首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Reproduction between Atlantic salmon males and interspecific hybrid Salmo salar × Salmo trutta females was monitored in a controlled flow channel diverted from a south European river located at the edge of Atlantic salmon natural geographic distribution in Europe. 2. Post‐F1 hybrids were viable and survived in the wild, at least until dispersal from redds. After transfer to hatchery conditions, 67% survived into the second year. 3. The hybrids possessed 98 chromosomes: two sets of Atlantic salmon(2n = 58) and one set of brown trout (n = 40) chromosomes. 4. The existence of a low proportion of allotriploid individuals can be expected in rivers where Atlantic salmon and brown trout populations coexist.  相似文献   

2.
Synopsis The numbers of trout,Salmo trutta, in Granslev », Denmark, were estimated by the removal method on 18 dates from March 1974 to March 1976. Populations density varied from 0.39 to 0.74 trout m–2 in 1974–1975 and from 0.36 to 0.59 m–2 in 1975–1976 and at all times four or five year classes were present. The age structure of the population was unstable and the variable natural survival, immigration into and emigration from the study site could not be separated. An annual growth cycle with the most rapid growth for all year classes taking place from May to early August was found. Statistically significant differences between different years occurred in the growth of the 0,I and II age groups, but no evidence of density-dependent growth was found. The biomass ranged from 35.4 to 9.5 g m–2. The total mean annual biomass was 22.8 and 14.7 g m–2 in the two years and the II group made the greatest contribution, 44 and 48%, respectively. During 1975–1976 the mean annual biomass of each year class only was about two-thirds of that in 1974–1975. Annual production in the two years was 25.7 (range 24.7–28.5) and 12.6 g m–2 (range 11.7–15.0) and the II group accounted for about 46 and 38% of the production. In addition eel,Anguilla anguilla, produced about 0.5 g m–2 yr–2. The unstable age structure of the trout population was compared with trout populations from other streams. The importance of immigration as a recruitment process in middle and lower reaches of streams and of migrations as a mechanism to optimise utilization of the total stream habitat, as well as temperature as a factor controlling the growth rate are discussed.  相似文献   

3.
Hypervariable minisatellite DNA single-locus profiling and mitochondrial DNA analysis revealed that 18.48% of juvenile Atlantic salmon Salmo salar in Troutbeck, a stream in the R. Leven catchment of the English Lake District, were hybrids between Atlantic salmon and brown trout S. trutta , and that hybridization was bidirectional.  相似文献   

4.
Investigations of the growth, survival and production of young salmon Salmo salar , brown trout and sea trout S. trutta in sections of a stream in Scotland were made during 1966–75. At the end of the growing season, in autumn, the size of the 0+ salmon ranged from a mean weight of 1.12 g in 1966 to 2.82 g in 1973, and the size of the 0+ trout ranged from a mean of 2.20 g in 1966 to 3.56 g (68.0 mm) in 1974. Growth rates of 0+ salmon between July to September were similar from year to year, as was the case with the 0+ trout. The greater size attained in their first year by trout, resulted from the longer feeding season, provided by earlier emergence of fry and ability to continue growing in colder weather in autumn. The lengths attained by 0+ salmon and 0+ trout in September were related to the population densities of 0+ salmon and the number of days above 0° C from 1 December. There was no discernible relationship between lengths of 0+ trout and the population densities of 0+ trout. Salmon and trout lost weight during the winter, which was made up by April. The densities of 0+ salmon in June varied between 2–12m –2. Rates of decrease of the population densities in their first year were related to their densities at the beginning of the season, and, more closely, to the densities of salmon and trout combined. At the end of the second year's growth there were between 0.06 and 0.25 salmon m –2. Size of the trout populations varied less from year to year than those of salmon. The life of a year class of salmon and trout could be divided into several stages characterized by different rates of decrease of the population.  相似文献   

5.
Synopsis We examined the influence of biotic and abiotic factors on the distribution, abundance, and condition of salmonid fishes along a stream gradient. We observed a longitudinal change in fish distribution with native cutthroat trout, Oncorhynchus clarki utah, and introduced brown trout, Salmo trutta, demonstrating a distinct pattern of allopatry. Cutthroat trout dominated high elevation reaches, while reaches at lower elevations were dominated by brown trout. A transition zone between these populations was associated with lower total trout abundance, consistent changes in temperature and discharge, and differences in dietary preference. Variation in cutthroat trout abundance was best explained by a model including the abundance of brown trout and diel temperature, whereas variation in brown trout abundance was best explained by a model including the abundance of cutthroat trout and discharge. These results suggest the potential for condition-mediated competition between the two species. The results from our study can aid biologists in prioritizing conservation activities and in developing robust management strategies for cutthroat trout.  相似文献   

