increase of aeration rate and agitation speed, but decreased with an increase of cell density. The quantitative data obtained here are useful to investigate the effect of mixing stress on the cell physiology and metabolism ofTaxus chinensis in the bioreactor. This paper is dedicated by JJZ to his colleague Prof. Jun-Tang Yu on the occasion of his 70 birthday.  相似文献   

3.
A simple hydrodynamic model is introduced to describe the airlift fiber-bed bioreactor, which can enhance the volumetric productivity of anchorage-dependent animal cell cultures. By applying the model, liquid flow rates and volumetric mass transfer coefficients are predicted and are in agreement with experimental measurements. Consequently, the optimal reactor configuration giving the maximal oxygen supply is derived. Also, theoretical scaleup potential of this concentric internal loop reactor is considered for volumes ranging from 10 to 67,000 L with which cell densities of 5.1 x 10(7) and 1.2 x 10(7) cells/cm(3), respectively, can be maintained.  相似文献   

4.
5.
The growing interest in rosmarinic acid (RA), an ester of caffeic acid and 3,4‐dihydroxyphenyl lactic acid, is due to its biological activities, which include cognitive‐enhancing effects, slowing the development of Alzheimer's disease, cancer chemoprotection, and anti‐inflammatory activity. Inspired by the challenge of meeting the growing demand for this plant secondary metabolite, we developed a biotechnological platform based on cell suspension cultures of Satureja khuzistanica. The high amounts of RA produced by this system accumulated mainly inside the cells. To further improve production, two elicitors, 100 μM methyl jasmonate (MeJA) and 40 mM cyclodextrin (CD), were tested, separately and together. MeJA increased RA productivity more than 3‐fold, the elicited cultures achieving an RA production of 3.9 g L?1 without affecting biomass productivity. CD did not have a clear effect on RA production, and under the combined treatment of MeJA + CD only a small amount of RA was released to the medium. When the cell culture was transferred from a shake flask to a wave‐mixed bioreactor, a maximum RA production of 3.1 g L?1 and biomass productivity of 18.7 g L?1 d?1 was achieved under MeJA elicitation, demonstrating the suitability of S. khuzistanica cell suspensions for the biotechnological production of this bioactive plant secondary metabolite.  相似文献   

6.
氧对膜生物反应器短程硝化的影响   总被引:1,自引:0,他引:1  
武小鹰  郑平 《生物工程学报》2014,30(12):1828-1834
为了研究膜生物反应器的短程硝化性能以及氧对短程硝化的影响,通过对比耗氧率和供氧率,提出了膜生物反应器短程硝化的控制优化建议。在膜生物反应器硝化过程中,DO小于1 mg/L开始出现亚硝氮积累;DO降到0.5 mg/L,出水氨氮浓度与亚硝氮浓度之比接近1∶1;DO调控在0.5-1 mg/L范围内,有利于前置硝化反应器与后续厌氧氨氧化反应器衔接。膜生物反应器中污泥浓度可达20 g/L,耗氧能力可达19.86 mg O2/(L·s),但最大供氧能力仅为0.369 mg O2/(L·s),供氧成为反应器运行的制约瓶颈,"低DO高流量"曝气是继续提高短程硝化效能的控制策略。  相似文献   

