首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the fine structure of proplastids of etiolated leaves exposed to various conditions of light and darkness for 24 and 48 hours were investigated, and the chlorophyll content of the leaves so treated was determined in vivo. The light treatments were given while the leaves were floated on tap water or on a 0.2 M sucrose solution. Leaves floated on water under low light intensity (2 foot-candles) were low in chlorophyll and contained plastids with concentric rows of vesicles. Transferring the leaves back to darkness resulted in the disappearance of the concentric rigs and re-formation of vesicular centers together with straight rows of vesicles and tubules, evenly spaced throughout the stroma. Chloroplasts of leaves floated on a sucrose solution under low light showed large vesicular centers together with stacks of rows of elongated tubules. The same chloroplast structure was found in leaves floated on a sucrose solution in the dark, after having been exposed to weak light for 24 hours. Chlorophyll content in these leaves was the same as in leaves floated on water under high light intensity, where the chloroplasts had normal grana and lamellae. The effect of the investigated factors on plastid development is discussed.  相似文献   

2.
The influence of low temperature (3°C.) on development of submicroscopic structure in plastids of Zea m. leaves was studied. Leaves from 8-day old etiolated plants, with plastids showing the prolamellar body and few lamellae, were floated for 1 day on tap water both in the dark and in the light, at 26°C and at 3°C. The structures remain unchanged in the dark, independent of temperature. Whereas in the light at 26°C., normal development of parallel compound lamellae and formation of grana occurs, in light at 3°C. ring structures are formed. Under the latter conditions protochlorophyll is converted to chlorophyll, although the in situ absorption maximum is different from the one for chlorophyll in plants grown in light at 26°C. When leaves were transferred from light at 3°C. to light at 26°C., ring structures in the plastids disappeared and normal development occurred. The possibility is discussed that development of parallel-arranged compound lamellae is due both to photochemical and synthetic processes, involving not only accumulation of chlorophyll, but also synthesis of other compounds.  相似文献   

3.
1. Although the carotenoid pigments are present in large concentration in the plastids of etiolated Avena seedlings as compared with protochlorophyll, the pigment precursor of chlorophyll, it is possible to show that the carotenoids do not act as filters of the light incident on the plant in the blue region of the spectrum where they absorb heavily. This suggests that the carotenoids are located behind the protochlorophyll molecules in the plastids. 2. Since the carotenoids do not screen and light is necessary for chlorophyll formation, an effectiveness spectrum of protochlorophyll can be obtained which is the reciprocal of the light energy necessary to produce a constant amount of chlorophyll with different wavelengths. The relative effectiveness of sixteen spectral regions in forming chlorophyll was determined. 3. From the effectiveness spectrum, one can conclude that protochlorophyll is a blue-green pigment with major peaks of absorption at 445 mµ, and 645 mµ, and with smaller peaks at 575 and 545 mµ. The blue peak is sharp, narrow, and high, the red peak being broader and shorter. This differs from previous findings where the use of rougher methods indicated that red light was more effective than blue and did not give the position of the peaks of absorption or their relative heights. 4. The protochlorophyll curve is similar to but not identical with chlorophyll. The ratio of the peaks of absorption in the blue as compared to the red is very similar to chlorophyll a, but the position of the peaks resembles chlorophyll b. 5. There is an excellent correspondence between the absorption properties of this "active" protochlorophyll and what is known of the absorption of a chemically known pigment studied in impure extracts of seed coats of the Cucurbitaceae. Conclusive proof of the identity of the two substances awaits chemical purification, but the evidence here favors the view that the pumpkin seed substance, which is chemically chlorophyll a minus two hydrogens, is identical with the precursor of chlorophyll formation found in etiolated plants.  相似文献   

4.
Mercedes Wrischer 《Planta》1967,73(4):324-327
Summary It has been shown that inhibitors of protein synthesis do not influence the breakdown of the crystal-lattice-like structure of the prolamellar bodies in the plastids when etiolated plants are exposed to light. The formation of grana and the greening of leaves are however considerably inhibited, depending on the concentration of the inhibitor used.  相似文献   

