首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Abstract

Use of Aphids for sampling the cell sap of Cuscuta epithymum. — A variety of Myzus persicae that feeds specifically on Cuscuta epithymum has been employed in a study of the translocation of nutrilites from the host, Trifolium repens, to the parasite, C. epithymum. If the host was exposed to an atmosphere containing C14,O2, the Aphids feeding on the Cuscuta filaments became labelled very rapidly and to considerable extent. The analysis of the distribution of radioactivity in the Cuscuta filaments and the Aphids revealed that extensive degradation of the compounds and randomization of the label occurred in the insects.  相似文献   

2.
Abstract

Uptake of metabolites by CUSCUTA. — The distribution of the radioactivity in the filaments of Cuscuta epithymum attached to the host (Trifolium repens) growing in an atmosphere of C14O2 indicates that the dodder uptakes from the host solely, or mainly, sucrose. The other radioactive compounds present in the extracts of Cuscuta appear to be derived from the sucrose rather than uptaken from the host.  相似文献   

3.
Abstract

CO 2 fixation by CUSCUTA EPITHYMUM. — Seedlings of Cuscuta epithymum or filaments detached from the host (Trifolium repens) fix carbon dioxide by mechanism(s) which are, though to a different extent, stimulated by light. Chromatographic analysis of plant extracts that have assimilated C14O2 indicates that, in all cases, the radioactivity is detectable in the areas corresponding to the organic acids and the acidic amino acids. No labelling was associated in appreciable amounts with 3-pho-sphoglycerate and the mono- and diphosphate esters of hexoses and pentoses. Such results are substantiated by the finding that cell-free extracts of seedlings and filaments fix carbon dioxide by carboxylating phosphoenolpyruvic acid. It is concluded that, under the experimental conditions, malic enzyme, pyruvate carboxylase and ribulose-1,5-diphosphate carboxylase have little, if any, significance in the fixation of carbon dioxide by the tested species of Cuscuta.  相似文献   

4.
Abstract

Uptake of Phosporus-P32 by CUSCUTA EPITHYMUM parasitic of TRIFOLIUM REPENS. — Filaments of C. epithymum, parasitic on T. repens, partially immersed in a solution containing KH2P32O4, uptake from the host solely, or mainly, radioactive ortophosphate. Radioactive hexose phosphates and radioactive nucleotides present in the extracts prepared from C. epithymum, appear to be the result of the metabolization by the dodder of the orthophosphate uptaken from the host.  相似文献   

5.
The structures of ten fatty acids, which were obtained by the hydrolysis of tunicamycin complex, were determined. GLC-mass, 1H NMR and IR spectra showed that the major acids were trans-α, β-unsaturated iso acids with the formula C14H28O2, C16H28O2, C16H30O2 and C17H32O2. The minor acids were α, β-unsaturated normal acids and saturated normal and iso acids.  相似文献   

6.
Three LNA-based mercaptoacetamido-linked nonionic nucleoside dimers TL-S-T, T-S-TL , and TL-S-TL have been synthesized by HOBT and HBTU catalyzed condensation of silyl-protected 2-S-(thymidin-5?′-yl)mercaptoacetic acid or 2-S-(2?′-O,4?′-C-methylenethymidin-5?′-yl)mercaptoacetic acid with 3?′-amino-3?′-deoxy-5?′-O-DMT-2?′-O,4?′-C-methylenethymidine or with 3?′-amino-3?′-deoxy-5?′-O-DMT-β-thymidine followed by desilylation of the protected dimers. The 3?′-O-phosphoramidite derivative of one of the nucleoside dimers was successfully prepared by condensation with [P(-Cl)(-OCH2CH2CN)-N(iPr)2}] in DCM in the presence of N,N-diisopropylethylamine (DIPEA), which is a building block for the preparation of mercaptoacetamido-linked oligonucleotides of therapeutic applications.  相似文献   