6.
The chromosomes of the Atlantic salmon, Salmo salar (2n=58) are, on average, larger than those of the trout, S. trutta (2n=80). If the difference in chromosome size represents a permanent change in chromosome structure as between the two species the expectation is that the size difference between salmon and trout chromosomes will be maintained in the hybrid. If, alternatively, the size difference between salmon and trout chromosomes is genotypically determined the difference will not be maintained in nuclei of hybrid genotype. Measurements of a specific chromosome, S, of the salmon complement and of another, S 1, of the trout complement in nuclei of parent species and of the hybrid show that the difference in size is maintained in hybrid nuclei. It is concluded therefore that the size difference between salmon and trout chromosomes is due to structural change rather than to genotypic control.  相似文献   

7.
SUMMARY. 1. The sizes of home ranges of juvenile Atlantic salmon (age 1 +) and brown trout (age 2+ to 9+) in a Norwegian coastal stream were estimated by local movements of batch-marked fish from 12.5 and 25 m long sections. Only recoveries made in the release section and in up-and downstream neighbouring sections were considered.
2. There was no significant difference in the average percentage of recaptures of salmon and trout between 12.5 and 25 m sections; a stream area of about 40–50 m2 defines the size of home range for stocks of both species.
3. The fraction of brown trout recaptured in release sections increased with increasing fish densities, indicating a smaller home range under these conditions.  相似文献   

8.
The movement and mortality of stocked brown trout Salmo trutta were investigated using radio telemetry. Four brown trout left the study area whereas the remaining fish were stationary. After 5 weeks, 13 out of 50 tagged brown trout were still alive in the stream. Surviving fish had a significantly lower mean movement per day than fish, which later either died or disappeared. This difference in behaviour was most pronounced 2 to 8 days after release. Predation by the otter Lutra lutra was probably the main cause of the observed mortality.  相似文献   

9.
Summer habitat use by sympatric Arctic charr Salvelinus alpinus, young Atlantic salmon Salmo salar and brown trout Salmo trutta was studied by two methods, direct underwater observation and electrofishing, across a range of habitats in two sub-arctic rivers. More Arctic charr and fewer Atlantic salmon parr were observed by electrofishing in comparison to direct underwater observation, perhaps suggesting a more cryptic behaviour by Arctic charr. The three species segregated in habitat use. Arctic charr, as found by direct underwater observation, most frequently used slow (mean ±s .d . water velocity 7·2 ± 16·6 cm s−1) or often stillwater and deep habitats (mean ±s .d . depth 170·1 ± 72·1 cm). The most frequently used mesohabitat type was a pool. Young Atlantic salmon favoured the faster flowing areas (mean ±s .d . water velocity 44·0 ± 16·8 cm s−1 and depth 57·1 ± 19·0 cm), while brown trout occupied intermediate habitats (mean ±s .d . water velocity 33·1 ± 18·6 cm s−1 and depth 50·2 ± 18·0 cm). Niche overlap was considerable. The Arctic charr observed were on average larger (total length) than Atlantic salmon and brown trout (mean ±s .d . 21·9 ± 8·0, 10·2 ± 3·1 and 13·4 ± 4·5 cm). Similar habitat segregation between Atlantic salmon and brown trout was found by electrofishing, but more fishes were observed in shallower habitats. Electrofishing suggested that Arctic charr occupied habitats similar to brown trout. These results, however, are biased because electrofishing was inefficient in the slow-deep habitat favoured by Arctic charr. Habitat use changed between day and night in a similar way for all three species. At night, fishes held positions closer to the bottom than in the day and were more often observed in shallower stream areas mostly with lower water velocities and finer substrata. The observed habitat segregation is probably the result of interference competition, but the influence of innate selective differences needs more study.  相似文献   