5.
A mechanism for the formation of lamellar systems in the plant cell has been proposed as a result of electron microscope observations of young and mature cells of Nitella cristata and the plastids of Zea mays in normal plants, developing plants, and certain mutant types. The results are compatible with the concept that lamellar structures arise by the fusion or coalescence of small vesicular elements, giving rise initially to closed double membrane Structures (cisternae). In the chloroplasts of Zea, the cisternae subsequently undergo structural transformations to give rise to a compound layer structure already described for the individual chloroplast lamellae. During normal development, the minute vesicles in the young chloroplast are aggregated into one or more dense granular bodies (prolamellar bodies) which often appear crystalline. Lamellae grow out from these bodies. In fully etiolated leaves lamellae are absent and the prolamellar bodies become quite large, presumably because of inhibition of the fusion step which appears to require chlorophyll. Lamellae develop rapidly on exposure of the plant to light, and subsequent development closely parallels that seen under normal conditions. The plastids of white and very pale green mutants of Zea similarly lack lamellae and contain only vesicular elements. A specialized peripheral zone immediately below the double limiting membrane in Zea chloroplasts appears to be responsible for the production of vesicles. These may be immediately converted to lamellae under normal conditions, but accumulate to form a prolamellar body if lamellar formation is prevented, as in the case of etiolation and chlorophyll-deficient mutation, or when the rate of lamellar formation is slower than that of the production of precursor material (as appears to be the case in the early stages of normal development).  相似文献   

6.
The plastids of young dark-grown bean leaves, exposed to periodiclight are agranal, devoid of chlorophyll b and contain primarythylakoids and chlorophyll a. Transfer of these plants to continuousillumination results in synthesis of new chlorophyll a, chlorophyllb and grana. This study was done in order to study whether andhow the grana are formed from preexisting primary thylakoids.14C--aminolevulinic acid was used to label the chlorophyll aof the primary thylakoids, and its fate was studied after transferof the plants to continuous light. It was found that chlorophyll b and grana become 14C-labelled.The total radioactivity of chlorophyll b per bean increasedwith the parallel decrease of that of chlorophyll a. All subchloroplastfractions, obtained after digitonin disruption of chloroplasts,contained chlorophyll a of equal specific radioactivity. Thespecific radioactivity of chlorophyll b was lower than thatof chlorophyll a, and, in addition, it was lower in the granathan in the stroma lamellae fraction. The data suggest that chlorophyll b is formed from chlorophylla; the grana are formed by stacking of preexisting primary thylakoids;chlorophyll b is synthesized faster in the grana than the stromalamellae; the newly formed chlorophyll a molecules are distributedat random throughout the developing photosynthetic membraneand not on specific growing sites. (Received April 24, 1976; )  相似文献   

7.
Summary Etio-chloroplasts were isolated from greening maize leaves and their ultrastructure was investigated immediately after isolation, as well as at intervals of several hours after their exposure to light or darkness. The following ultrastructural changes have been observed:In plastids isolated from etiolated leaves illuminated for 1–2 hours, the crystalline structure of the prolamellar bodies is partly restored during the isolation. In some plastids, regions with a regular, crystalline structure of densely packed tubules are even observed. The prolamellar bodies do not change further, either in light or in darkness.In young chloroplasts—i.e., in plastids isolated from etiolated leaves, illuminated for 6 or 15 hours—many prolamellar bodies, usually lying between the grana, appearde novo during isolation. These prolamellar bodies do not disappear in light either. They do not develop at all, however, if the isolation is performed at low temperature (4 °C).The results of the present paper indicate that in isolated etio-chloroplasts some tubular structures are newly formed, but that the conversion of this material into the thylakoids is not possible under the experimental conditions used.  相似文献   

8.
Incomplete development of chloroplast lamellae occurred when etiolated pea plants were greened under cycles of 2 min light, 118 min dark. Although the plastids had full photochemical activities, they were nearly agranal. They were also characterized by a high quantum requirement for whole chain electron transport in low light; this is thought to be the result of unequal light absorption by incompletely developed light-harvesting assemblies of photosystem I and II and a lack of regulation of excitation energy distribution between the two photosystems. Continuous illumination induced the final stages of membrane differentiation. These stages were primarily characterized by the appearance of grana stacking and an increase in photosynthetic unit size. A biphasic decrease in quantum requirement for whole chain electron transport correlated directly with the appearance of grana during the final steps of membrane assembly. Structural organization of the membrane may be related to the light-harvesting efficiency of the membrane.  相似文献   