7.
Abstract

C14O2 fixation in plant tissues « in vitro ». — In the present work it has been examinated the autotrophic and heterotrophic CO2 fixation of explants of « Helianthus tuberosus » « in vitro » and the photosyntetic efficiency of leaves produced from buds of « in vitro » explants of « Cichorium intybus » compared with that of mature leaves from normal plants of the same species. From our results it is evident that « in vitro » explants of « Helianthus tuberosus », grown, in the light, are able to autotrophically incorporate C14O2; the distribution of the radioactivity into the various fractions shows a large influence of the light on the neutral fraction containing sugars (50% of the total radioactivity). In the chlorophyllous explants the dark CO2 fixation is obviously of heterotrophic type: 97% of the total radioactivity is incorporated in amine acids (43%) and the organic acids (53%); on the other hand in the dark grown explants the radioactivity is differently distributed between amino acids (59%) and organic acids (39%). Mature leaves from normal plants and leaves produced from buds of « in vitro » explants of « Cichorium intybus » incorporate the same quantity of C14O2 when expressed per mg of chlorophyll; the different distribution of the radioactivity in the neutral and acid fractions could be explained in terms of a different utilization pathway of the photosynthates in the two tissues.  相似文献   

8.
6-Azafulleroid-6-deoxy-2,3-di-O-myristoylcellulose (3) was synthesized from 6-azido-6-deoxycellulose (1) by two reaction steps. The myristoylation of compound 1 with myristoyl chloride/pyridine proceeded smoothly to give 6-azido-6-deoxy-2,3-di-O-myristoylcellulose (2) in 97.0% yield. The reaction of compound 2 with fullerene (C60) was carried out by microwave heating to afford compound 3 in high yield. It was found from FT-IR, 13C NMR, UV–vis, differential pulse voltammetry (DPV), SEC analyses that compound 3 was the expected C60-containing polymer. Consequently, maximum degree of substitution of C60 (DSC60) of compound 3 was 0.33.  相似文献   

9.
Tropospheric ozone (O3) decreases photosynthesis, growth, and yield of crop plants, while elevated carbon dioxide (CO2) has the opposite effect. The net photosynthetic rate (P N), dark respiration rate (R D), and ascorbic acid content of rice leaves were examined under combinations of O3 (0, 0.1, or 0.3 cm3 m−3, expressed as O0, O0.1, O0.3, respectively) and CO2 (400 or 800 cm3 m−3, expressed as C400 or C800, respectively). The P N declined immediately after O3 fumigation, and was larger under O0.3 than under O0.1. When C800 was combined with the O3, P N was unaffected by O0.1 and there was an approximately 20 % decrease when the rice leaves were exposed to O0.3 for 3 h. The depression of stomatal conductance (g s) observed under O0.1 was accelerated by C800, and that under O0.3 did not change because the decline under O0.3 was too large. Excluding the stomatal effect, the mesophyll P N was suppressed only by O0.3, but was substantially ameliorated when C800 was combined. Ozone fumigation boosted the R D value, whereas C800 suppressed it. An appreciable reduction of ascorbic acid occurred when the leaves were fumigated with O0.3, but the reduction was partially ameliorated by C800. The degree of visible leaf symptoms coincided with the effect of the interaction between O3 and CO2 on P N. The amelioration of O3 injury by elevated CO2 was largely attributed to the restriction of O3 intake by the leaves with stomatal closure, and partly to the maintenance of the scavenge system for reactive oxygen species that entered the leaf mesophyll, as well as the promotion of the P N.  相似文献   

10.
Soil microbial biomass C (Cmic) is a sensitive indicator of trends in organic matter dynamics in terrestrial ecosystems. This study was conducted to determine the effects of tropospheric CO2 or O3 enrichments and moisture variations on total soil organic C (Corg), mineralizable C fraction (CMin), Cmic, maintenance respiratory (qCO2) or Cmic death (qD) quotients, and their relationship with basal respiration (BR) rates and field respiration (FR) fluxes in wheat‐soybean agroecosystems. Wheat (Triticum aestivum L.) and soybean (Glycine max. L. Merr) plants were grown to maturity in 3‐m dia open‐top field chambers and exposed to charcoal‐filtered (CF) air at 350 μL CO2 L?1; CF air + 150 μL CO2 L?1; nonfiltered (NF) air + 35 nL O3 L?1; and NF air + 35 nL O3 L?1 + 150 μL CO2 L?1 at optimum (? 0.05 MPa) and restricted soil moisture (? 1.0 ± 0.05 MPa) regimes. The + 150 μL CO2 L?1 additions were 18 h d?1 and the + 35 nL O3 L?1 treatments were 7 h d?1 from April until late October. While Corg did not vary consistently, CMin, Cmic and Cmic fractions increased in soils under tropospheric CO2 enrichment (500 μL CO2 L?1) and decreased under high O3 exposures (55 ± 6 nL O3 L?1 for wheat; 60 ± 5 nL O3 L?1 for soybean) compared to the CF treatments (25 ± 5 nL O3 L?1). The qCO2 or qD quotients of Cmic were also significantly decreased in soils under high CO2 but increased under high O3 exposures compared to the CF control. The BR rates did not vary consistently but they were higher in well‐watered soils. The FR fluxes were lower under high O3 exposures compared to soils under the CF control. An increase in Cmic or Cmic fractions and decrease in qCO2 or qD observed under high CO2 treatment suggest that these soils were acting as C sinks whereas, reductions in Cmic or Cmic fractions and increase in qCO2 or qD in soils under elevated tropospheric O3 exposures suggest the soils were serving as a source of CO2.  相似文献   

