首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

We investigated whether changes in the root system of pine seedlings induced by stress (lifting of bare-root seedlings from the nursery bed irrespective of dormancy; prolonged storage of bare-root seedlings in a cold room) could provide a measure of plant vigour. Physiological parameters, such as growth potential and root electrolyte leakage, and morphological parameters, such as root length and number of root tips, were calculated. Computerised image analysis was used to measure root growth, overall and based on root-diameter class (0–0.5 mm, 0.5–1.0 mm and 1.0–1.5 mm). The efficiency of vigour assessment was evaluated by correlating the data for each parameter with percentage seedling survival. Root growth potential was more efficient than root electrolyte leakage, but both parameters were affected by seedling age. Total root length was a more efficient indicator of plant vigour than root tip number, particularly when referred to roots of the same diameter class. A comparative analysis of physiological and morphological parameters referred to the root systems improves their relative effciency.  相似文献   

2.
Bare-root seedlings of pedunculate oak (Quercus robur L.) and northern red oak (Quercus rubra L.) were lifted in January and stored at 1.8°C, at 82% relative humidity, until their fresh weight declined by 33%. Root growth potential (RGP), fine root electrolyte leakage (REL), fine root water content (RWC), shoot tip water content (SWC), starch and metabolic solute contents in root and shoot, were measured just after lifting and after treatment. Survival of treated seedlings was also assessed in a field trial. RWC, SWC, REL, RGP were dramatically affected by desiccation during cold storage. In both species, root soluble carbohydrate level, inositol level and isocitrate level increased, whereas root starch level and shoot soluble carbohydrate level decreased. In northern red oak, treated seedlings had higher root contents of soluble carbohydrates, inositol and proline than in pedunculate oak. Moreover, treatment induced proline accumulation only in northern red oak roots. These differences could explain why field survival of treated seedlings was significantly better in northern red oak than in pedunculate oak.  相似文献   

3.
Abstract

The physiological response of 3-year-old Douglas fir (Pseudotsuga menziesii[Mirb.] Franco) transplanted seedlings lifted to warm (15°C) (i.e. simulated ambient) storage in November, January and March in Ireland was investigated, with an aim of developing rapid methods for detecting stress. Chlorophyll fluorescence (CF), root electrolyte leakage (REL), shoot and root water content (WC), dry weight (DW), root growth potential (RGP) and survival were assessed. CF declined as the duration of warm storage increased and this was greatest for the November-lifted stock. CF measurements were closely related to survival in the greenhouse. Shoot tip and taproot DW declined during warm storage for stock lifted in November and March. Warm storage had no effect on shoot DW and caused a small decline in root DW for stock lifted in January. Changes in WC during storage were greater in the roots than in shoots, and values were significantly lower in treated plants following 21-day storage than in the controls (no storage). In conclusion, the results suggested that CF could be used to detect the effect of ambient storage stress (simulated by warm storage) on Douglas fir seedling vitality, and was more a more reliable indicator of plant quality than the other parameters.  相似文献   

4.
The effects of cold storage duration on the physiological characteristics and growth of two-year-old Taurus cedar (Cedrus libani A. Rich) seedlings were studied. Taurus cedar seedlings were lifted in December, January and February and stored at +4 °C (cold storage) for 0, 2, 3 and 4 months. Xylem water potential (Ψ), shoot (SMC) and root moisture (RMC) contents, root growth potential (RGP), root electrolyte leakage (REL) and total carbohydrate contents were determined before and after the cold storage. The survival and growth were also evaluated at the end of the first growing season. Ψ, SMC and RMC, RGP and total carbohydrate contents were dramatically affected by the storage duration. The decrease in total carbohydrate contents during the storage showed a parallelism with RGP and survival. It was also found that storage duration had important effects on survival and growth. While survival was above 85 % even after storage of 4 months in seedlings that were lifted in December and January, this rate was reduced to 30 % after storage of 4 months in seedlings that were lifted in February. Total carbohydrate content and RGP can be used as an indicator of survival after cold storage.  相似文献   

