首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytostabilization aims to immobilize soil contaminants using higher plants. The accumulation of trace elements in Populus alba leaves was monitored for 12 years after a mine spill. Concentrations of As and Pb significantly decreased, while concentrations of Cd and Zn did not significantly over time. Soil concentrations extracted by CaCl2 were measured by ICP-OES and results of As and Pb were below the detection limit. Long-term biomonitoring of soil contamination using poplar leaves was proven to be better suited for the study of trace elements. Plants suitable for phytostabilization must also be able to survive and reproduce in contaminated soils. Concentrations of trace elements were also measured in P. alba fruiting catkins to determine the effect on its reproduction potential. Cadmium and Zn were found to accumulate in fruiting catkins, with the transfer coefficient for Cd significantly greater than Zn. It is possible for trace elements to translocate to seed, which presents a concern for seed germination, establishment and colonization. We conclude that white poplar is a suitable tree for long-term monitoring of soil contaminated with Cd and Zn, and for phytostabilization in riparian habitats, although some caution should be taken with the possible effects on the food web.

Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.  相似文献   


2.
Soil chemical extractions are widely used to predict the nutritional status of soils. However, the correlation between extracted elements and plant uptake is often poor, especially if compared over a range of soil types. The aim of this study was to examine a new method called Diffusive Gradients in Thin films (DGT), which measures the diffusive supply of elements, thereby mimicking a plant root. The ability of DGT to assess plant-available P, Zn and Cu was tested in a wide range of typical Scandinavian agricultural soils along with conventional methods (EDTA and DTPA for Cu and Zn; NaHCO3 for P and soil solution concentrations). Extracted soil concentrations were compared to that of the element in the youngest fully developed leaf of barley (Hordeum vulgare L.) grown in pots. For Zn and P, only DGT could predict plant uptake while conventional extraction methods and soil solution analyses performed poorly. All soil tests could predict Cu concentration in leaves, but the DGT technique proved to be most accurate followed by the soil solution concentration of Cu. We conclude that DGT is much more accurate at predicting plant-available P, Zn and Cu than commonly used methods for analysing plant-available nutrients in soil.  相似文献   

3.
刘合霞  李博  胡兴华  邓涛  黄仕训  邹玲俐 《广西植物》2017,37(10):1261-1269
为探讨苦苣苔科植物对其岩溶生境的适应性,该研究选取黄花牛耳朵(Primulina lutea)、紫花报春苣苔(Pri.purpurea)和桂林蛛毛苣苔(Paraboea guilinensis)三种苦苣苔科植物,将其栽种在石灰土及红壤两种不同类型的土壤中,观测记录其生长性状并对其叶片元素含量进行测定和比较。植株采集过程中,同时采集自然生境中三种苦苣苔科植物叶片及取样植物基部土壤,并对叶片及土壤元素的含量进行测定,作为今后苗圃试验的参照。结果表明:三种苦苣苔科植物在两种土壤上的生长状况及适应性具有差异,其在石灰土上生长良好,在红壤上生长较差;在两种不同土壤中,除N外,桂林蛛毛苣苔的叶片其他元素(P、K、Mn、Mg、Ca、Zn、Cu)差异极显著(P0.01);除P外,紫花报春苣苔的叶片其他元素(N、K、Mn、Mg、Ca、Zn、Cu)差异极显著(P0.01);除N、Cu、Ca外,黄花牛耳朵的叶片元素(P、K、Mn、Mg、Zn)差异极显著(P0.01);三种植物的叶片元素比值,除少数值没有差异外,大部分指标差异都极显著;对叶片元素与栽培土壤元素的相关性分析,发现植物叶片Mn元素与土壤中N、Ca、Mg、Zn、Mn、有机质含量等呈正相关,土壤P元素与叶片中N、P元素呈正相关,而与叶片中Zn元素呈负相关关系。在其他栽培条件一致的条件下,土壤因素及物种差别是造成黄花牛耳朵、紫花报春苣苔和桂林蛛毛苣苔适应性产生差异的主要原因。  相似文献   

