首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine the potential for the autogenic ecosystem engineers, crustose coralline algae (CCA), to serve as seed banks or refugia for life stages of other species, it is critical to develop sampling protocols that reflect the diversity of life present. In this pilot study on two shallow water species of CCA collected from Raoul Island (Kermadec Islands; Rangitāhua) New Zealand, we investigated two preservation methods (ethanol vs. silica gel), sampled inner and outer regions of the crusts, and used DNA metabarcoding and seven genes/gene regions (16S rRNA, 18S rRNA, 23S rRNA, cox1, rbcL, and tufA genes and the ITS rRNA region) to develop a protocol for taxa identification. The results revealed immense diversity, with typically more taxa identified within the inner layers than the outer layers. As highlighted in other metabarcoding studies and in earlier work on rhodoliths (nodose coralline algae), reference databases are incomplete, and to some extent, the use of multiple markers mitigates this issue. Specifically, the 23S rRNA and rbcL genes are currently more suitable for identifying algae, while the cox1 gene fares better at capturing the diversity present inclusive of algae. Further investigation of these autogenic ecosystem engineers that likely act as marine seed banks is needed.  相似文献   

2.
Crustose coralline algae (CCA) are a critical component of coral reefs as they accrete carbonate for reef structure and act as settlement substrata for many invertebrates including corals. CCA host a diversity of microorganisms that can also play a role in coral settlement and metamorphosis processes. Although the sensitivity of CCA to ocean acidification (OA) is well established, the response of their associated microbial communities to reduced pH and increased CO2 was previously not known. Here we investigate the sensitivity of CCA‐associated microbial biofilms to OA and determine whether or not OA adversely affects the ability of CCA to induce coral larval metamorphosis. We experimentally exposed the CCA Hydrolithon onkodes to four pH/pCO2 conditions consistent with current IPCC predictions for the next few centuries (pH: 8.1, 7.9, 7.7, 7.5, pCO2: 464, 822, 1187, 1638 μatm). Settlement and metamorphosis of coral larvae was reduced on CCA pre‐exposed to pH 7.7 (pCO2 = 1187 μatm) and below over a 6‐week period. Additional experiments demonstrated that low pH treatments did not directly affect the ability of larvae to settle, but instead most likely altered the biochemistry of the CCA or its microbial associates. Detailed microbial community analysis of the CCA revealed diverse bacterial assemblages that altered significantly between pH 8.1 (pCO2 = 464 μatm) and pH 7.9 (pCO2 = 822 μatm) with this trend continuing at lower pH/higher pCO2 treatments. The shift in microbial community composition primarily comprised changes in the abundance of the dominant microbes between the different pH treatments and the appearance of new (but rare) microbes at pH 7.5. Microbial shifts and the concomitant reduced ability of CCA to induce coral settlement under OA conditions projected to occur by 2100 is a significant concern for the development, maintenance and recovery of reefs globally.  相似文献   

3.
This study was carried out on the rocky cliffs of Giannutri Island (Tyrrhenian Sea, Italy) to test the hypothesis that coralligenous assemblages are consistent within the bathymetric range considered (25–35 m depth) over three different spatial scales (1000 m, 100 m and 10 m). A multi-factorial sampling design was used to assess patterns of vertical distribution in the studied area. Data on the percent cover of algae and invertebrates were collected at three depths (25, 30 and 35 m) using a photographic method, and percentage cover was obtained using a visual method. Analysis of the results using ANOVA indicated that the distribution and abundance of algae and some invertebrates of the sublittoral assemblages are clearly heterogeneous. Algae, sponges and bryozoans showed significant variability in distribution and abundance at different depths, but this variability was not consistent amongst transects. Ascidians did not show any variability, while the abundance of anthozoans differed significantly amongst transects. We concluded that heterogeneity in the distribution and abundance of the taxa analysed is related to the smallest spatial scale investigated (10's of m). Some of the possible causes of the observed variability are discussed.  相似文献   

4.
Over the past decades, coralline algae have increasingly been used as archives of palaeoclimate information due to their seasonal growth bands and their vast distribution from high latitudes to the tropics. Traditionally, these reconstructions have been performed mainly on high latitude species, limiting the geographical area of their potential use. Here we assess the use of temperate crustose fossil coralline algae from shallow water habitats for palaeoenvironmental reconstruction to generate records of past climate change. We determine the potential of three different species of coralline algae, Lithothamnion minervae, Lithophyllum stictaeforme and Mesophyllum philippii, with different growth patterns, as archives for pH (δ11B) and temperature (Mg/Ca) reconstruction in the Mediterranean Sea. Mg concentration is driven by temperature but modulated by growth rate, which is controlled by species-specific and intraspecific growth patterns. L. minervae is a good temperature recorder, showing a moderate warming trend in specimens from 11.37 cal ka BP (from 14.2 ± 0.4°C to 14.9 ± 0.15°C) to today. In contrast to Mg, all genera showed consistent values of boron isotopes (δ11B) suggesting a common control on boron incorporation. The recorded δ11B in modern and fossil coralline specimens is in agreement with literature data about early Holocene pH, opening new perspectives of coralline-based, high-resolution pH reconstructions in deep time.  相似文献   

