首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Glucose-6-phosphate and 6-phosphogluconate dehydrogenases have been found in homogenates of Arbacia eggs; 95 per cent of the activity toward each substrate is recovered in the supernatant fraction after centrifuging at 20,000 g for 30 minutes. 2. With glucose-6-phosphate as substrate) the rate of TPN reduction by the supernatant fraction from 1 gm. wet weight unfertilized or fertilized eggs was 1.8 to 3.0 micromoles per minute; this rate is sufficient to support a rate of oxygen consumption 24 times that observed for unfertilized, and 6 times that for fertilized, eggs. Pentose was formed from glucose-6-phosphate at a rate 0.3 to 0.5 that of TPN reduction, when both rates were expressed as micromoles per minute. 3. The concentrations of glucose-6-phosphate and 6-phosphogluconate for half maximal activity were each approximately 0.00004 M for the respective enzymes in the supernatant fraction. Maximal activity toward 6-phosphogluconate was 50 to 60 per cent of that toward glucose-6-phosphate. Glucose-6-phosphate dehydrogenase activity was 50 per cent inhibited in presence of 0.00006 M 2,4,5-trichlorophenol. 4. Reduction of DPN by the supernatant fraction in presence of fructose-1,6-diphosphate and ADP was 0.1 to 0.2 micromoles per minute per gm. wet eggs, indicating that the glycolytic pathway can metabolize glucose-6-phosphate at about 5 per cent the rate at which it can be oxidized by the TPN system from unfertilized or fertilized Arbacia eggs. 5. Phosphoglucomutase, hexose isomerase, and a phosphatase for fructose-1,6-diphosphate also appear to be present in Arbacia eggs.  相似文献   

2.
Enzymes of the reductive pentose phosphate cycle including ribulose-diphosphate carboxylase, ribulose-5-phosphate kinase, ribose-5-phosphate isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and alkaline fructose-1,6-diphos-phatase were shown to be present in autotrophically grown Rhodospirillum rubrum. Enzyme levels were measured in this organism grown photo- and dark heterotrophically as well. Several, but not all, of these enzymes appeared to be under metabolic control, mediated by exogenous carbon and nitrogen compounds. Light had no effect on the presence or levels of any of these enzymes in this photosynthetic bacterium.

The enzymes of the tricarboxylic acid cycle and enolase were shown to be present in R. rubrum cultured aerobically, autotrophically, or photoheterotrophically, both in cultures evolving hydrogen and under conditions where hydrogen evolution is not observed. Light had no clearly demonstrable effect on the presence or levels of any of these enzymes.

  相似文献   

3.
One fast growing strain of Rhizobium sp (Vigna mungo) VBS 1 was tested for its metabolic activities under carbon starvation. Specific activities of the catabolic enzymes like phosphofructokinase, fructose-1,6-bisphosphate aldolase, iso-citrate dehydrogenase and malate dehydrogenase decreased remarkably whereas, induction of two anapleurotic enzymes like fructose-1,6-bisphosphatase and iso-citrate lyase took place in the cell-free extract of the strain. Almost unchanged specific activity of the enzyme glyceraldehyde-3-phosphate dehydrogenase indicated its key role in maintaining a balance between catabolic and anabolic activities under carbon starvation.  相似文献   

4.
The utilization of ribose by Veillonella alcalescens has been further investigated. Nonfermentation of ribose is not a result of a phosphorylation lesion since ribose-phosphorylating activity was measured in cell extracts. Resting cells accumulated ribose-5-phosphate and nucleotides when 14C-ribose was provided; no other sugar phosphates were detectable. Resting cells that were shifted to growth conditions polymerized rather than degraded the accumulated ribose compounds. Cell extracts contained a fructose diphosphate phosphatase. Ribose-5-phosphate, glucose-6-phosphate, and fructose-6-phosphate were not hydrolyzed. It is postulated that the nonfermentation of ribose is not due to any metabolic lesions, but is a consequence of metabolic control at the fructose diphosphate level of glycolysis.  相似文献   

