首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dependence of foreign gene expression on cell cycle phases in mammalian cells has been described. In this study, a DF1/chIL‐18a cell line that stably expresses the fusion protein chIL‐18 was constructed and the enhanced green fluorescence protein connected through a (G4S)3 linker sequence investigated the relationship between cell cycle phases and fusion protein production. DF1/chIL‐18a cells (1 × 105) were inoculated in 60‐mm culture dishes containing 5 mL of media to achieve 50%–60% confluence and were cultured in the presence of the cycle‐specific inhibitors 10058‐F4, aphidicolin, and colchicine for 24 and 48 h. The percentage of cell density and mean fluorescence intensity in each cell cycle phase were assessed using flow cytometry. The inhibitors effectively arrested cell growth. The fusion protein production rate was higher in the S phase than in the G0/G1 and G2/M phases. When cell cycle progression was blocked in the G0/G1, S, and G2/M phases by the addition of 10058‐F4, aphidicolin, and colchicine, respectively, the aphidicolin‐induced single cells showed higher fusion protein levels than did the 10058‐F4‐ or colchicine‐induced phase cells and the uninduced control cells. Although the cells did not proliferate after the drug additions, the amount of total fusion protein accumulated in aphidicolin‐treated cells was similar to that in the untreated cultures. Fusion protein is biologically active because it induces IFN‐γ production in splenocyte cultures of chicken. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:581–591, 2016  相似文献   

2.
The regulation of cell proliferation is central to tissue morphogenesis during the development of multicellular organisms. Furthermore, loss of control of cell proliferation underlies the pathology of diseases like cancer. As such there is great need to be able to investigate cell proliferation and quantitate the proportion of cells in each phase of the cell cycle. It is also of vital importance to indistinguishably identify cells that are replicating their DNA within a larger population. Since a cell′s decision to proliferate is made in the G1 phase immediately before initiating DNA synthesis and progressing through the rest of the cell cycle, detection of DNA synthesis at this stage allows for an unambiguous determination of the status of growth regulation in cell culture experiments.DNA content in cells can be readily quantitated by flow cytometry of cells stained with propidium iodide, a fluorescent DNA intercalating dye. Similarly, active DNA synthesis can be quantitated by culturing cells in the presence of radioactive thymidine, harvesting the cells, and measuring the incorporation of radioactivity into an acid insoluble fraction. We have considerable expertise with cell cycle analysis and recommend a different approach. We Investigate cell proliferation using bromodeoxyuridine/fluorodeoxyuridine (abbreviated simply as BrdU) staining that detects the incorporation of these thymine analogs into recently synthesized DNA. Labeling and staining cells with BrdU, combined with total DNA staining by propidium iodide and analysis by flow cytometry1 offers the most accurate measure of cells in the various stages of the cell cycle. It is our preferred method because it combines the detection of active DNA synthesis, through antibody based staining of BrdU, with total DNA content from propidium iodide. This allows for the clear separation of cells in G1 from early S phase, or late S phase from G2/M. Furthermore, this approach can be utilized to investigate the effects of many different cell stimuli and pharmacologic agents on the regulation of progression through these different cell cycle phases.In this report we describe methods for labeling and staining cultured cells, as well as their analysis by flow cytometry. We also include experimental examples of how this method can be used to measure the effects of growth inhibiting signals from cytokines such as TGF-β1, and proliferative inhibitors such as the cyclin dependent kinase inhibitor, p27KIP1. We also include an alternate protocol that allows for the analysis of cell cycle position in a sub-population of cells within a larger culture5. In this case, we demonstrate how to detect a cell cycle arrest in cells transfected with the retinoblastoma gene even when greatly outnumbered by untransfected cells in the same culture. These examples illustrate the many ways that DNA staining and flow cytometry can be utilized and adapted to investigate fundamental questions of mammalian cell cycle control.  相似文献   