5.
Crustose coralline algae (CCA) are key reef-building primary producers that are known to induce the metamorphosis and recruitment of many species of coral larvae. Reef biofilms (particularly microorganisms associated with CCA) are also important as settlement cues for a variety of marine invertebrates, including corals. If rising sea surface temperatures (SSTs) affect CCA and/or their associated biofilms, this may in turn affect recruitment on coral reefs. Herein, we report that the CCA Neogoniolithon fosliei, and its associated microbial communities do not tolerate SSTs of 32 °C, only 2–4 °C above the mean maximum annual SST. After 7 days at 32 °C, the CCA exhibited clear signs of stress, including bleaching, a reduction in maximum quantum yield (Fv/Fm) and a large shift in microbial community structure. This shift at 32 °C involved an increase in Bacteroidetes and a reduction in Alphaproteobacteria, including the loss of the primary strain (with high-sequence similarity to a described coral symbiont). A recovery in Fv/Fm was observed in CCA exposed to 31 °C following 7 days of recovery (at 27 °C); however, CCA exposed to 32 °C did not recover during this time as evidenced by the rapid growth of endolithic green algae. A 50% reduction in the ability of N. fosliei to induce coral larval metamorphosis at 32 °C accompanied the changes in microbiology, pigmentation and photophysiology of the CCA. This is the first experimental evidence to demonstrate how thermal stress influences microbial associations on CCA with subsequent downstream impacts on coral recruitment, which is critical for reef regeneration and recovery from climate-related mortality events.  相似文献   

6.
Capsule Habitat selection of Dartford Warbler Sylvia undata on Elba Island (Tuscan Archipelago, Italy) was analysed, considering 1-ha square plots (104 occupied and 104 unoccupied). Dartford Warbler occurrence was positively associated with garrigues, maquis and meadows, whilst the urban areas have a negative effect. The most used vegetation types were the garrigues with Cistus and degraded tall maquis with Erica arborea, Arbutus unedo and Cistus monspeliensis.  相似文献   

7.
Subfossil azoxanthellate deep-sea coral mounds occur at 355–410 m on the continental slope of the NE Tyrrhenian Sea between Gorgona and Capraia islands, Tuscan Archipelago. These low-relief patch reefs are at present buried by a thin muddy drape. Their age is latest Pleistocene. The colonial scleractinian Madrepora oculata is the major frame builder, in association with the solitary coral Desmophyllum dianthus and the colonial coral Lophelia pertusa. These NE Tyrrhenian Madrepora-dominated coral mounds represent one of the few known Mediterranean examples of deep-coral colonization of a muddy, low-gradient continental slope.  相似文献   

8.
Red algae of the family Peyssonneliaceae typically form thin crusts impregnated with aragonite. Here, we report the first discovery of brucite in a thick red algal crust (~1 cm) formed by the peyssonnelioid species Polystrata dura from Papua New Guinea. Cells of P. dura were found to be infilled by the magnesium‐rich mineral brucite [Mg(OH)2]; minor amounts of magnesite and calcite were also detected. We propose that cell infill may be associated with the development of thick (> ~5 mm) calcified red algal crusts, integral components of tropical biotic reefs. If brucite infill within the P. dura crust enhances resistance to dissolution similarly to crustose coralline algae that infill with dolomite, then these crusts would be more resilient to future ocean acidification than crusts without infill.  相似文献   