5.
Salicylic acid (SA) has been considered to attenuate the effects of abiotic stresses on plants, including water deficit that intensely affects the growth and production of plants. The goal of this work was to evaluate the role of SA in the alleviation of water stress in watermelon seedlings on a morphophysiological and biochemical level. The experiment consisted of application of SA at concentrations of 0, 0.25, 0.50, 0.75 and 1.0 μmol L−1 to leaves of watermelon seedlings grown in three levels of water retention (100%, 75% and 50% WRL). To evaluate the effect on morphophysiological and biochemical aspects, the plant height, leaf area, shoot and root dry weight, chlorophyll index, relative water content, electrolyte leakage, protein content, amino acids, proline, carbohydrates, sucrose and starch concentration variables were determined. All variables were influenced by the SA concentrations and WRL, with statistically significant interaction between these factors for all except root dry weight. SA promotes increases in the concentration of organic solutes and reduces the rate of electrolyte leakage in watermelon seedlings, thus, supporting metabolism and growth of plants under stress conditions resulting from water deficit.  相似文献   

6.
The effects of NaCl were studied in 6-month-old jack pine (Pinus banksiana Lamb.) seedlings growing in solution culture under hypoxic (approximately 2 mg lу O2) and well-aerated (approximately 8 mg lу O2) conditions. The results showed that hypoxia led to further reduction of stomatal conductance (gs) in plants treated with 45 mM NaCl. This effect was likely due to a reduction in root hydraulic conductance by both stresses. When applied individually or together, neither 45 mM NaCl nor hypoxia affected cell membrane integrity of needles as measured by tissue electrolyte leakage. Hypoxia did not alter shoot Na+ and Clm concentrations in NaCl-treated plants. However, root Na+ concentrations were lower in NaCl-treated hypoxic plants, suggesting that hypoxia affected the ability of roots to store Na+. Hypoxia also induced root electrolyte leakage from NaCl-treated and control plants. The higher root Clm concentrations compared with Na+ and the positive correlation between root Clm concentrations and electrolyte leakage suggest that Clm played a major role in salt injury observed in jack pine seedlings. Roots of well-aerated plants treated for 1 week with NaCl contained almost two-fold higher concentration of total non-structural carbohydrates compared with plants from other experimental treatments and these concentrations decreased in subsequent weeks. We suggest that under prolonged hypoxic conditions, roots lose the ability to prevent Clm uptake resulting in the increase in root Clm concentration, which has damaging effects on root cell membranes.  相似文献   

7.
Salinity adversely affects plant growth and development. Halotolerant plant-growth-promoting rhizobacteria (PGPR) alleviate salt stress and help plants to maintain better growth. In the present study, six PGPR strains were analyzed for their involvement in salt-stress tolerance in Arachis hypogaea. Different growth parameters, electrolyte leakage, water content, biochemical properties, and ion content were analyzed in the PGPR-inoculated plants under 100 mM NaCl. Three bacterial strains, namely, Brachybacterium saurashtrense (JG-06), Brevibacterium casei (JG-08), and Haererohalobacter (JG-11), showed the best growth of A. hypogaea seedlings under salt stress. Plant length, shoot length, root length, shoot dry weight, root dry weight, and total biomass were significantly higher in inoculated plants compared to uninoculated plants. The PGPR-inoculated plants were quite healthy and hydrated, whereas the uninoculated plant leaves were desiccated in the presence of 100 mM NaCl. The percentage water content (PWC) in the shoots and roots was also significantly higher in inoculated plants compared to uninoculated plants. Proline content and soluble sugars were significantly low, whereas amino acids were higher than in uninoculated plants. The MDA content was higher in uninoculated plants than in inoculated plants at 100 mM NaCl. The inoculated plants also had a higher K+/Na+ ratio and higher Ca2+, phosphorus, and nitrogen content. The auxin concentration was higher in both shoot and root explants in the inoculated plants. Therefore, it could be predicted that all these parameters cumulatively improve plant growth under saline conditions in the presence of PGPR. This study shows that PGPR play an important role in inducing salinity tolerance in plants and can be used to grow salt-sensitive crops in saline areas.  相似文献   