9.
The maintenance but substantial transformation of plastids was found in lowermost hypocotyl segments of soil‐grown bean plants (Phaseolus vulgaris cv. Magnum) during a 60‐day cultivation period. Although the plants were grown under natural light–dark cycles, this hypocotyl segment was under full coverage of the soil in 5–7 cm depth, thus it was never exposed to light. The 4‐day‐old plants were fully etiolated: amyloplasts, occasionally prolamellar bodies, protochlorophyllide (Pchlide) and protochlorophyll (Pchl) were found in the hypocotyls of these young seedlings. The 633 and 654 nm bands in the 77 K fluorescence emission spectra indicated the presence of Pchlide and Pchl pigments. During aging, both the Pchlide and Pchl contents increased, however, the Pchl to Pchlide ratio gradually increased. In parallel, the contribution of the 654 nm form decreased and in the spectra of the 60‐day‐old samples, the main band shifted to 631 nm, and a new form appeared with an emission maximum at 641 nm. The photoactivity had been lost; bleaching took place at continuous illumination. The inner membranes of the plastids disappeared, the amount of starch storing amyloplasts decreased. These data may indicate the general importance of plastids for plant cell metabolism, which can be the reason for their maintenance. Also the general heterogeneity of plastid forms can be concluded: in tissues not exposed to light, Pchl accumulating plastids develop and are maintained even for a long period.  相似文献   

10.
Dark-grown plants of Sphaerocarpos, incubated in a liquid medium containing sucrose and mineral salts, have a much lower chlorophyll and nitrogen content than do light-grown plants. Two minutes of red light per 12 hours is about two-thirds as effective in increasing chlorophyll and nitrogen content as is continuous white light. These red light-induced increases are mediated by phytochrome, as they are reversible by alternating exposures to red and far-red light. They appear to be related to differences in the ultrastructure of the chloroplasts. Plastids from dark-grown plants are full of starch and develop few lamellae, while light-grown plastids contain little starch and have many lamellae. The ultrastructural studies are supported by starch determinations which revealed a phytochrome-mediated decrease in starch content. The effect of white light in increasing the chlorophyll and nitrogen content above the level attained in red light-treated plants is not mediated by photosynthetic activity. These results are related to similar responses in other archegoniates and angiosperm seedlings.  相似文献   

11.
C. J. Arntzen  R. A. Dilley  J. Neumann 《BBA》1971,245(2):409-424
Membrane fragments released by French pressure cell treatment of whole chloroplasts and isolated by differential centrifugation have been characterized structurally and with respect to phosophorylating and proton transport activities. In agreement with results of other workers, the heavy fraction released by pressure treatment was found by electron microscopy studies to be made up of mostly intact grana stacks while the light fraction was comprised of vesicles derived from the stromal lamellae. Both fractions were found to carry out rapid rates of cyclic photophosphorylation catalyzed by phenazine methosulfate (PMS). However, only the grana membranes demonstrated active proton accumulation in the presence of PMS. No light induced H+ uptake could be detected in the stromal lamellae fraction; and as expected, proton gradient dissipating agents such as NH4Cl, nigericin in the presence of K+, and gramicidin were only slightly inhibitory to phosphorylation at concentrations which were very inhibitory in the grana membrane fraction.

Further evidence that stromal lamellae do not have active proton transport in the intact chloroplast was obtained by comparing various chloroplasts having different amounts of stromal and grana membranes. Comparative studies on young and old chloroplasts from lettuce, mesophyll and bundle sheath cell plastids from sorghum, and greening plastids from etiolated corn seedlings revealed a direct correlation between the extent of grana formation and the amount of proton transport activity. Samples which had larger amounts of stromal lamellae had high rates of ATP formation but a reduced capacity for H+ accumulation.  相似文献   


12.
Etiolated bean leaves supplied δ-amino-levulinic acid in the dark synthesize large amounts of protochlorophyllide which is not converted to chlorophyllide upon illumination of the leaves. The fine structure of the proplastids is not affected by the treatment. When leaves containing "inactive" protochlorophyllide are exposed to light of 700 ft-c for 3 hours, they lose practically all their green pigments. During this period large stacks of closed membrane structures are built up in the region of the prolamellar body. These lamellar structures remain even when no or only traces of pigment are left in the leaves. In untreated control leaves the pigment content remained constant during similar illumination and the structural changes in the plastids consisted of a rearrangement of the vesicles from the prolamellar bodies into strands dispersed through the stroma; lamellae and grana formation occurred later.  相似文献   