5.
The onset of anaerobiosis in darkened, N-limited cells of the green alga Selenastrum minutum (Naeg.) Collins elicited the following metabolic responses. There was a rapid decrease in energy charge from 0.85 to a stable lower value of 0.6 accompanied by rapid increases in pyruvate/phosphoenolpyruvate and fructose-1,6-bisphosphate/fructose-6-phosphate ratios indicating activation of pyruvate kinase and 6-phosphofructokinase, respectively. There was also a large increase in fructose-2,6-bisphosphate, which, since this alga lacks pyrophosphate dependent 6-phosphofructokinase, can be inferred to inhibit gluconeogenic fructose-1,6-bisphosphatase activity. These changes resulted in an approximately twofold increase in the rate of starch breakdown indicating a Pasteur effect. The Pasteur effect was accompanied by accumulation of d-lactate, ethanol and succinate as fermentation end-products, but not malate. Accumulation of succinate was facilitated by reductive carbon metabolism by a partial TCA cycle (GC Vanlerberghe, AK Horsey, HG Weger, DH Turpin [1989] Plant Physiol 91: 1551-1557). An initial stoichiometric decline in aspartate and increases in succinate and alanine suggests that aspartate catabolism provides an initial source of carbon for reduction to succinate under anoxic conditions. These observations allow us to develop a model for the regulation of anaerobic carbon metabolism and a model for short-term and long-term strategies for succinate accumulation in a green alga.  相似文献   

6.
The inhibition of photosynthesis after supplying glucose to detached leaves of spinach (Spinacia oleracea L.) was used as a model system to search for mechanisms which potentially contribute to the sink regulation of photosynthesis. Detached leaves were supplied with 50 mM glucose or water for 7 d through the transpiration stream, holding the leaves in low irradiance (16 mol photons · m–2 · s–1) and a cycle of 9 h light/15 h darkness to prevent any endogenous accumulation of carbohydrate. Leaves supplied with water only showed marginal changes of photosynthesis, respiration, enzyme levels or metabolites. When leaves were supplied with 50 mM glucose, photosynthesis was gradually inhibited over several days. The inhibition was most marked when photosynthesis was measured in saturating irradiance and ambient CO2, less marked in saturating irradiance and saturating CO2, and least marked in limiting irradiance. There was a gradual loss of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) protein, fructose-1,6-bisphosphatase, NADP-glyceraldehyde-3-phosphate dehydrogenase and chlorophyll. The inhibition of photosynthesis was accompanied by a large decrease of glycerate-3-phosphate, an increase of triose-phosphates and fructose-1,6-bisphospate, and a small decrease of ribulose-1,5-bisphosphate. The stromal NADPH/NADP ratio increased (as indicated by increased activation of NADP-malate dehydrogenase), and the ATP/ADP ratio increased. Chlorophyll-fluorescence analysis indicated that thylakoid energisation was increased, and that the acceptor side of photosystem II was more reduced. Similar results were obtained when glucose was supplied by floating leaf discs in low irradiance on glucose solution, and when detached spinach leaves were held in high light to produce an endogenous accumulation of carbohydrate. Feeding glucose also led to an increased rate of respiration. This was not accompanied by any changes of pyruvate kinase, phosphofructokinase, or pyrophosphate: fructose-6-phosphate phosphotransferase activity. There was a decrease of phosphoenolpyruvate, glycerate-3-phosphate and glycerate-2-phosphate, an increase of pyruvate and triose-phosphates, and an increased ATP/ADP ratio. These results show (i) that accumulation of carbohydrate can inhibit photosynthesis via a long-term mechanism involving a decrease of Rubisco and other Calvin-cycle enzymes and (ii) that respiration is stimulated due to an unknown mechanism, which increases the utilisation of phosphoenolpyruvate.Abbreviations and Symbols Ci CO2 concentration in the air space within the leaf - Fm fluorescence yield with a saturating pulse in dark-adapted material - Fo ground level of fluorescence using a weak non-actinic modulated beam in the dark - Fru1,6bisP fructose-1,6-bisphosphate - Fru1,6Pase fructose-1,6-bisphosphatase - Fru2,6bisP fructose-2,6-bisphosphate - IRGA infrared gas analyser - NAD-MDH NAD-dependent malate dehydrogenase - NADP-MDH NADP-dependent malate dehydrogenase - NADP-GAPDH NADP-dependent glyceraldehyde-3-phosphate dehydrogenase - PEP phosphoenolpyruvate - PFK phospho-fructokinase - PFP pyrophospate: fructose-6-phosphate-phosphotransferase - 3-PGA glycerate-3-phospate - Pi inorganic phosphate - Ru1,5bisP ribulose 1,5-bisphosphate - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - triose-phosphates sum of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate This research was supported by the Deutsche Forschungsgemeinschaft (SFB 137).  相似文献   