8.
The predominant emphasis on harmful effects of environmental stresses on growth of woody plants has obscured some very beneficial effects of such stresses. Slowly increasing stresses may induce physiological adjustment that protects plants from the growth inhibition and/or injury that follow when environmental stresses are abruptly imposed. In addition, short exposures of woody plants to extreme environmental conditions at critical times in their development often improve growth. Furthermore, maintaining harvested seedlings and plant products at very low temperatures extends their longevity. Drought tolerance: Seedlings previously exposed to water stress often undergo less inhibition of growth and other processes following transplanting than do seedlings not previously exposed to such stress. Controlled wetting and drying cycles often promote early budset, dormancy, and drought tolerance. In many species increased drought tolerance following such cycles is associated with osmotic adjustment that involves accumulation of osmotically active substances. Maintenance of leaf turgor often is linked to osmotic adjustment. A reduction in osmotic volume at full turgor also results in reduced osmotic potential, even in the absence of solute accumulation. Changes in tissue elasticity may be important for turgor maintenance and drought tolerance of plants that do not adjust osmotically. Water deficits and nutrient deficiencies promote greater relative allocation of photosynthate to root growth, ultimately resulting in plants that have higher root:shoot ratios and greater capacity to absorb water and minerals relative to the shoots that must be supported. At the molecular level, plants respond to water stress by synthesis of certain new proteins and increased levels of synthesis of some proteins produced under well-watered conditions. Evidence has been obtained for enhanced synthesis under water stress of water-channel proteins and other proteins that may protect membranes and other important macromolecules from damage and denaturation as cells dehydrate. Flood tolerance: Both artificial and natural flooding sometimes benefit woody plants. Flooding of orchard soils has been an essential management practice for centuries to increase fruit yields and improve fruit quality. Also, annual advances and recessions of floods are crucial for maintaining valuable riparian forests. Intermittent flooding protects bottomland forests by increasing groundwater supplies, transporting sediments necessary for creating favorable seedbeds, and regulating decomposition of organic matter. Major adaptations for flood tolerance of some woody plants include high capacity for producing adventitious roots that compensate physiologically for decay of original roots under soil anaerobiosis, facilitation of oxygen uptake through stomata and newly formed lenticels, and metabolic adjustments. Halophytes can adapt to saline water by salt tolerance, salt avoidance, or both. Cold hardiness: Environmental stresses that inhibit plant growth, including low temperature, drought, short days, and combinations of these, induce cold hardening and hardiness in many species. Cold hardiness develops in two stages: at temperatures between 10° and 20°C in the autumn, when carbohydrates and lipids accumulate; and at subsequent freezing temperatures. The sum of many biochemical processes determines the degree of cold tolerance. Some of these processes are hormone dependent and induced by short days; others that are linked to activity of enzyme systems are temperature dependent. Short days are important for development of cold hardiness in species that set buds or respond strongly to photoperiod. Nursery managers often expose tree seedlings to moderate water stress at or near the end of the growing season. This accelerates budset, induces early dormancy, and increases cold hardiness. Pollution tolerance: Absorption of gaseous air pollutants varies with resistance to flow along the pollutant’s diffusion path. Hence, the amount of pollutant absorbed by leaves depends on stomatal aperture, stomatal size, and stomatal frequency. Pollution tolerance is increased when drought, dry air, or flooding of soil close stomatal pores. Heat tolerance: Exposure to sublethal high temperature can increase the thermotolerance of plants. Potential mechanisms of response include synthesis of heat-shock proteins and isoprene and antioxidant production to protect the photosynthetic apparatus and cellular metabolism. Breaking of dormancy: Seed dormancy can be broken by cold or heat. Embryo dormancy is broken by prolonged exposure of most seeds to temperatures of 1° to 15°C. The efficiency of treatment depends on interactions between temperature and seed moisture content. Germination can be postponed by partially dehydrating seeds or altering the temperature during seed stratification. Seed-coat dormancy can be broken by fires that rupture seed coats or melt seedcoat waxes, hence promoting water uptake. Seeds with both embryo dormancy and seed-coat dormancy may require exposure to both high and low temperatures to break dormancy. Exposure to smoke itself can also serve as a germination cue in breaking seed dormancy in some species. Bud dormancy of temperate-zone trees is broken by winter cold. The specific chilling requirement varies widely with species and genotype, type of bud (e.g., vegetative or floral bud), depth of dormancy, temperature, duration of chilling, stage of plant development, and daylength. Interruption of a cold regime by high temperature may negate the effect of sustained chilling or breaking of bud dormancy. Near-lethal heat stress may release buds from both endodormancy and ecodormancy. Pollen shedding: Dehiscence of anthers and release of pollen result from dehydration of walls of anther sacs. Both seasonal and diurnal pollen shedding are commonly associated with shrinkage and rupture of anther walls by low relative humidity. Pollen shedding typically is maximal near midday (low relative humidity) and low at night (high relative humidity). Pollen shedding is low or negligible during rainy periods. Seed dispersal: Gymnosperm cones typically dehydrate before opening. The