3.
The effects of magnesium (Mg) restriction on cell growth and the cell cycle were determined in transformed (TRL-8) and non-transformed (TRL-12-15) epithelial-like rat liver cells. Cells were cultured in RPMI 1640 medium in which the Mg concentration was reduced to 0.5, 0.1, and 0 × the concentration in the regular RPMI 1640 media (100mg/l). Cell growth in the transformed cells was not influenced by the Mg restriction as greatly as in the non-transformed cell line. Transit through the cell cycle also exhibited an independence of the Mg in the medium in the transformed cells. When transformed cells were grown for two generations in Mg-limited medium, the growth rate slowed to a rate similar to that demonstrated by the non-transformed cells. Analysis by flow cytometry showed that transit through the cell cycle was minimally slowed in Mg deficient transformed cells; however, transit through the G1 and S phases in the non-transformed cells was slowed. The TRL-8 cells in Mg-limited medium resulted in fewer nuclei in G1 with subsequent increases in the percentages of S-phase nuclei. The TRL 12-15 cells reacted oppositely with the number of G1 nuclei increased and the number of S-phase nuclei decreased. In respect to growth, these results show that epithelial cells respond in a similar manner to Mg-limitation as do fibroblast cells. The transformed cells exhibited a level of independence from Mg in respect to growth, reproduction, and cell-cycle kinetics.  相似文献   

4.
Scrippsiella hangoei (Schiller) Larsen is a peridinoid dinoflagellate that grows during winter and spring in the Baltic Sea. In culture this species formed round, smooth cysts when strains were mixed, indicating heterothallic sexuality and hypnozygote production. However, cysts of the same morphology were also formed in clonal strains exposed to slightly elevated temperature. To better understand the role of cysts in the life cycle of S. hangoei, cyst formation and dormancy were examined in culture experiments and the cellular DNA content of flagellate cells and cysts was compared in clonal and mixed strains using flow cytometry. S. hangoei exhibited a high rate of cyst formation in culture. Cysts produced in both clonal and mixed strain cultures were thick‐walled and underwent a dormancy period of 4 months before germinating. The S. hangoei flagellate cell population DNA distributions consisted of 1C, intermediate, and 2C DNA, indicative of respective eukaryotic cell cycle phases G1, S, and G2M. The majority (>95%) of cysts had a measured DNA content equivalent to the lower 1C DNA value, indicating a haploid nuclear phase and an asexual mode of cyst formation. A small percentage (<5%) of cysts produced in the mixed strain culture had 2C DNA, and thus could have been diploid zygotes. These findings represent the first measurements of dinoflagellate resting cyst DNA content, and provide the first quantitative evidence for dinoflagellate asexual resting cysts. Asexual resting cysts may be a more common feature of dinoflagellate life cycles than previously thought.  相似文献   

5.
Analysis of cellular DNA content by flow cytometry has been used to detect genetic changes associated with exposure to environmental contaminants. In lower vertebrates, nucleated red blood cells can be collected for analysis without harm to the animal. Because erythrocytes sampled from an individual should have identical amounts of DNA, the coefficient of variation (CV) around the G0/G1 peak should be small. Increases in CV can indicate genetic aberrations, but may also be caused by sample handling and preparation or problems with instrumentation. To increase confidence in associating increases in CV with external causes, artifactual changes in CV due to sample treatment and instrument parameters should be identified and minimized. We assessed the effects of various sampling and handling protocols on the CV of nucleated blood cells collected from largemouth bass (Micropterus salmoides). We also compared the distribution of cells among the G0/G1, S, and G2/M phases of the cell cycle to see whether these were affected by sampling or treatment protocols. Groups of 7 fish were bled on 7 consecutive days, and blood from each fish was analyzed by flow cytometry when freshly collected, and after freezing for 1 hour or 10 days. The same fish were bled again over a consecutive 7-day period, and the experiment was repeated. CV and cell cycle distribution were not affected by our freezing protocol. Repeat sampling from the same individual did not affect CV, but altered the distribution of cells in the cell cycle, suggesting increased hemopoiesis in response to blood sampling. Day-to-day variation in the CV occurred in both fresh and frozen samples, probably as the result of small variations in instrument adjustments. These results demonstrate the suitability of this freezing protocol for these blood samples, and illustrate the importance of assessing sources of variation when using flow cytometry to screen wild populations in genotoxicological studies.Abbreviations CV coefficient of variation - DNA deoxyribonucleic acid - DMSO dimethylsulfoxide - FCM flow cytometric analysis - PI propidium iodide - RNA ribonucleic acid  相似文献   