13.
Treatment of barley seeds (Hordeum vulgare L.) with streptomycin, an inhibitor of plastid protein synthesis, resulted in growth of the albino phenotype seedlings with ribosome-deficient undifferentiated plastids and chlorophyll (Chl) level as low as 0.1% of that in control plant leaves. A major effect of the antibiotic was almost complete suppression of the ability of plants to synthesize 5-aminolevulinic acid (ALA) intended for Chl biosynthesis. The activity of synthesis of ALA intended for heme porphyrin biosynthesis in etiolated and greening seedlings and in light-grown albinophenotype plants was insensitive to light and cytokinins. In the upper parts of leaves of streptomycin-treated plants, exhibiting 60% Chl deficit, the cells with three types of chloroplasts could be observed: normally developed chloroplasts, chloroplasts composed of single thylakoids and grana, and completely undifferentiated plastids. In this Chl-deficient tissue, ALA synthesis was found to be stimulated by kinetin but much less than in leaves of the control plants. The endogenous cytokinin content in etiolated and greening seedlings treated with streptomycin was almost the same as it was in untreated control seedlings. The cytokinin level in the white tissue of plants grown in the light was on average twice as high as that in green leaves of the control plants. The capability of kinetin to stimulate the synthesis of ALA used for Chl biosynthesis was found to correlate with the Chl content and organization of the chloroplast internal structure. This correlation confirms the hypothesis that the normally developed internal structure of plastids is essential for the adequate phytohormone response in plants.  相似文献   

14.
Abstract

C14O2 fixation in plant tissues « in vitro ». — In the present work it has been examinated the autotrophic and heterotrophic CO2 fixation of explants of « Helianthus tuberosus » « in vitro » and the photosyntetic efficiency of leaves produced from buds of « in vitro » explants of « Cichorium intybus » compared with that of mature leaves from normal plants of the same species. From our results it is evident that « in vitro » explants of « Helianthus tuberosus », grown, in the light, are able to autotrophically incorporate C14O2; the distribution of the radioactivity into the various fractions shows a large influence of the light on the neutral fraction containing sugars (50% of the total radioactivity). In the chlorophyllous explants the dark CO2 fixation is obviously of heterotrophic type: 97% of the total radioactivity is incorporated in amine acids (43%) and the organic acids (53%); on the other hand in the dark grown explants the radioactivity is differently distributed between amino acids (59%) and organic acids (39%). Mature leaves from normal plants and leaves produced from buds of « in vitro » explants of « Cichorium intybus » incorporate the same quantity of C14O2 when expressed per mg of chlorophyll; the different distribution of the radioactivity in the neutral and acid fractions could be explained in terms of a different utilization pathway of the photosynthates in the two tissues.  相似文献   

15.
Abstract

Ultrastructural changes in some species of « Trebouxia » under different light conditions. — Some species of the phycobiont alga Trebouxia (Tr. decolorans and Tr. albulescens), both isolated and grown on synthetic medium and still in the lichen, were examined in order to study the effect of light on the plastid ultrastructures. The species isolated from Buellia punctata and Xanthoria parietina were very sensitive to light condition and lost their chlorophyll content quickly. Striking ultrastructural changes were found in the algae grown under small light intensities and those which become achloric owing to strong light. In the latter, modifications of the Iamellar System were observed. The disappearance of Chlorophyll pigments was followed by a reduced electron density of the whole Iamellar system, as if were lacking the Iipidic compounds which are usually present and absorb fixators and dyers, thus allowing a good view. On the contrary, normal light conditions did not affect cultures of Trebouxia humicola, a free living alga. In the chloroplasts of the phycobiont species, unlike in the free living alga, grana were very close and sometimes formed very thick masses towards the edge of the chloroplast. It could not be ascertained whether such changes corresponded to a different composition of the lipoproteic compounds of the lamellar system.