cones open and shed seeds because of differential shrinkage between the adaxial and abaxial tissues of cone scales. Once opened, cones may close and reopen with changes in relative humidity. Both dehydration and heat are necessary for seed dispersal from serotinous (late-to-open) cones. Seeds are stored in serotinous cones because resinous bonds of scales prevent cone opening. After fire melts the resinous material, the cone scales can open on drying. Fires also stimulate germination of seeds of some species. Some heath plants require fire to open their serotinous follicles and shed seeds. Fire destroys the resin at the valves of follicles, and the valves then reflex to release the seeds. Following fire the follicles of some species require alternate wetting and drying for efficient seed dispersal. Stimulation of reproductive growth: Vegetative and reproductive growth of woody plants are negatively correlated. A heavy crop of fruits, cones, and seeds is associated with reduced vegetative growth in the same or following year (or even years). Subjecting trees to drought during early stages of fruit development to inhibit vegetative growth, followed by normal irrigation, sometimes favors reproductive growth. Short periods of drought at critical times not only induce formation of flower buds but also break dormancy of flower buds in some species. Water deficits may induce flowering directly or by inhibiting shoot flushing, thereby limiting the capacity of young leaves to inhibit floral induction. Postharvest water stress often results in abundant return bloom over that in well-irrigated plants. Fruit yields of some species are not reduced or are increased by withholding irrigation during the period of shoot elongation. In several species, osmotic adjustment occurs during deficit irrigation. In other species, increased fruit growth by imposed drought is not associated largely with osmotic adjustment and maintenance of leaf turgor. Seedling storage: Tree seedlings typically are stored at temperatures just above or below freezing. Growth and survival of cold-stored seedlings depend on such factors as: date of lifting from the nursery; species and genotype; storage temperature, humidity, and illumination; duration of storage; and handling of planting stock after storage. Seedlings to be stored over winter should be lifted from the nursery as late as possible. Dehydration of seedlings before, during, and after storage adversely affects growth of outplanted seedlings. Long-term storage of seedlings may result in depletion of stored carbohydrates by respiration and decrease of root growth potential. Although many seedlings are stored in darkness, a daily photoperiod during cold storage may stimulate subsequent growth and increase survival of outplanted seedlings. For some species, rapid thawing may decrease respiratory consumption of carbohydrates (over slowly thawed seedlings) and decrease development of molds. Pollen storage: Preservation of pollen is necessary for insurance against poor flowering years, for gene conservation, and for physiological and biochemical studies. Storage temperature and pollen moisture content largely determine longevity of stored pollen. Pollen can be stored successfully for many years in deep freezers at temperatures near −15°C or in liquid nitrogen (−196°C). Cryopreservation of pollen with a high moisture content is difficult because ice crystals may destroy the cells. Pollens of many species do not survive at temperatures below −40°C if their moisture contents exceed 20–30%. Pollen generally is air dried, vacuum dried, or freeze dried before it is stored. To preserve the germination capacity of stored pollen, rehydration at high humidity often is necessary. Seed storage: Seeds are routinely stored to provide a seed supply during years of poor seed production, to maintain genetic diversity, and to breed plants. For a long time, seeds were classified as either orthodox (relatively long-lived, with capacity for dehydration to very low moisture contents without losing viability) or recalcitrant (short-lived and requiring a high moisture content for retention of viability). More recently, some seeds have been reclassified as suborthodox or intermediate because they retain viability when carefully dried. True orthodox seeds are preserved much more easily than are nonorthodox seeds. Orthodox seeds can be stored for a long time at temperatures between 2° and −20°C, with temperatures below −5°C preferable. Some orthodox seeds have been stored at superlow temperatures, although temperatures of −40°, −70°, or −196°C have not been appreciably better than −20°C for storage of seeds of a number of species. Only relatively short-term storage protocols have been developed for nonorthodox seeds. These treatments typically extend seed viability to as much as a year. The methods often require cryopreservation of excised embryos. Responses to cryopreservation of nonorthodox seeds or embryos vary with species and genotype, rate of drying, use of cryoprotectants, rates of freezing and thawing, and rate of rehydration. Fruit storage: Storing fruits at low temperatures above freezing, increasing the CO2 concentration, and lowering the O2 concentration of fruit storage delays senescence of fruits and prolongs their life. Fruits continue to senesce and decay while in storage and become increasingly susceptible to diseases. Both temperate-zone and tropical fruits may develop chilling injury characterized by lesions, internal discoloration, greater susceptibility to decay, and shortened storage life. Chilling injury can be controlled by chemicals, temperature conditioning, and intermittent warming during storage. Stored fruits may become increasingly susceptible to disease organisms. Fruit diseases can be controlled by cold, which inhibits growth of microorganisms and maintains host resistance. Exposure of fruits to high CO2 and low O2 during storage directly suppresses disease-causing fungi. Pathogens also can be controlled by exposing fruits to heat before, during, and after storage. Scald that often develops during low-temperature storage can be controlled by chemicals and by heat treatments.  相似文献   