11.
There is continuing controversy over whether a degree of C4 photosynthetic metabolism exists in ears of C3 cereals. In this context, CO2 exchange and the initial products of photosynthesis were examined in flag leaf blades and various ear parts of two durum wheat (Triticum durum Desf.) and two six-rowed barley (Hordeum vulgare L.) cultivars. Three weeks after anthesis, the CO2 compensation concentration at 210 mmol mol?1 O2 in durum wheat and barley ear parts was similar to or greater than that in flag leaves. The O2 dependence of the CO2 compensation concentration in durum wheat ear parts, as well as in the flag leaf blade, was linear, as expected for C3 photosynthesis. In a complementary experiment, intact and attached ears and flag leaf blades of barley and durum wheat were radio-labelled with 14CO2 during a 10s pulse, and the initial products of fixation were studied in various parts of the ears (awns, glumes, inner bracts and grains) and in the flag leaf blade. All tissues assimilated CO2 mainly by the Calvin (C3) cycle, with little fixation of 14CO2 into the C4 acids malate and aspartate (about 10% or less). These collective data support the conclusion that in the ear parts of these C3 cereals C4 photosynthetic metabolism is nil.  相似文献   

12.
The potential for C4 photosynthesis was investigated in five C3-C4 intermediate species, one C3 species, and one C4 species in the genus Flaveria, using 14CO2 pulse-12CO2 chase techniques and quantum-yield measurements. All five intermediate species were capable of incorporating 14CO2 into the C4 acids malate and aspartate, following an 8-s pulse. The proportion of 14C label in these C4 products ranged from 50–55% to 20–26% in the C3-C4 intermediates F. floridana Johnston and F. linearis Lag. respectively. All of the intermediate species incorporated as much, or more, 14CO2 into aspartate as into malate. Generally, about 5–15% of the initial label in these species appeared as other organic acids. There was variation in the capacity for C4 photosynthesis among the intermediate species based on the apparent rate of conversion of 14C label from the C4 cycle to the C3 cycle. In intermediate species such as F. pubescens Rydb., F. ramosissima Klatt., and F. floridana we observed a substantial decrease in label of C4-cycle products and an increase in percentage label in C3-cycle products during chase periods with 12CO2, although the rate of change was slower than in the C4 species, F. palmeri. In these C3-C4 intermediates both sucrose and fumarate were predominant products after a 20-min chase period. In the C3-C4 intermediates, F. anomala Robinson and f. linearis we observed no significant decrease in the label of C4-cycle products during a 3-min chase period and a slow turnover during a 20-min chase, indicating a lower level of functional integration between the C4 and C3 cycles in these species, relative to the other intermediates. Although F. cronquistii Powell was previously identified as a C3 species, 7–18% of the initial label was in malate+aspartate. However, only 40–50% of this label was in the C-4 position, indicating C4-acid formation as secondary products of photosynthesis in F. cronquistii. In 21% O2, the absorbed quantum yields for CO2 uptake (in mol CO2·[mol quanta]-1) averaged 0.053 in F. cronquistii (C3), 0.051 in F. trinervia (Spreng.) Mohr (C4), 0.052 in F. ramosissima (C3-C4), 0.051 in F. anomala (C3-C4), 0.050 in F. linearis (C3-C4), 0.046 in F. floridana (C3-C4), and 0.044 in F. pubescens (C3-C4). In 2% O2 an enhancement of the quantum yield was observed in all of the C3-C4 intermediate species, ranging from 21% in F. ramosissima to 43% in F. pubescens. In all intermediates the quantum yields in 2% O2 were intermediate in value to the C3 and C4 species, indicating a co-function of the C3 and C4 cycles in CO2 assimilation. The low quantum-yield values for F. pubescens and F. floridana in 21% O2 presumably reflect an ineffcient transfer of carbon from the C4 to the C3 cycle. The response of the quantum yield to four increasing O2 concentrations (2–35%) showed lower levels of O2 inhibition in the C3-C4 intermediate F. ramosissima, relative to the C3 species. This indicates that the co-function of the C3 and C4 cycles in this intermediate species leads to an increased CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase and a concomitant decrease in the competitive inhibition by O2.Abbreviations PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - RuBP ribulose-1,5-bisphosphate  相似文献   