7.
Plant cell culture is an alternative for the production of recombinant human therapeutic proteins because of improved product safety, lower production cost, and capability for eukaryotic post‐translational modification. In this study, bioreactor production of recombinant human alpha‐1‐antitrypsin (rAAT) glycoprotein using a chemically inducible Cucumber mosaic virus (CMV) viral amplicon expression system in transgenic Nicotiana benthamiana cell culture is presented. Optimization of a chemically inducible plant cell culture requires evaluation of effects of timing of induction (TOI) and concentration of inducer (COI) on protein productivity and protein quality (biological functionality). To determine the optimal TOI, the oxygen uptake rate (OUR) of the plant cell culture was chosen as a physiological indicator for inducing maximum rAAT expression. Effects of COI on rAAT production were investigated using a semicontinuous culture, which enables the distinction between effects of growth rate and effects of inducer concentration. An optimized semicontinuous bioreactor operation was further proposed to maximize the recombinant protein production. The results demonstrated that the transgenic plant cells, transformed with the inducible viral amplicon expression system, maintain higher OUR and exhibit lower extracellular protease activity and lower total phenolics concentration in the optimized semicontinuous bioreactor process than in a traditional batch bioreactor operation, resulting in a 25‐fold increase in extracellular functional rAAT (603 µg/L) and a higher ratio of functional rAAT to total rAAT (85–90%). Surprisingly, sustained rAAT production and steady state, long‐term bioreactor operation is possible following chemical induction and establishment of the viral amplicons. Biotechnol. Bioeng. 2010; 106: 408–421. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
Strategies for the production of pluripotent stem cells (PSCs) rely on serially dissociated adherent or aggregate‐based culture, consequently limiting robust scale‐up of cell production, on‐line control and optimization of culture conditions. We recently developed a method that enables continuous (non‐serially dissociated) suspension culture‐mediated reprogramming to pluripotency. Herein, we use this method to demonstrate the scalable production of PSCs and early derivatives using acoustic filter technology to enable continuous oxygen‐controlled perfusion culture. Cell densities of greater than 1 × 107 cells/mL were achieved after 7 days of expansion at a specific growth rate (µ) of 0.61 ± 0.1 day?1 with a perfusion rate (D) of 5.0 day?1. A twofold increase in maximum cell density (to greater than 2.5 × 107 cells/mL) was achieved when the medium dissolved oxygen was reduced (5% DO). Cell densities and viabilities >80% were maintained for extended production periods during which maintenance of pluripotency was confirmed by stable expression of pluripotency factors (SSEA‐1 and Nanog), as well as the capacity to differentiate into all three germ layers. This work establishes a versatile biotechnological platform for the production of pluripotent cells and derivatives in an integrated, scalable and intensified stirred suspension culture. Biotechnol. Bioeng. 2013; 110: 648–655. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Besides having a metabolic role, oxygen is recognized as an important signaling stimulus for stem cells. In hematopoiesis, hypoxia seems to favor stem cell self‐renewal. In fact, long‐term repopulating hematopoietic stem cells reside in bone marrow at concentrations as low as 1% oxygen. However, O2 concentration is difficult to control in vitro. Thermodynamically, we found significant differences between O2 solubility in different media, and in presence of serum. Furthermore, we verified that medium equilibration with a hypoxic atmosphere requires several hours. Thus, in a static culture, the effective O2 concentration in the cell immediate microenvironment is difficult to control and subject to concentration gradients. Stirred systems improve homogeneity within the culture volume. In this work, we developed a stirred bioreactor to investigate hypoxia effect on the expression of stem cell markers in CD34+ cells from umbilical cord blood. The stirring system was designed on top of a standard six‐well plate to favor continuity with conventional static conditions and transfer of culture protocols. The bioreactor volume (10 mL/well) is suitable for cell expansion and multiparametric flow cytometry analyses. First, it was tested at 21% O2 for biocompatibility and other possible effects on the cells compared to static conditions. Then, it was used to study c‐kit expression of CD34+ cells at 5% O2, using 21%‐O2 cultures as a control. In hypoxia we found that CD34+ cells maintained a higher expression of c‐kit. Further investigation is needed to explore the dynamics of interaction between oxygen‐ and c‐kit‐dependent pathways at the molecular level. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

10.
Volumetric mass transfer coefficients, K(L)a were measured over an aeration rate range from 0.1 to 1.0 vvm in a 1.2-L draft-tube-type airlift bioreactor for different Datura stramonium cell concentrations and correlated with superficial air velocity and rheological properties of the cell suspension. The measured K(L)a values (17-40 h(-1)) for a cell volume fraction of 0.2 (v/v) were approximately 2 times higher than those for the highest cell concentrations tested (cell volume fraction 0.7-0.8 v/v). Cell suspensions exhibited yield stress and pseudoplastic behavior. This behavior was described by the Casson model. The estimated yield stress values depended upon cell concentration with an exponent of 4.0. An empirical correlation based on the data for plant cell suspensions exhibiting yield stress was developed in order to determine aeration strategy for the plant cell cultivation in draft-tube-type airlift bioreactors: \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm K}_{\rm L} {\rm a} = {\rm A}({\rm U}_{{\rm gr}});{0.3} ({\rm \eta }_{{\rm eff}});{ - 0.4} $$\end{document} Aeration rates above 1.0 vvm caused a significant drop in cell yield and product content. Maximum growth and production were obtained at 0.6 vvm aeration. The cell and product yields obtained at 1.7 vvm were 2.8 times lower than the maximum values (25 g cell DW/L and 73.8 mg tropane alkaloid/L). The effects of the increased aeration rates on cell yield were also evaluated in terms of Reynolds stress. It was found that there was a relation between cell damage and the estimated Reynolds stress. The Reynolds stress estimated for the same aeration rate decreased with increasing cell concentration, suggesting that cells in the cultures at low cell concentrations are subjected to hydrodynamic damage. In the experiments with the cell cultures having a cell concentration of 0.3 (v/v), approximately 70% reduction in cell concentration was observed when the Reynolds stress was increased from 10 to 50 dyn/cm(2). (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
The fields of regenerative medicine and tissue engineering require large‐scale manufacturing of stem cells for both therapy and recombinant protein production, which is often achieved by culturing cells in stirred suspension bioreactors. The rheology of cell suspensions cultured in stirred suspension bioreactors is critical to cell growth and protein production, as elevated exposure to shear stress has been linked to changes in growth kinetics and genetic expression for many common cell types. Currently, little is understood on the rheology of cell suspensions cultured in stirred suspension bioreactors. In this study, we present the impact of three common cell culture parameters, serum content, cell presence, and culture age, on the rheology of a model cell line cultured in stirred suspension bioreactors. The results reveal that cultures containing cells, serum, or combinations thereof are highly shear thinning, whereas conditioned and unconditioned culture medium without serum are both Newtonian. Non‐Newtonian viscosity was modeled using a Sisko model, which provided insight on structural mechanisms driving the rheological behavior of these cell suspensions. A comparison of shear stress estimated by using Newtonian and Sisko relationships demonstrated that assuming Newtonian viscosity underpredicts both mean and maximum shear stress in stirred suspension bioreactors. Non‐Newtonian viscosity models reported maximum shear stresses exceeding those required to induce changes in genetic expression in common cell types, whereas Newtonian models did not. These findings indicate that traditional shear stress quantification of cell or serum suspensions is inadequate and that shear stress quantification methods based on non‐Newtonian viscosity must be developed to accurately quantify shear stress.  相似文献   