9.
Oilseed rape (Brassica napus L.) seedlings treated with uniconazole [(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-l-yl)-l-penten-3-ol] were transplanted at the five-leaf stage into specially designed experimental containers and then exposed to waterlogging for 3 weeks. After waterlogging stress, uniconazole-treated seedlings had significantly higher activities of superoxide dismutase, catalase, and peroxidase enzymes and endogenous free proline content at both the seedling and flowering stages. Uniconazole plus waterlogging-treated plants had a significantly higher content of unsaturated fatty acids than the waterlogged plants. There was a parallel increase in the lipid peroxidation level and electrolyte leakage rate from the leaves of waterlogged plants. Leaves from uniconazole plus waterlogging-treated plants had a significantly lower lipid peroxidation level and electrolyte leakage rate compared with waterlogged plants at both the seedling and flowering stages. Pretreatment of seedlings with uniconazole could effectively delay stress-induced degradation of chlorophyll and reduction of root oxidizability. Uniconazole did not alter the soluble sugar content of leaves and stems, after waterlogging of seedlings. Uniconazole improved waterlogged plant performance and increased seed yield, possibly because of improved antioxidation defense mechanisms, and it retarded lipid peroxidation and membrane deterioration of plants. Received February 2, 1998; accepted November 30, 1998  相似文献   