7.
Dujardyn M  Foyer CH 《Plant physiology》1989,91(4):1562-1568
The response of the Benson-Calvin cycle to changes in irradiance and photoinhibition was measured in low-light grown barley (Hordeum vulgare) leaves. Upon the transition from the growth irradiance (280 micromoles per square meter per second) to a high photoinhibitory irradiance (1400 micromoles per square meter per second), the CO2 assimilation rate of the leaves doubled within minutes but high irradiance rapidly caused a reduction in quantum efficiency. Following exposure to high light the activities of NADP-malate dehydrogenase and fructose-1,6-bisphosphatase obtained near maximum values and the activation state of ribulose-1,5-bisphosphate carboxylase increased. The activity of the latter remained constant throughout the period of photoinhibitory irradiance, but the increase in the activities of fructose-1,6-bisphosphatase and NADP-malate dehydrogenase was transient decreasing once more to much lower values. This suggests that immediately following the transition to high light reduction and activation of redox-modulated enzymes occurred, but then the stroma became relatively oxidized as a result of photoinhibition. The leaf contents of glucose 6-phosphate and fructose 6-phosphate increased following exposure to high light but subsequently decreased, suggesting that following photoinhibition sucrose synthesis exceeded the rate of carbon assimilation. The ATP content attained a constant value much higher than that in low light. During photoinhibition the glycerate 3-phosphate content greatly increased while ribulose-1,5-bisphosphate decreased. The fructose-1,6-bisphosphate and triose phosphate contents increased initially and then remained constant. During photoinhibition CO2 assimilation was not limited by ribulose-1,5-bisphosphate carboxylase activity but rather by the regeneration of the substrate, ribulose-1,5-bisphosphate, related to a restriction on the supply of reducing equivalents.  相似文献   