4.
Generally, soils in Pakistan are deficient in P and N. Due to intensive cropping and irrigation, Pakistani soils have also become deficient in micronutrients such as Zn, Fe, Cu, and Mn. Arbuscular mycorrhizal fungi, which form symbiotic associations with roots of most land plants, are known to enhance uptake of P and trace elements such as Cu, Ni, Pb, and Zn. The present study was conducted to investigate the role of arbuscular mycorrhizae (AM) in uptake of nickel (Ni) and zinc (Zn) by crops viz. soybean (Glycine max (L.) Merrill) and lentil (Lens culinaris Medic). Zn and Ni were applied as ZnSO4 7H2O and NiCl2 respectively, in four concentrations (0.0, 1.0, 3.0, and 5.0 g kg-1 soil). AM inoculum consisted of sand containing sporocarps, spores, and AMF infected root pieces from a pot culture of Glomus mosseae. Control plants received pot culture filtrate containing soil microflora minus AM fungal propagules. A significant difference (p < 0.05) was observed in the dry weights of roots and shoots of the mycorrhizal (M) and nonmycorrhizal (NM) cereal plants. The sievate-amended treatments did not stimulate plant growth to the same extent as the AM fungal amended treatments. Trace metals inhibited the extent of mycorrhizal colonization of the cereal roots. The concentrations of the trace metals in the plant tissues of 12-week old cereal plants were found significantly (p < 0.05) higher in M than NM plants. These results indicate that mycorrhize can be used as effective tools to supply sufficient Zn in generally Zn-deficient Pakistani soils and to ameliorate the toxicity of trace metals in polluted soils. The contents of Ni in mycorrhizal soybean plant tissues were higher than those in the mycorrhizal lentil plant tissues. The implications of these results in mycorrhizo remediation of agricultural soils are discussed.  相似文献   

5.
We have analyzed the relationship between total Zn, Pb and Cu concentrations in the soil and the capacity of three plant species to accumulate these elements in their leaves. The study was carried out in a highly contaminated area at Sulcis-Iglesiente (SW-Sardinia, Italy). We took samples of the leaves of Dittrichia viscosa, Cistus salviifolius and Euphorbia pithyusa subsp. cupanii and samples of the soil beneath each of them at depths of 0-30 and 30-60 cm, both in contaminated mine tailings and surrounding areas. Due to the anthropic origin of the soil materials the results varied considerably. Bioavailability of trace elements was mainly related to the calcium-carbonate content and the crystalline and amorphous forms of iron in the soil. The concentration of Zn in the leaves of the three plant species studied was highest, followed by Pb and finally Cu. The leaves of Dittrichia viscosa contained the highest concentrations of trace elements and this species may be considered as being a “phytoextractor” in soils where the trace-element concentrations are not too high. Euphorbia pithyusa subsp. cupanii had low trace-element concentrations in its leaves despite growing in highly contaminated soils, and so might be used as a “phytostabilizer”. Although Cistus salviifolius does not grow in the most contaminated soils, could be considered as a contamination indicator up to a given level.  相似文献   

6.
The objective of this research was to determine the effect of the chelate EDTA (ethylenediaminetetraacetic acid), which is used in phytoremediation, on plant availability of heavy metals in liquid sewage sludge applied to soil. Sunflower (Helianthus annuus L.) was grown under greenhouse conditions in a commercial potting soil; the tetrasodium salt of EDTA (EDTA Na4) was added at a rate of 1 g kg-1 to half the pots. Immediately after seeds were planted, half of the pots with each soil (with or without EDTA) were irrigated with 60 ml sludge, and half were irrigated with 60 ml tap water. For the subsequent five irrigations, plants in soil with EDTA received either sludge or tap water containing 0.5 g EDTA Na4 per 1000 ml, and plants in soil without EDTA received sludge or tap water without EDTA. Of the four heavy metals whose extractable concentrations in the soil were measured (Cu, Fe, Mn, and Zn), only Zn had a higher concentration in sludge-treated soil with EDTA compared to sludge-treated soil without EDTA. The concentrations of Fe, Cu, and Mn were similar in sludge-treated soil with and without EDTA. Of the three heavy metals whose total concentrations in the soil were measured (Cd, Pb, Cr), Pb (<10 mg kg-1) and Cd (< 1 mg kg-1) were below detection limits, and Cr was unaffected by treatment. The concentration of all measured elements in plants (Cd, Cu, Fe, Zn, Pb) was higher than the concentrations measured in the soil. With no EDTA, sludge-treated plants had a higher concentration of the five heavy elements than plants grown without sludge. Cadmium was lower in sludge-treated plants with EDTA than plants with EDTA and no sludge. After treatment with EDTA, the concentrations of Cu, Fe, and Zn were similar in plants with and without sludge. Lead was higher in plants with EDTA than plants without EDTA, showing that EDTA can facilitate phytoremediation of soil with Pb from sewage sludge.  相似文献   