6.
Polyploid plants often have altered gene expression, biochemistry, and metabolism compared to their diploid predecessors. Therefore cultured diploid cells have distinct benefits over cultured polyploid cells for the study of gene regulation and metabolism of the parent plant. Here we report methods for establishing and maintaining a rapidly dividing diploid Arabidopsis thaliana cell suspension culture, and subsequent cell cycle synchronisation. Rapid growth of homogeneous cell populations was achieved after 3 months of initiation of cultures from leaf calluses. The cells were grown in the dark on an orbital shaker (110 rpm, 50 mm orbit) at 24 °C. Continued maintenance of the culture required the use of late-exponential stage cells for subculture at weekly intervals using careful subculturing techniques to achieve accurate biomass transfer. Cell cycle synchronisation was achieved following sucrose starvation, phosphate starvation, hydroxyurea treatment, aphidicolin treatment, and a combination of phosphate starvation and aphidicolin treatment. Inhibition of the cell cycle and accumulation of cells in specific phases was monitored by microscopy to determine the metaphase/anaphase index, and by flow cytometry. The cell cycle was partially and reversibly blocked by sucrose or phosphate starvation and by hydroxyurea (2.5 mM) treatment. A complete block at G1/S interphase was achieved after aphidicolin treatment or phosphate starvation combined with aphidicolin treatment. Release from the aphidicolin block achieved ca. 78% cell cycle synchronisation in the cell population. Endoreduplication was evident after release from the block in all treatments but after one cycle (24 h) the cells returned to the diploid state. This diploid culture is currently being used in our laboratory for the genetic analysis of cell death.  相似文献   

7.
Summary Chinese hamster ovary cells were synchronized into purified populations of viable G1-, S-, G2-, and M-phase cells by a combination of methods, including growth arrest, aphidicolin block, cell cycle progression, mitotic shake-off, and centrifugal elutriation. The DNA content and bromodeoxyuridine (BrdUrd) labeling index were measured in each purified fraction by dual-parameter flow cytometry. The cell cycle distributions determined from the DNA measurements alone (single parameter) were compared with those calculated from both DNA and BrdUrd data (dual parameter). The results show that highly purified cells can be obtained using these methods, but the assessed purity depends on the method of cell cycle analysis. Using the single versus dual parameter measurement to determine cell cycle distributions gave similar results for most phases of the cell cycle, except for cells near the transition from G1- to S-phase and S- to G2-phase. There the BrdUrd labeling index determined by flow cytometry was more sensitive for detecting small amounts of DNA synthesis. As an alternative to flow cytometry, a simple method of measuring BrdUrd labeling index on cell smears was used and gave the same result as flow cytometry. Measuring both DNA content and DNA synthesis improves characterization of synchronized cell populations, especially at the transitions in and out of S-phase, when cells are undergoing dramatic shifts in biochemical activity.  相似文献   