13.
Hydroxyproline and other compounds were labeled with C14 by Chlorella pyrenoidosa supplied with C14O2 in the light. The hydroxyproline recovered from a hydrolysate of the algae was administered through the cut bases of tobacco leaves. The leaves formed little proline from the hydroxyproline, but the C14 label was transferred to a variety of other amino acids. Although hydroxyproline is not abundant in plants, it appears to be an active metabolite.  相似文献   

14.
The mechanism of action of p-chloromercuribenzoate (PCMB) on Serratia marcescens nuclease was investigated. The analysis showed that PCMB forms complexes with DNA. Binding of C7H5O2Hg+ to DNA changes the secondary structure of the DNA. These changes alter the enzymatic activity of S. marcescens nuclease, which was previously found to be sensitive to the secondary structure of the substrates. The nuclease activity was either suppressed or stimulated in the presence of PCMB depending on the C7H5O2Hg+ to nucleotide equivalent ratio. Binding of C7H5O2Hg+ to DNA did not form an abortive enzyme–substrate complex. Binding of Mg2+ to the C7H5O2Hg–DNA complex caused appropriate changes in secondary structure of the substrate. Since Mg2+ and C7H5O2Hg+, though differing in the type of metal cation, are similar in their mechanisms of influence on enzymatic activity of S. marcescens nuclease, the identity of other metal-containing effectors in their mechanism of action on Serratia marcescens nuclease is assumed.  相似文献   

15.
To understand the interactive effects of O3 and CO2 on rice leaves; gas exchange, chlorophyll (Chl) fluorescence, ascorbic acid and glutathione were examined under acute (5 h), combined exposures of O3 (0, 0.1, or 0.3 cm3 m−3, expressed as O0, O0.1, or O0.3, respectively), and CO2 (400 or 800 cm3 m−3, expressed as C400 or C800, respectively) in natural-light gas-exposure chambers. The net photosynthetic rate (P N), maximum (Fv/Fm) and operating (Fq′/Fm′) quantum efficiencies of photosystem II (PSII) in young (8th) leaves decreased during O3 exposure. However, these were ameliorated by C800 and fully recovered within 3 d in clean air (O0 + C400) except for the O0.3 + C400 plants. The maximum PSII efficiency at 1,500 μmol m−2 s−1 PPFD (Fv′/Fm′) for the O0.3 + C400 plants decreased for all measurement times, likely because leaves with severely inhibited P N also had a severely damaged PSII. The P N of the flag (16th) leaves at heading decreased under O3 exposure, but the decline was smaller and the recovery was faster than that of the 8th leaves. The Fq′/Fm′ of the flag leaves in the O0.3 + C400 and O0.3 + C800 plants decreased just after gas exposure, but the Fv/Fm was not affected. These effects indicate that elevated CO2 interactively ameliorated the inhibition of photosynthesis induced by O3 exposure. However, changes in antioxidant levels did not explain the above interaction.  相似文献   