8.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

9.
A Zea mays callus culture containing chlorophyll was established and grown photomixotrophically. Cell chloroplast structure, and pigment and soluble protein contents were examined. Expression of some key enzymes of C4 carbon metabolism was compared with that of etiolated (heterotrophic) and green photoautotrophic leaves. Chlorophyll content of the callus was 15–20% that of green leaves. Soluble protein content of callus was half that of leaf cells. Electron microscopic observations showed that green callus cells contained only typical granal chloroplasts. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.38) activities in green callus were ca 30% those of green leaves but 2–3 times higher than in etiolated leaves. Quantitative enzyme protein determination, using antibodies specific to maize leaf Rubisco showed that the chloroplastic carboxylase represented about 7% of total soluble protein in green callus, in parallel to its low chlorophyll content. The specific activity of Rubisco in callus and leaves was unchanged. Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) activity in green callus was about 20% that of green leaves and similar to that measured in etiolated leaves. Apparent Km (PEP) values (0.08 mM) for PEPC isolated from green callus and etiolated leaves were very different from values (0.5 mM) obtained with PEPC from green leaves. These kinetic characteristics together with the absence of inhibition by malate and activation by glucose-6-phosphate suggest that the properties of PEPC isolated from green callus and etiolated maize leaves are very similar to those of PEPPC from C3 plants. Using PEPC antibodies specific to green maize leaf enzyme, immunotitration of PEPC preparations containing identical enzyme units allowed complete precipitation of the green leaf enzyme with increasing antibody volumes. In contrast, 60–70% of the activity of PEPC from etiolated and green callus was inhibited, suggesting low affinity for the maize green leaf PEPC antiserum (typical C4 form). Ouchterlony double diffusion tests revealed only partial recognition of PEPC in green callus and etiolated leaves. NAD-malate dehydrogenase (NAD-MDH, EC 1.1.1.37) activity in callus was 2 and 3 times higher, respectively, than in etiolated and green leaves. NADP-malic enzyme (NADP-ME, EC 1.1.1.40) activity in callus cultures was much lower than in green leaves. All our data support the hypothesis that cultures of fully dedifferentiated chlorophyllous tissues of Zea mays possess a C3-like metabolism.  相似文献   

10.
Two different forms of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) have been purified from etiolated and green leaves, respectively, of 6-day maize (Zea mays L. cv Fronica) seedlings. The procedure includes an ammonium sulfate step, an ion exchange chromatography, and a second gel filtration in Sephadex G-200 in the presence of NADP+ to take advantage of the corresponding molecular weight increase of the enzyme. The isozyme from etiolated leaves is more stable and has been purified up to 200-fold. Subunit molecular weight, measured by sodium dodecyl sulfate-gel electrophoresis, is 54,000. The active protein, under most conditions, has a molecular weight 114,000, which doubles to molecular weight 209,000 in the presence of NADP+. The association behavior of enzyme from green leaves is similar, and the molecular weight of the catalytically active protein is also similar to the form of etiolated leaves.

Glucose 6-phosphate dehydrogenase of dark-grown maize leaves isoelectric point (pI) 4.3 is replaced by a form with pI 4.9 during greening. The isozymes show some differences in their kinetic properties, Km of NADP+ being 2.5-fold higher for pI 4.3 form. Free ATP (Km = 0.64 millimolar) and ADP (Km = 1.13 millimolar) act as competitive inhibitors with respect to NADP+ in pI 4.3 isozyme, and both behave as less effective inhibitors with pI 4.9 isozyme. Magnesium ions abolish the inhibition.

  相似文献   

11.
Fructose-1,6-bisphosphatase (FBPase), which is mainly used to supply NADPH, has an important role in increasing L-lysine production by Corynebacterium glutamicum. However, C. glutamicum FBPase is negatively regulated at the metabolic level. Strains that overexpressed Escherichia coli fructose-1,6-bisphosphatase in C. glutamicum were constructed, and the effects of heterologous FBPase on cell growth and L-lysine production during growth on glucose, fructose, and sucrose were evaluated. The heterologous fructose-1,6-bisphosphatase is insensitive to fructose 1-phosphate and fructose 2,6-bisphosphate, whereas the homologous fructose-1,6-bisphosphatase is inhibited by fructose 1-phosphate and fructose 2,6-bisphosphate. The relative enzyme activity of heterologous fructose-1,6-bisphosphatase is 90.8% and 89.1% during supplement with 3 mM fructose 1-phosphate and fructose 2,6-bisphosphate, respectively. Phosphoenolpyruvate is an activator of heterologous fructose-1,6-bisphosphatase, whereas the homologous fructose-1,6-bisphosphatase is very sensitive to phosphoenolpyruvate. Overexpression of the heterologous fbp in wild-type C. glutamicum has no effect on L-lysine production, but fructose-1,6-bisphosphatase activities are increased 9- to 13-fold. Overexpression of the heterologous fructose-1,6-bisphosphatase increases L-lysine production in C. glutamicum lysC T311I by 57.3% on fructose, 48.7% on sucrose, and 43% on glucose. The dry cell weight (DCW) and maximal specific growth rate (μ) are increased by overexpression of heterologous fbp. A “funnel-cask” diagram is first proposed to explain the synergy between precursors supply and NADPH supply. These results lay a definite theoretical foundation for breeding high L-lysine producers via molecular target.  相似文献   