7.
Restoration of metalliferous mine soils requires using plant species tolerant to high metal concentrations and adapted to nutrient‐poor soil. Legumes can increase plant productivity through N2‐fixation, but they are often scarce in metalliferous sites. We examined survival, growth, and tolerance of four populations of a legume, Anthyllis vulneraria, from two metalliferous (MET) Zn‐Pb mine sites, Avinières (AV) ([Zn‐EDTA] = 26,000 mg/kg) and Eylie (EY) ([Zn‐EDTA] = 4,632 mg/kg), and two non‐metalliferous (NMET) sites located in the south of France with the aim to select the most appropriate populations for restoration of mined soils. In a common garden experiment, plants from each population were reciprocally grown in soil from the provenance of each population. The two NMET populations exhibited high mortality and low growth rates in soil from the mined sites. The AV MET exhibited a high growth rate in metalliferous soils, but showed high mortality in non‐metalliferous soils. The growth of the EY MET was very low in the AV‐contaminated soil, but was the highest of all populations in moderately and non‐metalliferous soils. Plants from the AV MET population showed a high growth and survival in metalliferous soil and would be appropriate in the restoration of metal‐contaminated sites (>30,000 mg Zn kg?1). The EY MET population would be adapted to the restoration of moderate metal‐contaminated soils (<30,000 mg Zn kg?1). Taking into account the broad distribution of A. vulneraria, these two populations could be suitable for the restoration of derelict mine sites in mediterranean and temperate regions of Europe and North America.  相似文献   

8.
Trace elements in agroecosystems and impacts on the environment.   总被引:21,自引:0,他引:21  
Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.  相似文献   

9.

Background and aims

The trace element uptake process of plants is a key factor in assessing the risks of trace element build-up in agricultural soils. Scarce information exists on the trace element dynamic uptake of plants grown in the field, especially on those potentially hazardous. In this study, the uptake process of As, Cd, Cu, and Zn in maize plants was quantified and characterized throughout the entire season.

Methods

Along two seasons, the uptake dynamics of field-grown maize plants in absorbing the soil borne trace elements was examined. Biomass production and the concentration of the elements in plant and soil solution samples were determined. A kinetic model was employed to characterize the uptake by plants.

Results

The kinetic parameters of the uptake process, maximum cumulative uptake rate, U max , time to reach 50 % of U max , t U50 , and reciprocal of the uptake rate, b U when followed throughout the season in terms of the plant’s growing degree days remained constant between seasons and were element specific. In spite of the large amount biomass produced, maize plants extracted minute quantities of Cd and As. Increasing cumulative uptake rates of As, Cd, Cu, and Zn from the soil took place primarily in the early half of the growing season when the biomass accumulation was still less than 50 % of the maximum harvested biomass. The element-specific plant uptake factor (PUF), which denote the partition of trace elements between the soil solution and plant phases, decreased following a first-order kinetics along the growing period, did not show any significant difference between seasons, and, at maturity stage, followed the sequence Cd≥Zn>Cu≥As.

Conclusions

The uptake process of the elements was adequately described by the kinetic model, showing similar patterns but different magnitude and distribution in the plant. The extraction of Cd and As by plants is low in comparison to common inputs through fertilizer applications into maize production systems, indicating potential risk of trace element accumulation in soils. The PUF may be estimated according to the kinetics parameters of the uptake process. On a per-unit-soil solution element basis, Cd and Zn would be more susceptible to the soil-to-plant transfer than As and Cu.  相似文献   