10.
The morphoregulatory effect of thidiazuron (TDZ) applications to ginseng (Panax quinquefolium L.) seedlings and 3-year-old plants was determined. Applications of TDZ (0.22 and 2.20 ppm), either as foliar sprays or soil drench to greenhouse-grown seedlings over 18 weeks (2 weeks after sowing to 20 weeks when plants were harvested) induced similar responses, in particular, increased stem length and diameter, and shoot and root weight (economic yield). Single foliar applications of TDZ at 62.5 and 125 ppm to 3-year-old field-grown ginseng plants 3 months prior to harvest increased root biomass (economic yield) by 19 to 23%. Roots of TDZ-treated seedlings and 3-year-old field-grown plants developed thickened secondary roots on the upper part of the taproot. The root-like structure of these secondary roots was confirmed by histology. In addition, TDZ treatments induced adventitious buds on the shoulder of 3-year-old roots. These buds developed into shoots to give multi-stem plants following a period of dormancy, which was overcome with GA3 (gibberellic acid) treatment prior to planting.Abbreviations TDZ = thidiazuron - GA3 = gibberellic acid - BA = benzyladenine  相似文献   

11.
Abstract

The use of the mini-plug system for the production of container seedlings is relatively new, so there is little information on the potential impact of method on the quality of planting stock. The objective in this study was to evaluate the impact of mini-plug growing method on quality of Pinus brutia seedlings, and compare the performance of this stock type with that of standard container nursery stock. Seedling survival, growth and physiological status (root growth potential, shoot electrolyte leakage) were measured after pre-cultivation in mini-plugs, at the end of the first growing season in standard containers and after field transplanting. Our results showed that mini-plug transplants of P. brutia seedlings performed as well as the standard planting stock currently used in nursery operation in Greece. For the pre-cultivation of P. brutia seedlings in mini-plugs, the use of peat and a density of 2000 mini-plugs m?2 are recommended.  相似文献   

12.
Solution culture-grown, six-month old jack pine (Pinus banksiana Lamb.) seedlings were treated with naphthenic acids (NAs) (150 mg l–1) and sodium chloride (45 mM NaCl) which were applied together or separately to roots for four weeks. NAs aggravated the effects of NaCl in inhibiting stomatal conductance (g s) and root hydraulic conductance (Kr). Naphthenic acids did not affect needle and root electrolyte leakage in the absence of NaCl. However, in plants treated with NaCl, NAs further increased electrolyte leakage from needles and NaCl induced electrolyte leakage from needles, but not from roots. Both NaCl and NAs treatments resulted in a reduction in root respiration. The measured Na+ and Cl concentrations in the shoots for combined NaCl + NAs treatments were lower than in NaCl-only treatments. These decreases were correlated with a reduction in water conductance. The accumulation of Na+ and Cl in shoots was accompanied by an increased in needle electrolyte leakage. However, greater concentrations of Cl compared with Na+ were present in shoots and in the xylem sap suggesting that roots had relatively lower capacity for Cl storage compared with Na+.  相似文献   

13.
Hairy root cultures of Hypericum perforatum were obtained following inoculation of aseptically germinated seedlings with A. rhizogenes strain A4M70GUS. Effect of sucrose on the growth and biomass production of hairy root cultures was investigated. Hairy root cultures spontaneously regenerated shoots buds from which a number of shoot culture clones was established. Transformed shoot cultures exhibited good shoot multiplication, elongation and rooting on a hormone-free woody plant medium. Plants regenerated from hairy roots were similar in appearance to the normal, nontransformed plants.  相似文献   