9.
Recent analyses of molecular markers have significantly revised the traditional taxonomy of Podarcis species (Squamata: Lacertidae), leading to critically reconsider the taxonomic value of several subspecies described only on morphological bases. In fact, lizards often exhibit high morphological plasticity both at the intra‐specific and the intra‐population level, especially on islands, where phenotypic divergences are mainly due to local adaptation, rather than to evolutionary differentiation. The Common wall lizard Podarcis muralis exhibits high morphological variability in biometry, pholidosis values and colour pattern. Molecular analyses have confirmed the key role played by the Italian Peninsula as a multi‐glacial refuge for P. muralis, pointing out the lack of congruence between mitochondrial lineages and the four peninsular subspecies currently recognized. Here, we analyse a portion of the protein‐encoding cytochrome b gene in the seven subspecies described for the Tuscan Archipelago (Italy), in order to test whether the mitochondrial haplotypes match the morphologically based taxonomy proposed for Common wall lizard. We also compare our haplotypes with all the others from the Italian Peninsula to investigate the presence of unique genetic lineages in insular populations. Our results do not agree completely with the subspecific division based on morphology. In particular, the phylogenetic analyses show that at least four subspecies are characterized by very similar haplotypes and fall into the same monophyletic clade, whereas the other three subspecies are closer to peninsular populations from central Italy. From these results, we conclude that at least some subspecies could be better regarded as simple eco‐phenotypes; in addition, we provide an explanation for the distinctiveness of exclusive lineages found in the archipelago, which constituted a refuge for this species during last glacial periods.  相似文献   

10.
11.
Abstract

Observations on three interesting Ceramiales from the Mediterranean Sea are reported; Ceramium incospicuum Zanardini, Polysiphonia setacea Hollenberg and Rodriguezella pinnata (Kützing) Schmitz ex Falkenberg. The male reproductive structures on the genus Rodriguezella are described for the first time.  相似文献   

12.
The morphologies of 15 rare chlorococcalean algae, i.e. three species of the Characiaceae [Hydrianum crassiapex Korshikov, H. viride (Scherffel) H. Ettl, Characiellopsis skujae (Fott) Komárek], four taxa of the genus Pediastrum Meyen [Pediastrum privum (Printz) E. Hegewald, P. duplex Meyen var. rugulosum Raciborski, P. angulosum (Ehrenberg) ex Meneghini, Pediastrum biradiatum Meyen], a radiococcalean alga Phacomyxa sphagnicola Skuja, Pseudodictyosphaerium fluviatile (Hindák) Hindák from the Dictyosphaeriaceae, three representatives of the family Oocystaceae (Amphikrikos minutissimus Korshikov, Gloeotaenium loitlesbergianum Hansgirg, Chlorolobion obtusum Korshikov) and three species of the genus Scenedesmus Meyen (S. ginzbergeri Kammerer, S. incrassatulus Bohlin, S. parisiensis Deflandre), are documented by drawings and micrographs and their taxonomy is discussed. Of these, Hydrianum viride, Pediastrum duplex var. rugulosum, Scenedesmus ginzbergeri and S. parisiensis are recorded for the first time in Slovakia. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

13.
The vegetative and reproductive morphology of the crustose red alga Peyssonnelia japonica (Segawa) Yoneshigue was re‐examined based on the holotype specimen and recent collections from various localities in Japan, including the type locality, and Hawaii. This species is characterized by the following features: thallus with appressed margins, perithallial filaments arising from the entire upper surface of each hypothallial cell (the Peyssonnelia rubra‐type), easily separable perithallial filaments in a gelatinous matrix, hypothallial filaments arranged in parallel rows, unicellular rhizoids, hypobasal calcification, gonimoblasts derived mainly from connecting filaments, and spermatangia produced in a series of whorls comprised of one to four paired spermatangia surrounding each central cell (the Peyssonnelia dubyi‐type). In addition to these features, the dimensions of the vegetative and reproductive structures of Peyssonnelia boudouresquei Yoneshigue described from Brazil were consistent with those of P. japonica. Molecular phylogenetic analyses using partial 26S rDNA, rbcL, and cox2‐3 spacer DNA sequences also supported the monophyly of P. japonica (from 16 localities in Japan and one locality in Hawaii) and P. boudouresquei (from two localities in Brazil). Therefore, P. boudouresquei may be a taxonomic synonym of P. japonica. However, considering the relatively high sequence divergences between the two taxa (2.1–2.5% in partial 26S rDNA, 5.9–6.7% in rbcL, and 5.8–6.7% in cox2‐3 spacer), and the relatively limited geographic sampling ranges, we reserve the taxonomic conclusion until further morphological and genetic data of the specimens from other geographic areas connecting Japan and Brazil become available.  相似文献   