10.
Abstract

The bioavailability index (BI) is defined as the proportion of reduction in a plant’s accumulation of an element, caused by the removal of the extractable fraction of the element of interest from the soil. The BI and corresponding experimental methods were quantitatively applied to evaluate the bioavailability of trace elements in five Chinese soils. The soil was first extracted with various reagents (DTPA, HCl and NH2OH.HCI) separately, to remove the extractable elements. The soil, after extraction, was washed with deionised water to eliminate the extractant used in the fractionation analysis. Then the pH of the soil was re-adjusted with CaO. The soil was then fertilised and incubated in a greenhouse for four weeks. Tests showed that after incubation the pH, cation exchange capacity (CEC) and organic matter (OM) of the treated soil were close to their original values. Wheat (Triticum aestivum L.) was planted in both the untreated and treated soil for eight weeks. After harvest the plant concentrations of the elements Cr, Mn, Co, Ni, Zn, Cu, Cd, and Pb were analysed by inductively coupled plasma mass spectrometry (ICPMS). Trace element accumulation by plants grown in the treated soil was reduced significantly compared with that of plants grown in the untreated soil. The results showed that BI values were in the order BI(DTPA)>BI(HCl)>BI(NH2OH.HCl). This indicated that the DTPA-extractable fraction represented a highly available fraction of the total content. Variations of BI among different trace elements show that Cr, Mn, Zn and Co have a higher BI, in general for the elements tested, whereas, Cu, Cd and Pb have lower values. There are also slight differences in the BI among soils. However, no significant relationship could be found between the BI and the soil characteristics.  相似文献   

11.
A new index, Bioavailability Index (BI) and the corresponding experimental method were developed for quantitative evaluation of bioavailability of the extractable soil trace elements. Soils were first treated with various extractants (DTPA, HCl, NH2OH·HCl+HCl) separately to remove the extractable elements. The soils after extraction were washed with deionised water to eliminate the extractant and its pH was adjusted with Ca0 and finally restored to its original pH level. Wheat (Triticum aestivum L.) and rape (Brassica chinensis) were planted in the untreated and treated soils for 8 weeks. The concentrations of the trace elements in plants were determined after harvest. Nutrient accumulation by plants is significantly reduced due to removal of extractable trace elements from the soil. BI of the extractable fraction was proportional to the ratio of plant accumulation reduction to trace element extractability. In the present study, BI value of the total content of soil trace elements was designated as 1. Though only a minor fraction of the total soil nutrient, generally less than 5%, was removed by DTPA, the nutrient accumulation by plants, especially for wheat, was reduced greatly, leading to relatively large BI values. For wheat, the average BI values of the eight nutrients Cu, Mn, Zn, Ni, Co, Pb, Cr, and V were found to be 22.7, 17.6 and 17.4 for the three testing soils, and for rape, the corresponding values of 8.9, 10.0 and 11.0 were obtained, indicating that the DTPA-extractable elements represent the highly available fraction of the total content. The BI values for HCl-extractable elements were much lower compared with those for DTPA. For wheat, the average BI values for the three soils are 2.0, 1.9 and 2.4, and for rape, the corresponding values are 4.8, 4.1 and 3.7. The high availability of DTPA-extractable trace elements and relatively low availability of HCl-extractable trace elements highlight the significant role that chelation action might play in plant nutrient acquisition. The different responses of wheat and rape to the soils previously subjected to the same extraction procedure could be explained by their genotypical differences in sensitivity to nutrient deficiencies. The quantitative nature of BI makes it valuable in the study of nutrient bioavailability and plant accumulation mechanisms.  相似文献   

12.
Summary Studies were conducted in 22 non-calcareous soils (India) to evaluate various extractants,viz. (6N HCl, 0.1N HCl, EDTA (NH4)2CO3, EDTA NH4OAc, DTPA+CaCl2 and 1M MgCl2) to find critical levels of soil and plant Zn for green gram (Phaseolus aureus Roxb.). The order of extractability by the different extractants was 6N HCl>0.1N HCl>EDTA (NH4)2CO3<EDTA NH4OAc DTPA+CaCl2>1M MgCl2. Critical levels of 0.48 ppm DTPA × CaCl2 extractable Zn, 0.80 ppm EDTA NH4OAc extractable Zn, 0.70 ppm EDTA (NH4)2CO3 extractable Zn, and 2.2 ppm 0.1N HCl extractable Zn were estimated for the soils tested. The critical Zn concentration in 6 weeks old plants was found to be 19 ppm. The 0.1N HCl method gave the best correlation (r=0.588**) between extractable Zn and Bray's per cent yield, while with DTPA+CaCl2, it was slightly low (r=0.542**). The DTPA + CaCl2 method gave significant (r=0.73**) correlation with plant Zn concentration. The 0.1N HCl gave the higher correlation with Zn uptake (r=0.661**) than DTPA (r=0.634**) 6N HCl and 1M MgCl2 method gave nonsignificant positive relationship with Bray's per cent yield. For noncalcareous soils apart from the common use of DTPA+CaCl2, 0.1N HCl can also be used for predicting soil available Zn. The use of 0.1N HCl would be much cheaper than DTPA and other extractants used in the study.  相似文献   