10.
Brown trout and food web interactions in a Minnesota stream   总被引:1,自引:0,他引:1  
1. We examined indirect, community‐level interactions in a stream that contained non‐native brown trout (Salmo trutta Linnaeus), native brook trout (Salvelinus fontinalis Mitchill) and native slimy sculpin (Cottus cognatus Richardson). Our objectives were to examine benthic invertebrate composition and prey selection of fishes (measured by total invertebrate dry mass, dry mass of individual invertebrate taxa and relative proportion of invertebrate taxa in the benthos and diet) among treatments (no fish, juvenile brook trout alone, juvenile brown trout alone, sculpin with brook trout and sculpin with brown trout). 2. We assigned treatments to 1 m2 enclosures/exclosures placed in riffles in Valley Creek, Minnesota, and conducted six experimental trials. We used three designs of fish densities (addition of trout to a constant number of sculpin with unequal numbers of trout and sculpin; addition of trout to a constant number of sculpin with equal numbers of trout and sculpin; and replacement of half the sculpin with an equal number of trout) to investigate the relative strength of interspecific versus intraspecific interactions. 3. Presence of fish (all three species, alone or in combined‐species treatments) was not associated with changes in total dry mass of benthic invertebrates or shifts in relative abundance of benthic invertebrate taxa, regardless of fish density design. 4. Brook trout and sculpin diets did not change when each species was alone compared with treatments of both species together. Likewise, we did not find evidence for shifts in brown trout or sculpin diets when each species was alone or together. 5. We suggest that native brook trout and non‐native brown trout fill similar niches in Valley Creek. We did not find evidence that either species had an effect on stream communities, potentially due to high invertebrate productivity in Valley Creek.  相似文献   

11.
Movements of resident brown trout (age 2+ to 9+ years) and young Atlantic salmon (age 1+), stocked as fry, were studied in July, August and September in a coastal stream in northern Norway. Between 85 and 89% of the brown trout were recaptured in the study area (346m, 1326m2) within 45m of their release point throughout the investigation period. Most specimens had moved less than 150m. Trout movements were related to local variation in density. Trout occupying those sections of stream with the lowest fish densities (5.3–10.9 fish 100m?2) had a significantly lower movement rate than fish from sections with densities between 13.7 and 31.5 fish 100m?2. Trout that moved from their marking section were significantly larger than specimens that did not leave their original site. There was a significant correlation between permanence of station each month and the mean water level that month. The majority of the trout (47%) were caught at undercut stream banks or at sites in the proximity of these. A decrease in water level during the study period resulted in a high loss (36%) of such habitat, probably forcing some individuals to move. The recapture data indicate that the trout population consists of one small (c. 15–20%) mobile, and one large sedentary component. Young salmon displayed high station permanence in July and August (93% and 96%). However, in the autumn they exhibited a significant downstream movement, and only 73% were recaptured within their release section. This movement was significantly higher for larger specimens, and is thought to occur because of a pre-winter change in habitat, initiated by a decline in stream temperature. In contrast to trout, salmon in sections containing the lowest densities (22.0–25.0 fish 100m?2) did not show significantly lower movement rates when compared with salmon at higher densities (32.2–46.3 and 51.8–60.6 fish 100m?2). The spatial distribution of young salmon indicated the formation of territorial mosaics over the stream bed, which are thought to reduce intraspecific competition.  相似文献   

12.
The diet and food selection of brook trout (Salvelinus fontinalis) and macroinvertebrate drift are described for a high altitude stream (3 205 m above mean sea level) adjacent to the alpine zone on the Snowy Range in the Medicine Bow National Forest, Wyoming. Diet composition differed between brook trout of two length classes, 150 mm and > 150 mm in total length. The number of prey organisms per stomach generally declined and the proportion of terrestrial prey items increased from July to September, 1985. Fish of both length classes selected for Trichoptera and Coleoptera over the three sampling months, and fish > 150 mm also selected for terrestrial insects in August and September.The Unit is jointly supported by the University of Wyoming, the Wyoming Game and Fish Department, and the US Fish and Wildlife ServiceThe Unit is jointly supported by the University of Wyoming, the Wyoming Game and Fish Department, and the US Fish and Wildlife Service  相似文献   