14.
Seasonal changes in the microphytoplankton assemblages were examined in the coastal zone of Bozcaada Island with regard to some major physical and chemical variables. Samples were collected from May 2000 to December 2001 at four stations. A total of 108 dinoflagellates, 102 diatoms, 1 chrysophycean, 3 dictyochophycean, and 1 prasinophycean species were identified and quantified during the study period. Diatoms and dinoflagellates were the most important in terms of species number and abundance. The maximum values of total microphytoplankton were observed at 0.5 m depth (46.2 × 103 cells l−1 at st. 3) in May as this was the month when the diatom Pseudo-nitzschia pungens bloomed. Chlorophyll (chl) a concentration ranged between 0.08 (August) and 0.78 μg l−1 (February). May was another important month in which chlorophyll a increased (0.41–0.47 μg l−1). Species diversity values (Hlog2) ranged from 1.66 bits (June, 20 m) to 4.11 bits (November, 0.5 m). The increase was attributed to a more balanced distribution of abundance among species. The amounts of nitrate + nitrite (0.6−3.7 μg-at N l−1), phosphate (0.2−0.6 μg-at P l−1) and silicate (0.7−2.5 μg-at Si l−1) were recorded on each sampling occasion. Nutrient concentrations and chl a values of the research area were found to be poorer than those of the many other coastal areas in the northeastern Mediterranean. The mean atomic ratio of nitrogen to phosphorus varied from 1.3 (June) to 12.9 (February). This ratio was lower than the Redfield ratio of 16 for ocean phytoplankton, and phytoplankton was potentially limited by nitrogen for most of the months. The result of this study confirms and emphasizes the oligotrophic nature of the eastern Mediterranean.  相似文献   

15.
16.
17.
Abstract
Phycochromes b and d, two types of photoreversibly photochromic pigments previously extracted from the blue-green alga Tolypothrix distorta , which contains phycoerythrocyanin, have now been found in three Anabaena strains also containing phycoerythrocyanin. Tests for the presence of phycochromes b and d in a number of blue-green algae lacking phycoerythrocyanin have been negative. The possibility that phycochrome b-type absorbance changes are due to changes in the α-subunit of phycoerythrocyanin is discussed.  相似文献   

18.
Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high‐Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community‐scale and long‐term experiments in stress response.  相似文献   

19.
Spatial distribution of the firmly attached epiphytic algae was investigated directly on the leaves of one Apiaceae (Apium nodiflorum L.) commonly found in chalky Mediterranean rivers, at two sampling dates (summer and autumn). The composition and structure of the epiphytic communities of the samples were determined at different levels: along the leaves, on both their sides and within each leaflet (n = 13). Forty-eight leaflets from four randomly selected plants were cut along the longitudinal and vertical axes so as to define 16 microhabitats located on the edge, the centre and the vein. Only a few species of algae were found to be constantly present whatever the sampling date, and dominated all microzones (n = 768). Their presence seemed to depend, rather, on the architectural structure of the plant. The other algae represented the major part of the epiphytic community and were only occasionally present. Those were more subject to temporal and environmental variations and less specific of the substrate. The epiphytes showed considerable spatial heterogeneity within their microhabitats, with an evident preference for the centre and the edge of the leaves, whereas two inhospitable spaces were the vein and apex. On the other hand, when the study was performed at a larger scale (along the leaf), the epiphytic populations of the youngest leaves (near the surface) and the eldest ones (close to the sediments) were homogenous, hence suggesting that other factors, independent from the physiology of the plant, may have an impact on epiphytic distribution.  相似文献   

20.
Porolithon is one of the most ecologically important genera of tropical and subtropical crustose (non-geniculate) coralline algae growing abundantly along the shallow margins of coral reefs and functioning to cement reef frameworks. Thalli of branched, fruticose Porolithon specimens from the Indo-Pacific Ocean traditionally have been called P. gardineri, while massive, columnar forms have been called P. craspedium. Sequence comparisons of the rbcL gene both from type specimens of P. gardineri and P. craspedium and from field-collected specimens demonstrate that neither species is present in east Australia and instead resolve into four unique genetic lineages. Porolithon howensis sp. nov. forms columnar protuberances and loosely attached margins and occurs predominantly at Lord Howe Island; P. lobulatum sp. nov. has fruticose to clavate forms and free margins that are lobed and occurs in the Coral Sea and on the Great Barrier Reef (GBR); P. parvulum sp. nov. has short (<2 cm), unbranched protuberances and attached margins and is restricted to the central and southern GBR; and P. pinnaculum sp. nov. has a mountain-like, columnar morphology and occurs on oceanic Coral Sea reefs. A rbcL gene sequence of the isotype of P. castellum demonstrates it is a different species from other columnar species. In addition to the diagnostic rbcL and psbA marker sequences, the four new species may be distinguished by a combination of features including thallus growth form, margin shape (attached or unattached), and medullary system (coaxial or plumose). Porolithon species, because of their ecological importance and sensitivity to ocean acidification, need urgent documentation of their taxonomic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号