13.
鄱阳湖湿地优势植物叶片-凋落物-土壤碳氮磷化学计量特征   总被引:15,自引:20,他引:15  
聂兰琴  吴琴  尧波  付姗  胡启武 《生态学报》2016,36(7):1898-1906
2013年11月初在鄱阳湖南矶湿地国家级自然保护区,采集芦苇(Phragmites australis)、南荻(Triarrhena lutarioriparia)、菰(Zizania latifolia(Griseb.))、灰化苔草(Carex cinerascens)、红穗苔草(Carex argyi)和水蓼(Polygonum hydropiper)等6种优势植物新鲜叶片、凋落物及表层0—15cm土壤样品测定了碳(C)、氮(N)、磷(P)含量,以阐明不同物种、不同生活型间C、N、P化学计量差异,探讨化学计量垂直分异。结果表明:1)C、N、P含量变化范围分别为:叶片380.6—432.2 mg/g,15.3—32.6 mg/g和1.3—2.0 mg/g;凋落物345.4—416.1 mg/g,10.8—20.8 mg/g和1.1—1.7 mg/g;土壤15.0—38.1 mg/g,1.2—3.1 mg/g和0.7—1.1mg/g,不同物种间叶片、凋落物及土壤C、N、P含量差异显著,且叶片C、N、P含量显著高于凋落物与土壤。2)土壤C∶N、C∶P及N∶P值显著低于叶片与凋落物,且土壤C、N、P化学计量关系与凋落物更为密切,凋落物的C∶N、N∶P分别能解释土壤C∶N、N∶P变异的35%、18%。3)挺水植物与湿生植物之间叶片C∶N、N∶P值差异显著,C∶P则差异不显著,凋落物C∶N、C∶P与N∶P均未达到显著性差异。  相似文献   

14.
In this study, 30 soil samples were collected from 0–5 cm and 15–20 cm depths in the vicinity of the Miduk Porphyry Copper Mine in Kerman Province, southeast Iran. The samples were analyzed for total concentrations of eight potentially toxic elements. The bioavailability of trace elements is determined using sequential extraction analysis. Average concentrations of As, Cd, Cr, Cu, Mo, Ni, Pb, and Zn in soil samples are 26.9, 0.49, 56.31, 201.18, 1.77, 45.6, 83.87, and 191.94 mg kg?1, respectively. Also, to assess the bioaccumulation of the analyzed elements, the roots and the leaves of three plant species were sampled and analyzed. The mobility of the analyzed trace elements shows the following decreasing order: Cd > Mo > Ni > Zn > Cu > Cr >Pb> As. The distribution pattern of elements indicates that elemental concentration in Miduk soils is highly influenced by bedrock composition, while soil pollution is mostly affected by ancient mining.  相似文献   

15.
The effectiveness of an in situ heavy metals fixation technique aimed at converting contaminants to low solubility and low bioavail-ability forms, eliminating the risk posed by oxidic tailings and contaminated soils, was investigated. Calcium oxyphosphate salt (Ca(H2PO4)2·H2O) was used as a stabilizing agent for oxidic tailings and contaminated soils originating from Montevecchio, Sardinia, Italy. Stabilization was effected by mixing the contaminated soil or oxidic tailing sample with calcium oxyphosphate salt at various doses. The effectiveness of stabilization was evaluated by USEPA TCLP standard toxicity testing. Complementary EDTA extraction tests and biological tests using beans Phaseolous vulgaris as plant indicator were carried out. The toxicity of Pb and Cd was reduced below TCLP regulatory limits at calcium oxyphosphate doses higher than 0.7 and 0.2% w/w for soils and tailings, respectively. Lead solubility according to the EDTA test decreased with phosphate dose for both materials tested. Lead uptake by plant leaves and roots from the soil sample decreased with the phosphate addition, while Cd uptake remained almost constant. An adverse effect on plant growth and Zn uptake was observed for calcium oxyphosphate dose up to 1.1% w/w. Based on the results, a remediation scheme for oxidic tailings and contaminated soils is proposed.  相似文献   