14.
Abstract

Drought treatments in holm-oak (Quercus ilex) seedlings induce variations in total root length, number of root apices, shoot/root dry weight, and root electrolyte leakage. When drought treatments last for more than 50 days a considerable number of fine lateral roots die, irrespective of branching order or distribution within the root system. Scorching of drought-treated seedlings induces a transient stimulation of root growth. These results indicate that root turnover is deeply affected during treatments, with survival of seedlings being entrusted to the tolerance of a number of roots situated in the deeper region of the root system. Activity of the meristematic tissue present within the apices of these surviving roots supports regeneration of above-ground lost organs during recovery. Knowledge of the mechanisms ensuring the survival of Mediterranean tree seedlings following drought and fire is useful for developing models of vegetation dynamics.  相似文献   

15.
The dynamics of growth (shoot and root dry weights, surface areas, hydraulic conductances, and root length) were measured in seedlings of five neotropical tree species aged 4–16 months. The species studied included two light-demanding pioneers (Miconia argentea and Apeiba membranacea) and three shade-tolerant young- or old-forest species (Pouteria reticulata, Gustavia superba, and Trichilia tuberculata). Growth analysis revealed that shoot and root dry weights and hydraulic conductances and leaf area all increased exponentially with time. Alternative methods of scaling measured parameters to reveal differences that might explain adaptations to microsites are discussed. Scaling root conductance to root surface area or root length revealed a few species differences but nothing that correlated with adaptation to light regimes. Scaling of root surface area or root length to root dry weight revealed that pioneers produced significantly more root area and length per gram dry weight investment than shade-tolerant species. Scaling of root and shoot hydraulic conductances to leaf area and scaling of root conductance to root dry weight and shoot conductance to shoot dry weight also revealed that pioneers were significantly more conductive to water than shade-tolerant species. The advantages of scaling hydraulic parameters to leaf surface area are discussed in terms of the Ohm's law analogue of water flow in plants. Received: 24 March 1997 / Accepted: 17 November 1997  相似文献   

16.
The levels of indol-3yl-acetic acid and gibberellins were determined in shoots and storage roots of radish (Raphanus sativus L.) at various times during the vegetative growth cycle of control plants and plants in which the root to shoot ratio was modified by daminozide treatment. In control plants the onset of storage organ growth was preceded by a change in the hormone root to shoot ratio to favour the root. There was a general reduction in hormone levels in daminozide-treated plants but the pattern of their distribution in roots and shoots was very similar to that in control plants. Thus the effects of daminozide on increased storage root growth cannot be explained in terms of altered root to shoot hormone ratios.  相似文献   

17.
Black spruce [ Picea mariana (Mill.) B.S.P.] and tamarack [ Larix laricina (Du Roi) K. Koch] are the predominant tree species in boreal peatlands. The effects of 34 days of flooding on morphological and physiological responses were investigated in the greenhouse for black spruce and tamarack seedlings in their second growing season (18 months old). Flooding resulted in reduced root hydraulic conductance, net assimilation rate and stomatal conductance and increased needle electrolyte leakage in both species. Flooded tamarack seedlings maintained a higher net assimilation rate and stomatal conductance compared to flooded black spruce. Flooded tamarack seedlings were also able to maintain higher root hydraulic conductance compared to flooded black spruce seedlings at a comparable time period of flooding. Root respiration declined in both species under flooding. Sugar concentration increased in shoots while decreasing in roots in both species under flooding. Needles of flooded black spruce appeared necrotic and electrolyte leakage increased over time with flooding and remained significantly higher than in flooded tamarack seedlings. No visible damage symptoms were observed in flooded tamarack seedlings. Flooded tamarack seedlings developed adventitious roots beginning 16 days after the start of flooding treatment. Adventitious roots exhibited significantly higher root hydraulic conductivity than similarly sized flooded tamarack roots. Flooded black spruce lacked any such morphological adaptation. These results suggest that tamarack is better able to adjust both morphologically and physiologically to prolonged soil flooding than black spruce seedlings.  相似文献   