12.
Miniature parallel bioreactors are becoming increasingly important as tools to facilitate rapid bioprocess design. Once the most promising strain and culture conditions have been identified a suitable scale-up basis needs to be established in order that the cell growth rates and product yields achieved in small scale optimization studies are maintained at larger scales. Recently we have reported on the design of a miniature stirred bioreactor system capable of parallel operation [Gill et al. (2008); Biochem Eng J 39:164-176]. In order to enable the predictive scale-up of miniature bioreactor results the current study describes a more detailed investigation of the bioreactor mixing and oxygen mass transfer characteristics and the creation of predictive engineering correlations useful for scale-up studies. A Power number of 3.5 for the miniature turbine impeller was first established based on experimental ungassed power consumption measurements. The variation of the measured gassed to ungassed power ratio, P(g)/P(ug), was then shown to be adequately predicted by existing correlations proposed by Cui et al. [Cui et al. (1996); Chem Eng Sci 51:2631-2636] and Mockel et al. [Mockel et al. (1990); Acta Biotechnol 10:215-224]. A correlation relating the measured oxygen mass transfer coefficient, k(L)a, to the gassed power per unit volume and superficial gas velocity was also established for the miniature bioreactor. Based on these correlations a series of scale-up studies at matched k(L)a (0.06-0.11 s(-1)) and P(g)/V (657-2,960 W m(-3)) were performed for the batch growth of Escherichia coli TOP10 pQR239 using glycerol as a carbon source. Constant k(L)a was shown to be the most reliable basis for predictive scale-up of miniature bioreactor results to conventional laboratory scale. This gave good agreement in both cell growth and oxygen utilization kinetics over the range of k(L)a values investigated. The work described here thus gives further insight into the performance of the miniature bioreactor design and will aid its use as a tool for rapid fermentation process development.  相似文献   

13.
In this paper we report the regulation of Aspergillus niger growth rate during citric acid fermentation in a stirred tank bioreactor. For this, the influence of dissolved oxygen concentration in a medium on intracellular pH values and consequently on overall microbial metabolism was emphasized. Intracellular pH of mycelium grown under different concentrations of dissolved oxygen in the medium was determined. Sensitivity of proteins toward proton concentration is well recognized, therefore pH influences on the activities of key regulatory enzymes of Aspergillus niger were determined at pH values similar to those detected in the cells grown under lower dissolved oxygen concentrations. The results have shown significantly reduced specific activities of hexokinase, 6-phosphofructokinase and glucose-6-phosphate dehydrogenase in more acidic environment, while pyruvate kinase was found to be relatively insensitive towards higher proton concentration. As expected, due to the reduced specific activities of regulatory enzymes under more acidic conditions, overall metabolism should be hindered in the medium with lower dissolved oxygen concentration which was confirmed by detecting the reduced specific growth rates. From the studies, we conclude that dissolved oxygen concentration affects the intracellular pH and thus growth rate of Aspergillus niger during the fermentation process.  相似文献   

14.
The effects of oxygen supply within the range 20.8–50% (using pure oxygen and air), on cell cultures of Panax ginseng were investigated in a balloon-type bubble bioreactor (5 L capacity, containing 4 L Murashige and Skoog medium, supplemented with 7.0 mg L−1 indolebutyric acid, 0.5 mg L−1 kinetin and 30 g L−1 sucrose). A 40% oxygen supply was found to be optimal for the production of both cell mass and saponin yielding values of 12.8 g (DW) L−1, 4.5 mg (g DW)−1 on day 25, respectively. Low (20.8%, 30%) and high (50%) oxygen concentration supplies were unfavorable to cell growth and saponin accumulation. The results indicate that oxygen supplementation to bioreactor-based ginseng cultures was beneficial for biomass accumulation and saponin production.  相似文献   