8.
Single-cell rates of accumulation of cellular protein have been determined as a function of total protein content using flow cytometry and population balance equations for exponentially growing murine hybridoma cells in the individual G(1), S(1) and G(2) + M cell cycle phases. A novel flow cytometric technique for the identification of hybridoma cells in mitosis was developed and implemented. The data were obtained from a producer cell line which synthesizes and secretes high levels of monoclonal antibodies, and from a nonproducer clone which does not synthesize and secrete substantial amounts of antibody. The results indicate that the kinetics of single-cell protein accumulation in these two cell lines are considerably different. In particular, low protein content G(1) phase producer cells were characterized by a rate of protein accumulation which was approximately five times higher than the mean rate observed for higher protein content producer cells cycle phase. In contrast, the rate of accumulation of protein increased continuously with totalprotein content for the G(1) phase nonproducer cells. S phase hybridoma cells were characterized by a considerably lower rate of protein accumulation which did not vary much with protein content for either cell line. Finally, G(2) + M phase producer cells demonstrated a negative rate of protein accumulation which indicates that the rates of protein synthesis. It was hypothesized that these differences in total protein accumulation are caused by differences in monoclonal antibody accumulation. The distribution of rates suggests the need for a segregated approach to the modeling of the kinetics of antibody production in hybridomas.  相似文献   

9.
Maitotoxin (MTX) induces an increase of [Ca2+]i and of phosphoinositide breakdown in various cell types. The [Ca2+]i increase followed with fluorescent probes on cell suspensions has been described as slow and lasting, in contrast to the signal induced by calcium ionophores such as ionomycin. MTX effects have been studied on two fibroblastic cell lines, BHK21 C13 and FR 3T3, synchronized by serum deprivation treatment performed in an isoleucine-free medium for BHK21 C13 cells. In BHK21 C13 cells, flow cytometry analysis showed that two stages, G1/S and G2/M, were particularly susceptible to MTX treatment. Scanning laser cytometry demonstrated that calcium response of FR 3T3 fibroblasts followed with Indo-1 varied during the cell division cycle. The [Ca2+]i increase was almost always vertical, but its delay after MTX addition lasted from zero (S and G2/M transition) to 10–20 min (G1) or more (G2). No [Ca2+]i change could be detected during mitosis. The [Ca2+]i response at the S phase was biphasic. These observations suggest that (1) the lasting response described in the literature represents a global cell population effect, and (2) cells are more sensitive to MTX at specific stages of the cell division cycle, which could correspond to periods when calcium signals have been detected in different cell types.Abbreviations MTX maitotoxin - [Ca2+]i intracellular calcium concentration - IP3 inositol triphosphate  相似文献   

10.
目的:研究中频交变微电流联合紫杉醇注射液抗A549细胞的作用及机制。方法:对处于对数生长期的肺腺癌A549细胞施加电刺激、紫杉醇及电刺激联合紫杉醇三种不同处理,采用MTT法检测A549细胞存活率,并利用流式细胞仪测量分析各组细胞凋亡/死亡比例及细胞周期状态。结果:通过不同参数的中频交变微电流刺激A549细胞,得到的最低细胞存活率(参数150 kHz、90 m A、30 min)为78.02±0.73%(P<0.01);联合紫杉醇注射液半抑制浓度(IC50)干预后,细胞存活率为32.87±0.94%(P<0.01);同时发现中频交变微电流联合紫杉醇注射液能促进A549细胞凋亡,阻滞细胞于S期、G2/M期。结论:中频交变微电流可抑制A549细胞增殖、促进凋亡,但对细胞周期影响不明显;与紫杉醇注射液联合应用时具有协同增强抗肿瘤作用。  相似文献   

11.
Growth of C. rugosa on three different culture media was analysed by laser flow cytometry to evaluate physiological growth conditions allowing effective lipase production. The highest productivity was associated with an increased proportion of cells in the G1 phase and was independent of the effect of the medium on lipase formation.  相似文献   

12.
周利艳  付钰 《微生物学报》2019,59(2):326-333
【目的】建立流式细胞仪分选新生隐球菌单细胞的方法,确定新生隐球菌单细胞恢复生长的条件和能力。【方法】利用Moflo XDP流式细胞分析分选仪,体外测定不同条件下新生隐球菌恢复生长的比率。【结果】建立了流式细胞仪新生隐球菌单细胞分选流程。确定流式细胞仪分选得到的新生隐球菌单细胞具有恢复生长的能力,恢复生长的能力受营养条件和菌株差异的影响。在营养丰富的条件下,新生隐球菌JEC21和H99单细胞恢复生长比率分别为74%和89%。在寡营养条件下,JEC21和H99单细胞恢复生长比率分别为37%和80%。JEC21生长比率随细胞数的增加而升高,细胞数为100个时,生长比率为55%;细胞数为1000个时,生长比率为97%。【结论】流式细胞仪分选得到新生隐球菌单细胞具有恢复生长的能力,生长能力受营养条件、菌株差异的影响。  相似文献   