Xanthoria parietina could grow in very lighted environments with no damage of the algae present in its thallus. The lichen thalluses, under different light conditions, showed very different colourings: the overlighted ones were rusty-red and the shadowed ones deep green. The chlorophyll content of the lichen thalluses with various shades (table 1) were very similar. The ultrastructural changes induced by strong light intensities in the phycobiont algae, kept in the lichen, were very small in respect of those observed in the same algae isolated and grown on synthetic medium and concerned the Iamellar system and the pyrenoid, above all. The rusty-red lichen showed a great number of stromatic lamellae, often with a parallel trend, so as to simulate a Iamellar system not organized in grana and often presented groups of lamellae concentrically arranged. In the pyrenoid of the algae from rusty-red thalluses, compared with the green ones, a much greater number of electron dense masses was observed, which are very thick and occupy the whole stromatic portion of the pyrenoid. But the Chlorophyll content did not decrease. Unlike the results of PEVELING, we noted that the electron dense masses (cited by the Author as « osmiophilic plastoglobules) were visible even after fixation with permanganate; the different numbers of these globules might depend on environmental factors. The phycobiont alga, when in the lichen thallus, could perhaps support strong light intensities, because pigments or compounds formed with the mycobiont or by it alone prevented the photooxidation of chlorophyll. Hypothetically a relationship might exist between the sensitivity of the phycobiont algae to light intensities and the content in antraquinonic pigments in the lichen thallus. But also using filters with absorption maxima similar to those of these pigments, the « in vitro » cultures of the phycobiont algae became achloric in the same time as the control ones.

Some Authors had found in Trebouxia humicola a different relationship between Chlorophyll pigments and carotinoids from that observed in the phycobiont species and had ascribed to it the greater resistence to strong light of the free living alga. Pigments or other substances present in the mycobiont can have a protective action on the Chlorophyll content and on the ultrastructures. In the phycobiont algae the resistence to strong light might be explained by an exchange of compounds between mycobiont and phycobiont, ending with the structural changes of the pyrenoid.  相似文献   

16.
The contents of protochlorophyllide, protochlorophyll and chlorophyll together with the native arrangements of the pigments and the plastid ultrastructure were studied in different leaf layers of white cabbage (Brassica oleracea cv. capitata) using absorption, 77 K fluorescence spectroscopy and transmission electron microscopy. The developmental stage of the leaves was determined using the differentiation of the stoma complexes as seen by scanning electron microscopy and light microscopy. The pigment content showed a gradual decrease from the outer leaf layer towards the central leaves. The innermost leaves were in a primordial stage in many aspects; they were large but had typical proplastids with few simple inner membranes, and contained protochlorophyllide and its esters in a 2 : 1 ratio and no chlorophyll. Short‐wavelength, not flash‐photoactive protochlorophyllide and/or protochlorophyll forms emitting at 629 and 636 nm were dominant in the innermost leaves. These leaves also had small amounts of the 644 and 654 nm emitting, flash‐photoactive protochlorophyllide forms. Rarely prolamellar bodies were observed in this layer. The outermost leaves had the usual characteristics of fully developed green leaves. The intermediary layers contained chlorophyll a and chlorophyll b besides the protochlorophyll(ide) pigments and had various intermediary developmental stages. Spectroscopically two types of intermediary leaves could be distinguished: one with only a 680 nm emitting chlorophyll a form and a second with bands at 685, 695 and 730 nm, corresponding to chlorophyll–protein complexes of green leaves. In these leaves, a large variety of chloroplasts were found. The data of this work show that etioplasts, etio‐chloroplasts or chloro‐etioplasts as well as etiolated leaves do exist in the nature and not only under laboratory conditions. The specificity of cabbage leaves compared with those of dark‐grown seedlings is the retained primordial or intermediary developmental stage of leaves in the inner layers for very long (even for a few month) period. This opens new developmental routes leading to formation of specially developed plastids in the various cabbage leaf layers. The study of these plastids provided new information for a better understanding of the plastid differentiation and the greening process .  相似文献   