16.
Grčman  H.  Velikonja-Bolta  Š.  Vodnik  D.  Kos  B.  Leštan  D. 《Plant and Soil》2001,235(1):105-114
Synthetic chelates such as ethylene diamine tetraacetic acid (EDTA) have been shown to enhance phytoextraction of some heavy metals from contaminated soil. In a soil column study, we examined the effect of EDTA on the uptake of Pb, Zn and Cd by Chinese cabbage (Brassica rapa), mobilization and leaching of heavy metals and the toxicity effects of EDTA additions on plants. The most effective was a single dose of 10 mmol EDTA kg–1 soil where we detected Pb, Zn and Cd concentrations that were 104.6, 3.2 and 2.3-times higher in the aboveground plant biomass compared to the control treatments. The same EDTA addition decreased the concentration of Pb, Zn and Cd in roots of tested plants by 41, 71 and 69%, respectively compared to concentrations in the roots of control plants. In columns treated with 10 mmol kg–1 EDTA, up to 37.9, 10.4 and 56.3% of initial total Pb, Zn and Cd in soil were leached down the soil profile, suggesting high solubility of heavy metals-EDTA complexes. EDTA treatment had a strong phytotoxic effect on the red clover (Trifolium pratense) in bioassay experiment. Moreover, the high dose EDTA additions inhibited the development of arbuscular mycorrhiza. The results of phospholipid fatty acid analyses indicated toxic effects of EDTA on soil fungi and increased environmental stress of soil microfauna.  相似文献   

17.
The presented study assessed the heavy metal contamination risk in a former sludge deposit field of the River Ruhr in Essen, Germany. Therefore, the temporal and spatial distribution in soils and plants, chemical fractionation, mobilization potential, and transfer characteristics have been investigated. Soil samples, roots and shoots of rushes (Juncus sp.), and stem wood disks of willows (Salix sp.) were analyzed for Zn, Cu, Pb, Ni, Cr, and Cd. Plant available and mobile heavy metal portions have been determined using a sequential extraction procedure. The results show that the soils and the rushes are highly contaminated, although there is a considerable decrease compared to initial concentrations some 20 years ago. The willows show only small heavy metal enrichment. pH induced mobilization potential in soil is high for Cd, Zn and Ni. Additionally, these elements contain high portions of plant-available fractions. High transfer rates from soil to roots and very high rates from roots to shoots of rushes have been determined for Cd and Zn, indicating an accumulation of these elements in shoots of rushes. The rushes reflect the temporal and spatial heavy metal distribution in soil and might thus be used as a bioindicator or for phytoremediation.  相似文献   

18.
It has been frequently suggested that root exudates play a role in trace metal mobilization and uptake by plants, but there is little in vivo evidence. We studied root exudation of dicotyledonous plants in relation to mobilization and uptake of Cu and Zn in nutrient solutions and in a calcareous soil at varying Cu and Zn supply. Spinach (Spinacia oleracea L.) and tomato (Lycopersicon esculentum L.) were grown on resin-buffered nutrient solutions at varying free ion activities of Cu (pCu 13.0–10.4) and Zn (pZn 10.1–6.6). The Cu and Zn concentrations in the nutrient solution increased with time, except in plant-free controls, indicating that the plant roots released organic ligands that mobilized Cu and Zn from the resin. At same pCu, soluble Cu increased more at low Zn supply, as long as Zn deficiency effects on growth were small. Zinc deficiency was observed in most treatment solutions with pZn ≥ 9.3, but not in nutrient solutions of a smaller volume/plant ratio in which higher Zn concentrations were observed at same pZn. Root exudates of Zn-deficient plants showed higher specific UV absorbance (SUVA, an indicator of aromaticity and metal affinity) than those of non-deficient plants. Measurement of the metal diffusion flux with the DGT technique showed that the Cu and Zn complexes in the nutrient solutions were highly labile. Diffusive transport (through the unstirred layer surrounding the roots) of the free ion only could not explain the observed plant uptake of Cu and of Zn at low Zn2+ activity. The Cu and Zn uptake by the plants was well explained if it was assumed that the complexes with root exudates contributed 0.4% (Cu) or 20% (Zn) relative to the free ion. In the soil experiment, metal concentrations and organic C concentrations were larger in the solution of planted soils than in unplanted controls. The SUVA of the soil solution after plant growth was higher for unamended soils, on which the plants were Zn-deficient, than for Zn-amended soils. In conclusion, root exudates of dicotyledonous plants are able to mobilize Cu and Zn, and plants appear to respond to Zn deficiency by exuding root exudates with higher metal affinity.  相似文献   