13.
In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.  相似文献   

14.
Embryogenic and non-embryogenic callus lines derived from the same diploid Cyclamen persicum genotype (`Purple Flamed') were analyzed by flow cytometry and compared to the initial plant material. The DNA content of the diploid plant in the greenhouse was 1.12 pg DNA/2C as estimated in relation to the internal standards tomato nuclei and chicken erythrocytes. In both callus lines the majority of cells contained the same amount of DNA as the initial plant, indicating that no polyploidization has taken place after 5 years of culture on medium containing 2.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.8 mg/l 6-(γ-γ-dimethylallylamino)purine(zip). Thus, our data suggest that in Cyclamen callus lines there was no strict correlation between the ploidy level and the ability to produce somatic embryos. Furthermore, following the proportion of cells in the three phases of the cell cycle (G0/G1, S, G2/M) during one subculture period of 4 weeks revealed high division activity within the first 2 weeks for both callus lines cultured on the 2,4-D-containing medium. However, when transferred to hormone-free medium, the division activity of the embryogenic cell line decreased markedly, corresponding to the differentiation of somatic embryos. In contrast, for the non-embryogenic callus an increase in cells in the G2/M phase was observed. Received: 22 November 1996 / Revision received: 6 January 1997 / Accepted: 20 February 1997  相似文献   

15.
Cell cycle-related proteins: a flow cytofluorometric study in human tumors   总被引:1,自引:0,他引:1  
We used 2-parameter flow cytometry (FCM) to investigate the relationship between the cell cycle phases and 3 proteins whose expression is known to increase in proliferating cells: the surface antigen transferrin receptor (Trf-r), the "cyclin" (a proliferating cell nuclear antigen, PCNA), and the nuclear antigen recognized by the monoclonal antibody (MoAb) Ki-67. FITC-labeled antibodies against Trf-r, PCNA, and the Ki-67-reactive antigen, as well as propidium iodide-DNA distribution, were simultaneously measured on human leukemia HL-60 and K562, and breast carcinoma MCF-7 cell lines and on fresh human leukemic and glioblastoma cells. The 70% ethanol fixation for Trf-r and PCNA and the 95% acetone fixation for Ki-67 plus permeabilization (with 0.1% and 1% Triton X100, respectively, for the surface and the nuclear antigens) produced cell suspensions with negligible cell clumping, high-quality DNA profiles, and bright specific immunofluorescent staining. The investigated proteins have different relationships with the proliferative state of the cell. Trf-r is expressed mainly at the transition from G0/G1 to S-phase. PCNA expression is prominent in late G1 and through S-phase and decreases in G2-M. The Ki-67-reactive antigen is widely distributed in G1, S, and G2-M phases. Knowledge regarding the relationships between proliferation-associated antigens and cell cycle phase in normal and neoplastic cells could improve our understanding of the mechanisms underlying growth regulation and neoplastic transformation. Bivariate FCM is an easy method for obtaining these data from large numbers of cells.  相似文献   

16.
The aim of this study was to assess by flow cytometry the cell cycle of brown bear fibroblast cells cultured under different growth conditions. Skin biopsies were taken in Cantabria (Spain) from a live, anaesthetized brown bear. DNA analysis was performed by flow cytometry following cell DNA staining with propidium iodide. Serum starvation increased (P<0.01) the percentage of G0/G1 phase cells (92.7+/-0.86) as compared to cycling cells (39.7+/-0.86) or cells cultured to confluency (87.3+/-0.86). DMSO included for 48h in the culture significantly increased (P<0.01) the percentage of G0/G1 phase of the cell cycle at all concentrations used and decreased percentages of S phase in a dose-dependent fashion. Roscovitine increased the G0/G1 phase of the cell cycle (P<0.01) at 15microM concentration. Interestingly, the G2/M stage significantly increased at 30 and 50microM compared to the control and 15microM (P<0.02). The cell cycle of brown bear adult fibroblast cells can be successfully synchronized under a variety of culture conditions.  相似文献   