15.
Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term in pre-mixed atmospheres with oxygen partial pressures of 2·5, 5·1, 10·1, 16·2, and 21·3 kPa O2, 0·035 kPa CO2 and the balance nitrogen under continuous light. Fully expanded leaves were harvested and processed for light and transmission electron microscopy or for starch quantification. Growth in subambient oxygen concentrations caused changes in leaf anatomy (increased thickness, stomatal density and starch content) that have also been described for plants grown under carbon dioxide enrichment. However, at the lowest oxygen treatment (2·5 kPa), developmental changes occurred that could not be explained by changes in carbon budget caused by suppressed photorespiration, resulting in very thick leaves and a dwarf morphology. This study establishes the leaf parameters that change during growth under low O2, and identifies the lower concentration at which O2 limitation on transport and biosynthetic pathways detrimentally affects leaf development.  相似文献   

16.
The effect of turbulence on suspended cells is one of the most complex problems in the scale-up of cell cultures. In the present paper, a direct comparison of the effects of turbulence on suspension cultures of Rubia tinctorum in a standard bioreactor and in shake flask cultures was done. A procedure derived from the well known global method proposed by Nishikawa et al. (1977) [39] was applied. Standard flasks and four-baffled shake flasks were used. The effect of turbulence and light irradiation on cell viability, biomass, and anthraquinones (AQs) production was evaluated. The biomass concentration and AQs production obtained using baffled shake flasks agitated at 360 rpm were similar to that achieved in R. tinctorum suspension cultures growing in a stirred tank bioreactor operating at 450 rpm, previously published (Busto et al., 2008 [17]). The effect of light on AQs production was found to be very significant, and a difference of up to 48% was found in cells with and without illumination after 7 days of culture. It is concluded that this down-scaled and simple flask culture system is a suitable and valid small scale instrument for the study of intracellular mechanisms of turbulence-induced AQs production in R. tinctorum suspension cultures.  相似文献   

17.
18.
A single-pass, plug-flow bioreactor has been developed in which oxygen is supplied to entrapped hybridoma cells via sllicone tubes threaded through the square channels of a macroporous ceramic monolith. Oxygen diffuses from the gas phase, through the silicone tubing, across the open square channel, and into the pores of the ceramic wall where it is consumed by entrapped cells. Advantages of such a reactor include higher product yields, protection of cells from detrimental hydrodynamic effects, no internal moving parts to compromise asepsis, and simplicity of operation. A prototype bioreactor was constructed and operated over a range of residence times. A side-by-side experimental comparison with a conventional recycle bioreactor was performed by inoculating both bioreactors with cells from the same stock culture and feeding medium from the same reservoir. Final antibody titers were 80% higher in the single-pass bioreactor at a residence time of 200 minutes compared with those of the recycle bioreactor at a residence time of 800 minutes. A theoretical analysis of oxygen transport in this bioreactor is developed to highlight important design criteria and operating strategies for scale-up. (c) 1992 John Wiley & Sons, Inc.  相似文献   

19.
The productivity of a cell culture for the production of a secondary metabolite is defined by three factors: specific growth rate, specific product formation rate, and biomass concentration during production. The effect of scaling-up from shake flask to bioreactor on growth and production and the effect of increasing the biomass concentration were investigated for the production of ajmalicine by Catharanthus roseus cell suspensions. Growth of biomass was not affected by the type of culture vessel. Growth, carbohydrate storage, glucose and oxygen consumption, and the carbon dioxide production could be predicted rather well by a structured model with the internal phosphate and the external glucose concentration as the controlling factors. The production of ajmalicine on production medium in a shake flask was not reproduced in a bioreactor. The production could be restored by creating a gas regime in the bioreactor comparable to that in a shake flask. Increasing the biomass concentration both in a shake flask and in a stirred fermenter decreased the ajmalicine production rate. This effect could be removed partly by controlling the oxygen concentration in the more dense culture at 85% air saturation.  相似文献   

20.
A method is described for estimating recombinant Chinese hamster ovary (rCHO) cell density in a packed-bed bioreactor by lactate production rate. The lactate production rate, which depended on both the cell numbers and cell growth rate, was modeled by segregating the cell population into two parts: one growing at a maximum specific growth rate and another non-growing. The individual cell in each part had the same lactate production rate. The established rate equation of lactate production matched the experimental data reasonably well and could be used to estimate the cell growth in the batch culture with microcarriers. Furthermore, in the perfusion culture of rCHO cells in a packed-bed bioreactor, the final cell density, 1.3×1010 cells l–1, estimated by lactate production rate, was comparable to the direct sample counting of 1.2×1010 cells l–1, showing that lactate production rate method would be useful in tracing the cell growth in packed-bed bioreactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号