19.
Cadmium and zinc in plants and soil solutions from contaminated soils   总被引:5,自引:0,他引:5  
Lorenz  S.E.  Hamon  R.E.  Holm  P.E.  Domingues  H.C.  Sequeira  E.M.  Christensen  T.H.  McGrath  S.P. 《Plant and Soil》1997,189(1):21-31
In an experiment using ten heavy metal-contaminated soils from six European countries, soil solution was sampled by water displacement before and after the growth of radish. Concentrations of Cd, Zn and other elements in solution (K, Ca, Mg, Mn) generally decreased during plant growth, probably because of uptake by plants and the subsequent redistribution of ions onto soil exchange sites at lower ionic strength. Speciation analysis by a resin exchange method showed that most Cd and Zn in non-rhizosphere solutions was present as Cd2+ and Zn2+, respectively. The proportion of free ions was slightly lower in rhizosphere solutions, mainly due to an increase in dissolved organic carbon during plant growth. Solution pH increased during plant growth, although the bulk soil pH generally remained constant. Cd concentrations in leaves and tubers were more closely correlated with their total or free ionic concentrations in rhizosphere solutions (adjusted R2 0.90) than with their concentrations in soils (adj. R2 0.79). Cd concentrations in non-rhizosphere solutions were only poorly correlated with Cd concentrations in leaves and tubers. In contrast to Cd, there were no soil parameters that individually predicted Zn concentrations in leaves and tubers closely. However, multiple correlation analysis (including Zn concentrations in rhizosphere solutions and in bulk soils) closely predicted Zn concentrations in leaves and tubers (adj. R2 = 0.85 and 0.70, respectively). This suggests that the great variability among soils in the solubility of Zn affected the rate of release of Zn into solution, and thus Zn uptake. There was no such effect for Cd, for which solubility varied much less. Furthermore, the plants may have partly controlled Zn uptake, as they took up relatively less at high solution concentrations of Zn.Free ionic concentrations in soil solution did not predict concentrations of Cd or Zn in plants better than their total concentrations in solution. This suggests that with these soils, analysis of Cd and Zn speciation is of little practical importance when their bioavailability is assessed.  相似文献   

20.

Background and aims

The ionome (elemental composition) of grassland species has rarely been studied at the level of individual organs and little is known about effects of soil chemical properties on the ionome. Using the model oxalate plant Rumex obtusifolius, we asked how its biomass production and the distribution of elements between its organs is affected by soil chemical properties.

Methods

We established a pot experiment with R. obtusifolius planted in acidic non-contaminated control and in slightly acidic and alkaline soils anthropogenically contaminated by the risk elements As, Cd, Pb, and Zn. Both contaminated soils were untreated and treated by lime and superphosphate. We determined biomass production and the concentrations of elements in its organs.

Results

Biomass production was negatively related to the mobility of micro- and risk elements. Restricted transport of micro- and risk elements from belowground organs into leaves was recorded in untreated contaminated soils. In both lime-treated soils and in superphosphate-treated alkaline soil, elevated transport of micro- and risk elements from belowground organs into leaves was recorded in comparison to untreated contaminated soils. The lowest concentrations of micro- and risk elements were recorded in stems and seeds, followed by belowground organs and leaves.

Conclusions

R. obtusifolius is an As-, Cd-, Pb-, and Zn-excluder and is sensitive to high availability of micro- and risk elements in the soil. Soil chemical properties affect the distribution of essential elements within the plant greatly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号