17.
Long-term exposure to hypertonic (HT) culture media has been found to perturb the cell cycle and change gene expression in various animal cell types. A lower growth rate, with exit of cells from the cycling compartment has been observed previously in human transformed EUE. cells. The aim of this study was to investigate if the kinetic changes after long-term HT stress, were typical of transformed cells or could be also found in primary cultures of normal cells. Human transformed cells from normal and neoplastic tissues, and normal human cells of epithelial and connective origin have been studied. After the incorporation of bromodeoxyuridine (BrdUrd), the frequency of S-phase cells was estimated by dual-parameter flow cytometry of DNA content versus BrdUrd immuno-labelling; the total growth fraction was also estimated, after immunolabelling with an anti-PCNA antibody. We also investigated, by polyacrylamide gel electrophoresis, changes in the amount of a 35 kDa protien band, which increased in EUE cells grown in an HT medium, and which may be directly involved in cell resistance to hypertonicity. Lower BrdUrd labelling indices and higher frequencies of cells in the G0/1 range of DNA content were common features of all the cells in HT media, irrespective of their tissue of origin; other cycle phases may also be involved, depending on the cell type considered. The mechanisms by which cells cope with the HT environment could however, differ, since only some cell types showed an increase of the 35 kDa stress protein found originally in HT EUE cells.  相似文献   

18.
We conducted a study of the cell cycle of coconut palm tissues cultured in vitro in order to regulate regeneration. Coconut palm is a plant for which it is difficult to monitor the ability of the meristematic cells to actively divide. Cell nuclei were isolated from various types of coconut palm tissues with and without in vitro culture. After the nuclei were stained with propidium iodide, relative fluorescence intensity was estimated by flow cytometry. Characterization of the cell cycle reinforced the hypothesis of a block in the G0/G1 and G1/S phases of the coconut cells. A time-course study carried out on immature leaves revealed that this block takes place gradually, following the introduction of the material in vitro. Synchronization of in vitro-cultured leaves cells using 60 µM aphidicholin revealed an increase in the number of nuclei in the S phase after 108 h of treatment. The significance of these results is discussed in relation with the ability of coconut tissue cultured in vitro to divide.Communicated by P. Debergh  相似文献   

19.
20.
The phytoplankton community structure of a hypertrophic lake was quantitatively determined with the aid of flow cytometry. The flow cytometry signals were calibrated to obtain cell‐specific information, such as the chl a content and the biovolume per cell. The reliability of this method was tested with laboratory cultures. The results of the phytoplankton structure in a hypertrophic lake with respect to chl distribution in the different algal groups obtained by flow cytometry were compared with the results from HPLC pigment fingerprinting. Both methods yield the percentage contribution of the different algal groups to total chl a. The chl a specific absorption coefficient of the phytoplankton (a*Phy) was determined via visible (VIS) spectroscopy of samples taken from a hypertrophic lake (Auensee) in 2003. The results indicated that a*Phy of the total cell suspension is dependent on the phytoplankton structure as well as on environmental factors. The linear relationship between a*Phy at 675 nm and the product of the chl a content per cell and the biovolume offered the possibility to normalize phytoplankton absorption spectra to acquire the taxon‐specific a*Phy. The estimated a*Phy (675 nm) values were used to normalize single cell absorption spectra at this wavelength to obtain the a*Phy between 400 and 750 nm for representatives of the major algal groups. Our measurements show that the absorption coefficient for the whole phytoplankton community varies within the season. Finally, we used the a*Phy and the chl a distribution to calculate the light absorption of each algal group in the hypertrophic lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号