17.
The contribution of short and long wavelength membrane-bound fluorescing protochlorophyll species to the over-all process of chlorophyll formation was assessed during photoperiodic growth. Protochlorophyll forms were monitored spectrofluorometrically at 77 K during the first six light and dark cycles in homogenates of cucumber (Cucumis sativus L.) cotyledons grown under a 14-hour light/10-hour dark photoperiodic regime, and in cotyledons developing in complete darkness. In the etiolated tissue, short wavelength protochlorophyll having a broad emission maximum between 630 and 640 nm appeared within 24 hours after sowing. Subsequently, the long wavelength species fluorescing at 657 nm appeared, and accumulated rapidly. This resulted in the preponderance of the long wavelength species which characterizes the protochlorophyll profile of etiolated tissues. The forms of protochlorophyll present in etiolated cucumber cotyledons resembled those in etiolated bean leaves in their absorption, fluorescence, and phototransformability. A different pattern of protochlorophyll accumulation was observed during the dark cycles of photoperiodic greening. The short wavelength species appeared within 24 hours after sowing. Subsequently, the long wavelength form accumulated and disappeared. The long wavelength to short wavelength protochlorophyll emission intensity ratio reached a maximum (~3:1) during the second dark cycle, then declined during subsequent dark cycles. Short wavelength species were continuously present in the light and dark. Primary corn and bean leaves exhibited a similar pattern of protochlorophyll accumulation. In cucumber cotyledons, both the short and long wavelengths species appeared to be directly phototransformable at all stages of photoperiodic development. It thus appears that whereas the long wavelength protochlorophyll species is the major chlorophyll precursor during primary photoconversion in older etiolated tissues, both long wavelength and short wavelength species seem to contribute to chlorophyll formation during greening under natural photoperiodic conditions.  相似文献   

18.
Abstract. The ultrastructure of chloroplasts from palisade and spongy tissue was studied in order to analyse the adaptation of chloroplasts to the light gradient within the bifacial leaves of pea. Chloroplasts of two nuclear gene mutants of Pisum sativum (chlorotica-29 and chlorophyll b-less 130A), grown under normal light conditions, were compared with the wild type (WT) garden-pea cv. ‘Dippes Gelbe Viktoria’. The differentiation of the thylakoid membrane system of plastids from normal pea leaves exhibited nearly the same degree of grana formation in palisade and in spongy tissue. Using morphometrical measurements, only a slight increase in grana stacking capacity was found in chloroplasts of spongy tissue. In contrast, chloroplasts of mutant leaves differed in grana development in palisade and spongy tissue, respectively. Their thylakoid systems appeared to be disorganized and not developed as much as in chloroplasts from normal pea leaves. Grana contained fewer lamellae per granum, the number of grana per chloroplast section was reduced and the length of appressed thylakoid regions was decreased. Nevertheless, chloroplasts of the mutants were always differentiated into grana and stroma thylakoids. The structural changes observed and the reduction of the total chlorophyll content correlated with alterations in the polypeptide composition of thylakoid membrane preparations from mutant chloroplasts. In sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), polypeptide bands with a relative molecular mass of 27 and 26 kilodalton (kD) were markedly reduced in mutant chloroplasts. These two polypeptides represented the major apoproteins of the light harvesting chlorophyll a/b complex from photosystem II (LHC-II) as inferred from a comparison with the electrophoretic mobility of polypeptides isolated from the LHC-II.  相似文献   

19.
Dpl, a cytoplasmically inherited plastid defect of Nicotiana tabacum L., has been further characterized by pigment and ribulose diphosphate carboxylase (RuDPCase) assays and electron microscopy. RuDPCase activity was reduced in defective plastids to 20–67% of that in normal chloroplasts. The chlorophyll content was reduced to 5% or less of that in normal chloroplasts. Leaf areas with only defective plastids were very light green for several days after the leaf began to expand but eventually turned white. This loss of chlorophyll was correlated with a reduction in internal plastid lamellae, but there was much less reduction in RuDPCase activity. The presence of cells with both mutant and normal plastids indicate that the plastid and not some other cytoplasmic factor was the site of the controlling unit.Scientific Paper No. 3812, College of Agriculture, Washington State University, Pullman, Projects 1916 and 1920. Supported in part by funds provided for medical and biological research by Washington State Initiative Measure 171.  相似文献   

20.
Plastid ultrastructure was correlated with plastid replication and growth during the greening of etiolated tobacco tissue. The plastids grow rapidly, and this growth is correlated with a period of rapid chlorophyll synthesis. Chlorophyll synthesis is correlated with the formation of grana. The plastids divide by constriction and continue to do so after most of the grana have been formed. They contain single membrane-bound bodies, which are observed less frequently in the last stages of chloroplast maturation. No internal morphological features of the plastids appear to be related to causal aspects of replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号