12.
The substrate level of the photosynthetic reductive pentosephosphate cycle in spinach leaves during SO2 fumigation wassurveyed. At the beginning of SO2 fumigation, fructose-1,6-bisphosphateincreased and fructose-6-phosphate decreased, while ribulose-1,5-bisphosphateremained unchanged and 3-phosphoglyceric acid rapidly decreased.These results suggested that the inhibition of photosynthesisin spinach leaves with SO2 might be due to inactivation of fructose-1,6-bisphosphatase. (Received May 26, 1982; Accepted September 27, 1982)  相似文献   

13.
Mark Stitt  Hans W. Heldt 《Planta》1985,164(2):179-188
The metabolite levels in the mesophyll of leaves of Zea mays L. have been compared with the regulatory properties of the cytosolic fructose-1,6-bisphosphatase from the mesophyll to show how withdrawal of triose phosphate for sucrose synthesis is reconciled with generation of the high concentrations of triose phosphate which are needed to allow intercellular diffusion of carbon during photosynthesis. i) A new technique is presented for measuring the intercellular distribution of metabolites in maize. The bundle-sheath and mesophyll tissues are partially separated by differential homogenization and filtration through nylon nets under liquid nitrogen. ii) considerable gradients of 3-phosphoglycerate, triose phosphate, malate and phosphoenolpyruvate exist between the mesophyll and bundle sheath which would allow intercellular shuttles to be driven by diffusion. These gradients could result from the distribution of electron transport and the Calvin cycle in maize leaves. iii) consequently, the mesophyll contains high concentrations of triose phosphate and fructose-1,6-bisphosphate. iv) Most of the regulator metabolite fructose-2,6-bisphosphate, is present in the mesophyll. v) The cytosolic fructose-1,6-bisphosphatase has a lower substrate affinity than that found for the enzyme from C3 species, especially in the presence of inhibitors like fructose-2,6-bisphosphate. vi) This lowered affinity for substrate makes it possible to reconcile use of triose phosphate for sucrose synthesis with the maintenance of the high concentration of triose phosphate in the mesophyll needed for operation of photosynthesis in this species.Abbreviations DHAP Dihydroxyacetonephosphate - Fru1,6-bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - PEP(Case) phosphoenolpyruvate (carboxylase) - PGA 3-phosphoglycerate - Rubisco ribulose-1,5-bisphosphate carboxylase  相似文献   

14.
Enzymes of the reductive pentose phosphate cycle including ribulose-diphosphate carboxylase, ribulose-5-phosphate kinase, ribose-5-phosphate isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and alkaline fructose-1,6-diphos-phatase were shown to be present in autotrophically grown Rhodospirillum rubrum. Enzyme levels were measured in this organism grown photo- and dark heterotrophically as well. Several, but not all, of these enzymes appeared to be under metabolic control, mediated by exogenous carbon and nitrogen compounds. Light had no effect on the presence or levels of any of these enzymes in this photosynthetic bacterium.The enzymes of the tricarboxylic acid cycle and enolase were shown to be present in R. rubrum cultured aerobically, autotrophically, or photoheterotrophically, both in cultures evolving hydrogen and under conditions where hydrogen evolution is not observed. Light had no clearly demonstrable effect on the presence or levels of any of these enzymes.  相似文献   