16.
Photon requirements for O2-evolution in red (λ=680nm) light (Фr) were measured for six C3 species, one C3-like, C3–C4 intermediate species, and three C4 species, including examples of NADP-malic enzyme and PEP-carboxykinase C4 sub-groups. Variation in Фr within the C3 species was small with a mean value of 7.96 ±0.12 mol photon mol−1 O2, whereas the mean value for the C4 species was 12.27± 1.53 mol photon mol−1 O2, with the lowest value, 9.24 ±0.13 mol photon mol−1 O2, for the PEP-carboxykinase C4 species Spartina townsendii. The C3–C4 intermediate species Panicum milioides had a value of 9.05 ±0.29 mol photon mol−1 O2, approximately 1 mol photon mol−1 O2 greater than the C3 species. The possibility that this extra cost is due to PEP-carboxylase-dependent recycling of CO2 is discussed. No correlation was found between Фr and chlorophyll content or leaf absorptance. Based on white (ФW) and red light measurements of the photon requirement, values in red light were approximately 20% higher than white-light estimates. These results are discussed with reference to accepted mechanisms of energy transduction in thylakoid membranes (Z-scheme), expected inefficiencies and losses during light-harvesting and electron transport reactions, and the influence of respiratory processes.  相似文献   

17.
Because photosynthetic rates in C4 plants are the same at normal levels of O2 (c, 20 kPa) and at c, 2 kPa O2 (a conventional test for evaluating photorespiration in C3 plants) it has been thought that C4 photosynthesis is O2 insensitive. However, we have found a dual effect of O2 on the net rate of CO2 assimilation among species representing all three C4 subtypes from both monocots and dicots. The optimum O2 partial pressure for C4 photosynthesis at 30 °C, atmospheric CO2 level, and half full sunlight (1000 μmol quanta m?2 s?1) was about 5–10 kPa. Photosynthesis was inhibited by O2 below or above the optimum partial pressure. Decreasing CO2 levels from ambient levels (32.6 Pa) to 9.3 Pa caused a substantial increase in the degree of inhibition of photosynthesis by supra-optimum levels of O2 and a large decrease in the ratio of quantum yield of CO2 fixation/quantum yield of photosystem II (PSII) measured by chlorophyll a fluorescence. Photosystem II activity, measured from chlorophyll a fluorescence analysis, was not inhibited at levels of O2 that were above the optimum for CO2 assimilation, which is consistent with a compensating, alternative electron How as net CO2 assimilation is inhibited. At suboptimum levels of O2, however, the inhibition of photosynthesis was paralleled by an inhibition of PSII quantum yield, increased state of reduction of quinone A, and decreased efficiency of open PSII centres. These results with different C4 types suggest that inhibition of net CO2 assimilation with increasing O2 partial pressure above the optimum is associated with photorespiration, and that inhibition below the optimum O2 may be caused by a reduced supply of ATP to the C4 cycle as a result of inhibition of its production photochemically.  相似文献   

18.
Abstract

Chemical speciation of binary complexes of indium(III) with oxalic acid has been investigated pH metrically at 303 K and at an ionic strength of 0.2 mol dm?3. The approximate formation constants have been calculated with the computer program SCPHD utilizing the experimental data obtained by monitoring H+ ion concentration. The formation constants thus obtained are refined with the computer program, MINIQUAD75 using primary alkalimetric data. The selection of the best-fit chemical model is based on the statistical parameters and residual analysis. The major complexes formed are In(C2O4)2?, In(C2O4)33?, [In(C2O4)2OH]2? and [In(C2O4)2 (OH)2]3?. The distribution patterns of the different species with the pH values showed that In(C2O4)2? is the predominant species.  相似文献   

19.
A method is described for rapid enzymatic isolation of mesophyll protoplasts and cells from the crassulacean acid metabolism (CAM) plant Notonia grandiflora DC. The mesophyll protoplasts exhibited high rates of 14CO2 fixation both in the light (45 μmol of CO2 fixed mg?1 Chl h?1) and in the dark (20 μmol of CO2 fixed mg?1 Chl h?1). The protoplasts also showed O2 evolution (40 μmol of O2 evolved mg?1 Chl h?1) without added bicarbonate. Exogenously added bicarbonate had no stimulating effect on the O2 evolution. Analyses of early photosynthetic products in the light showed the formation of both C3 and C4 acids. Aspartate was found to be a predominant photosynthate.  相似文献   

20.
The rate of C14O2 incorporation into amino acids and organic acids in C. reinhardtii is a function of particular stages of development in the life cycle of the alga. Gametic differentiation in nitrogen free medium is accompanied by a reduced rate of amino acid synthesis and a higher synthesis of organic acids than that found for the cells undergoing vegetative development. The addition of ammonium to differentiating gametes results in an increased synthesis of amino acids, particularly the basic ones, and a concomitant reduction in organic acid synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号