18.
Large and high nitrogen (N) concentration seedlings frequently have higher survival and growth in Mediterranean forest plantations than seedlings with the opposite traits, which has been linked to the production of deeper and larger root systems in the former type of seedlings. This study assessed the influence of seedling size and N concentration on root growth dynamics and its relation to shoot elongation in Aleppo pine (Pinus halepensis Mill.) seedlings. We cultivated seedlings that differed in size and tissue N concentration that were subsequently transplanted into transparent methacrylate tubes in the field. The number of roots, root depth, and the root and shoot elongation rate (length increase per unit time) were periodically measured for 10 weeks. At the end of the study, we also measured the twig water potential (ψ) and the mass of plant organs. New root mass at the end of the study increased with seedling size, which was linked to the production of a greater number of new roots of lower specific length rather than to higher elongation rate of individual roots. Neither plant size nor N concentration affected root depth. New root mass per leaf mass unit, shoot elongation rate, and pre-dawn ψ were reduced with reduction in seedling size, while mid-day ψ and the root relative growth rate were not affected by seedling size. N concentration had an additive effect on plant size on root growth but its overall effect was less important than seedling size. Shoot and roots had an antagonistic elongation pattern through time in small seedlings, indicating that the growth of both organs depressed each other and that they competed for the same resources. Antagonism between shoot and root elongation decreased with plant size, disappearing in large and medium seedlings, and it was independent of seedling N concentration. We conclude that root and shoot growth but not rooting depth increased with plant size and tissue N concentration in Aleppo pine seedlings. Since production of new roots is critical for the establishment of planted seedlings, higher absolute root growth in large seedlings may increase their transplanting performance relative to small seedlings. The lack of antagonism between root and shoot growth in large seedlings suggests that these plants can provide resources to sustain simultaneous growth of both organs.  相似文献   

19.
Protective effect of exogenous wheat germ agglutinin (WGA) on wheat seedling (Triticum aestivum L.) during salinity stress was studied. In particular, we examined the state of pro- and antioxidant systems as well as the level of peroxide oxidation of lipids and electrolyte leakage under control conditions and when stressed with NaCl. Generation of superoxide anions and activity of both superoxide dismutase (SOD) and peroxidase increased during saline stress. Accumulation of O2 ·− resulted in peroxide oxidation of lipids and electrolyte leakage in response to stress. The injurious effect of salinity on root growth of seedlings was manifested by a decreased mitotic index (MI) in apical root meristem. This study show that WGA pretreatment decreased salt-induced superoxide anion generation, SOD and peroxidase activities, levels of lipid peroxidation and electrolytes leakage as well as correlating with a reduction in the inhibition of root apical meristem mitotic activity in salt-treated plants. This suggests that exogenous WGA reduced the detrimental effects of salinity-induced oxidative stress in wheat seedlings. Thus WGA effects on a balance of reactive oxygen species (ROS) and activities of antioxidant enzymes may provide an important contribution to a range of the defense reactions induced by this lectin in wheat plants.  相似文献   

20.
Impact of four chromium resistant bacterial strains (S3, S4, S6, and S7) was studied on the different growth parameters of sunflower (Helianthus annuus var SF-187) in chromium free or under chromium stress. Strains used exhibited very high-level resistance to chromate (up to 50 mg ml-1 on nutrient agar and 1-2 mg ml-1 in minimal medium). Application of Cr(VI) salt adversely affected the seed germination, root and shoot length, and fresh weight of seedlings. Bacterial inoculations improved the growth parameters. The effects of Cr(VI) on the different biochemical parameters were also very severe but seedlings inoculated with bacteria showed much improvements as compared to non-inoculated controls. Uptake of Cr(VI) was higher than Cr(III) by the seedlings. Inoculated seedlings contained less chromium than non-inoculated seedlings. Much improvement in the internal region of root and shoot was observed in inoculated plants especially in guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号