15.
A simple, rapid enzymatic assay for the determination of inorganic pyrophosphate in tissue and plasma has been developed using the enzyme pyrophosphate-fructose-6-phosphate 1-phosphotransferase (EC 2.7.1.90) which was purified from extracts of Propionibacterium shermanii. The enzyme phosphorylates fructose-6-phosphate to produce fructose-1,6-bisphosphate using inorganic pyrophosphate as the phosphate donor. The utilization of inorganic pyrophosphate is measured by coupling the production of fructose-1,6-bisphosphate with the oxidation of NADH using fructose-bisphosphate aldolase (EC 4.1.2.13), triosephosphate isomerase (EC 5.3.1.1), and glycerol-3-phosphate dehydrogenase (NAD+)(EC 1.1.1.8). The assay is completed in less than 5 min and is not affected by any of the components of tissue or plasma extracts. The recovery of pyrophosphate added to frozen tissue powder was 97 ± 1% (n = 4). In this assay the change in absorbance is linearly related to the concentration of inorganic pyrophosphate over the cuvette concentration range of 0.1 μm to 0.1 mm.  相似文献   

16.
Mature boar spermatozoa oxidized glycerol to carbon dioxide in the absence of any detectable activity of glycerol kinase. With triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase inhibited by the presence of 3-chloro-1-hydroxypropanone (CHOP), dihydroxyacetone phosphate accumulated in incubates when glycerol-3-phosphate was the substrate, but not when it was glycerol. Both dihydroxyacetone and glyceraldehyde could be used as substrates; in the presence of CHOP, dihydroxyacetone phosphate and fructose-1,6-bisphosphate accumulated when dihydroxyacetone was the substrate, but not when it was glyceraldehyde. The metabolic pathways glycerol----glyceraldehyde----glyceraldehyde 3-phosphate and dihydroxyacetone----dihydroxyacetone phosphate have been shown to operate in these cells.  相似文献   

17.
Summary By combing the indirect method of aldolase activity of Warburg and Christian, which consisted in the measurement of reduction of DPN in the presence of glyceraldehyde-3-phosphate dehydrogenase and arsenate, with nitro-BT reduction and we could obtain the much better method of demonstrating aldolase than that of Allen and Bourne.The optimal incubating mixture was composed of 1) 10 ml 0.02 M sodium fructose-1,6-diphosphate, 2) 5 mg DPN, 3) 10 mg nitro-BT, 4) 10 ml of 0.05 M arsenate-HCl buffer (pH 7.6). Fresh frozen section, which were fixed briefly in 80% cold ethanol, gave a better staining results. The distribution of aldolase of some organs of rat and the validity and limitation of the method were described.  相似文献   