13.
14.
Stream salmonids choose foraging locations to maximize the energy benefit of foraging within the constraints of size-mediated dominance hierarchies and predation risk. But, because stream habitats are temporally variable, fish must use a search process to monitor changing habitat conditions as a means of locating potentially-better foraging locations. I explored the cues used by the cutthroat trout, Oncorhynchus clarki clarki, when searching for food at the pool scale by artificially increasing prey availability at different locations by using special feeders and by manipulating pool velocities. Behavior of individually marked fish was monitored from stream bank platforms under unmanipulated control conditions and under seven experimental sets of conditions involving different combinations of feeder location and velocity manipulation. Under natural conditions fish elected to forage in the deepest (>50 cm), fastest (0.10–0.25 m s−1) locations and within 1 m of structure cover, but would readily move to shallower (<30 cm) water away from cover if velocities were manipulated to be highest there. Although fish did not locate feeders unless they were placed in high-velocity areas, when high velocity was provided fish would move into very shallow water (<20 cm) if prey were delivered there. Responses of individual trout to manipulations indicated that water velocity was the main physical cue used by fish to decide where to forage, and that fish could also learn about new food sources by observing conspecifics. Overall, results indicated fish were not “perfect searchers” that could quickly locate new food resources over short time scales, even when the new resources were within a few meters of the fish’s normal foraging location. When given the correct cues, however, fish could detect new food sources and defend them against subordinate fish. Movement of new fish into and out of the study pools during the ten-day observation period was common, consistent with the idea that trout used movement as a means of exploring and learning about habitat conditions at the reach scale.  相似文献   

15.
Microhabitat use and availability were evaluated and compared between different size classes of juvenile resident bull trout (Salvelinus confluentus) and cutthroat trout (Oncorhynchus clarki) in a small wilderness stream within the South Fork Clearwater River basin, Idaho. The objective was to determine if utilization of measured habitat characteristics changed from summer to late fall. Sampling of fish was conducted with night snorkeling. During the summer, smaller juvenile bull trout (<66 mm) total length (TL) were associated with shallow stream margins over coarse substrates. In the fall, they moved to significantly deeper, lower velocity water, and closer to cover (p<0.05), but maintained their association with coarse substrates. During the summer, larger juvenile bull trout and larger juvenile cutthroat trout (66–130 mm TL) occupied significantly deeper water than smaller juvenile bull trout (p<0.05). Generally, larger juvenile bull trout were found closer to the bottom and in lower velocity water than larger juvenile cutthroat trout (p<0.05). In the fall, larger juvenile bull trout and larger juvenile cutthroat trout were associated with significantly deeper, lower velocity water located closer to cover than in summer (p<0.05). However, cutthroat trout occupied slightly deeper water over finer substrates than bull trout. Deep water with low velocities evidently provide important rearing areas for large bull trout and large cutthroat trout in the fall. Land management practices that maintain such environments will benefit these species.  相似文献   

16.
17.
18.
Use of fast-growing domesticated and/or genetically modified strains of fish is becoming increasingly common in aquaculture, increasing the likelihood of deliberate or accidental introductions into the wild. To date, their ecological impacts on ecosystems remain to be quantified. Here, using a controlled phenotype manipulation by implanting growth hormone in juvenile Atlantic salmon (Salmo salar), we found that growth-enhanced fish display changes in several phenotypic traits known to be important for ecosystem functioning, such as habitat use, morphology and excretion rate. Furthermore, these phenotypic changes were associated with significant impacts on the invertebrate community and key stream ecosystem functions such as primary production and leaf-litter decomposition. These findings provide novel evidence that introductions of growth-enhanced fish into the wild can affect the functioning of natural ecosystems and represent a form of intraspecific invasion. Consequently, environmental impact assessments of growth-enhanced organisms need to explicitly consider ecosystem-level effects.  相似文献   

19.
Sea trout did not develop symptoms or gross clinical signs of infectious salmon anaemia (ISA) when injected with ascites from salmon, but ISA virus was propagated and haematocrit values dropped. The virus was transmitted from trout to salmon.  相似文献   

20.
By screening variable number of tandem repeat (VNTR) loci, multiple paternity within clutches has been found in wild populations of southern European Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). For Atlantic salmon, we determined the relative contribution of alternative male phenotypes to the next generation. Individual males that are morphologically juvenile yet sexually mature fertilized a large proportion of eggs, and they thereby contributed to an increase of genetic variability in wild populations via (1) balancing the sex ratio, (2) increasing outbreeding, and (3) enlarging the effective population size, in part a consequence of (1) and (2). In addition, these precocious males ensured that interspecific spawns involving Atlantic salmon females and brown trout males (a fairly common occurrence in southern Europe where the two species are sympatric) resulted mostly in Atlantic salmon progeny. For brown trout, preliminary genetic results indicated that multiple paternity, when present, was not due to alternative mating strategies by males, but rather to successive fertilizations by adult suitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号