18.
The effects of cold hypoxia were examined during a time-course at 2 °C on levels of glycolytic metabolites: glycogen, glucose, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, pyruvate, lactate and energetics (ATP, ADP, AMP) of livers from rats and columbian ground squirrels. Responses of adenylate pools reflected the energy imbalance created during cold hypoxia in both rat and ground squirrel liver within minutes of organ isolation. In rat, ATP levels and energy charge values for freshly isolated livers were 2.54 mol·g-1 and 0.70, respectively. Within 5 min of cold hypoxia, ATP levels had dropped well below control values and by 8 h storage, ATP, AMP, and energy charge values were 0.21 mol·g-1, 2.01 mol·g-1, and 0.17, respectively. In columbian ground squirrels the patterns of rapid ATP depletion and AMP accumulation were similar to those found in rat. In rat liver, enzymatic regulatory control of glycolysis appeared to be extremely sensitive to the decline in cellular energy levels. After 8 h cold hypoxia levels of fructose-6-phosphate decreased and fructose-1,6-bisphosphate increased, thus reflecting an activation of glycolysis at the regulatory step catalysed by phospho-fructokinase fructose-1,6-bisphosphatase. Despite an initial increase in flux through glycolysis over the first 2 min (lactate levels increased 3.7 mol·g-1), further flux through the pathway was not permitted even though glycolysis was activated at the phosphofructokinase/fructose-1,6-bisphosphatase locus at 8 h, since supplies of phosphorylated substrate glucose-1-phosphate or glucose-6-phosphate remained low throughout the duration of the 24-h period. Conversely, livers of Columbian ground squirrels exhibited no activation or inactivation of two key glycolytic regulatory loci, phosphofructokinase/fructose-1,6-bisphosphatase and pyruvate kinase/phosphoenolpyruvate carboxykinase and pyruvate carboxylase. Although previous studies have shown similar allosteric sensitivities to adenylates to rat liver phospho-fructokinase, there was no evidence of an activation of the pathway as a result of decreasing high energy adenylate, ATP or increasing AMP levels. The lack of any apparent regulatory control of glycosis during cold hypoxia may be related to hibernator-specific metabolic adaptations that are key to the survival of hypothermia during natural bouts of hibernation.Abbreviations DHAP dihydroxyacetonephosphate - EC energy charge - F1,6P2 fructose-1,6-bisphosphate - F2,6P2 fructose-2,6-bisphosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphatase - G1P glucose-1-phosphate - G6P glucose-6-phosphate - GAP glyceraldehyde-3-phosphate - GAPDH glyceraldehyde-3-phosphate dehydrogenase - L/R lactobionate/raffinose-based solution - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PEPCK & PC phosphoenolpyruvate carboxykinase and pyruvate carboxylase - PFK phosphofructokinase; PK, pyruvate kinase - Q 10 the effect of a 10 °C drop in temperature on reaction rates (generally, Q 10=2–3) - TA total adenylates - UW solution University of Wisconsin solution (L/R-based)  相似文献   

19.
Human erythrocyte pyruvate kinase was modified with bromopyruvate and the kinetic behavior of the modified enzyme was investigated. When the enzyme was modified with bromopyruvate in the absence of adenosine-5′s-diphosphate, phospho-enolpyruvate or fructose-1,6-diphosphate the inactivation followed a pseudo first-order kinetics. The inactivation rate constant, ks, was 1.84 × 0.15 min?1. Kd of the bromopyruvate-enzyme complex was 0.14 × 0.03 mM.

The presence of adenosine-5′-diphosphate, phosphoenolpyruvate or fructose-1,6-diphosphate in the modification medium or the presence of fructose-1,6-diphosphate in the assay medium resulted in deviation of the inactivation kinetics from pseudo first-order. Phosphoenolpyruvate was better than adenosine-5′-diphosphate for protection against bromopyruvate modification whereas fructose-1,6-diphosphate was ineffective. The modified enzyme showed negative cooperativity in the presence of fructose-1,6-diphosphate whereas in the absence of it no activity was detected.  相似文献   

20.
During the greening of etiolated rice leaves, total glutamine synthetase activity increases about twofold, and after 48 h the level of activity usually observed in green leaves is obtained. A density-labeling experiment with deuterium demonstrates that the increase in enzyme activity is due to a synthesis of the enzyme. The enhanced activity obtained upon greening is the result of two different phenomena: there is a fivefold increase of chloroplastic glutamine synthetase content accompanied by a concommitant decrease (twofold) of the cytosolic glutamine synthetase. The increase of chloroplastic glutamine synthetase (GS2) is only inhibited by cycloheximide and not by lincomycin. This result indicates a cytosolic synthesis of GS2. The synthesis of GS2 was confirmed by a quantification of the protein by an immunochemical method. It was demonstrated that GS2 protein content in green leaves is fivefold higher than in etiolated leaves.Abbreviations AbH heavy chain of antibodies - AbL light chain of antibodies - AP acid phosphatase - CH cycloheximide - G6PDH glucose-6-phosphate dehydrogenase - GS glutamine synthetase - GS1 cytosolic glutamine synthetase - GS2 chloroplastic glutamine synthetase - LC lincomycin - NAD-MDH NAD malate dehydrogenase - NADP-G3PDH NADP glyceraldehyde-3-phosphate dehydrogenase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号