首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change poses a serious threat to biodiversity. Predicting the effects of climate change on the distribution of a species' habitat can help humans address the potential threats which may change the scope and distribution of species. Pterocarya stenoptera is a common fast‐growing tree species often used in the ecological restoration of riverbanks and alpine forests in central and eastern China. Until now, the characteristics of the distribution of this species' habitat are poorly known as are the environmental factors that influence its preferred habitat. In the present study, the Maximum Entropy Modeling (Maxent) algorithm and the Genetic Algorithm for Ruleset Production (GARP) were used to establish the models for the potential distribution of this species by selecting 236 sites with known occurrences and 14 environmental variables. The results indicate that both models have good predictive power. Minimum temperature of coldest month (Bio6), mean temperature of warmest quarter (Bio10), annual precipitation (Bio12), and precipitation of driest month (Bio14) were important environmental variables influencing the prediction of the Maxent model. According to the models, the temperate and subtropical regions of eastern China had high environmental suitability for this species, where the species had been recorded. Under each climate change scenario, climatic suitability of the existing range of this species increased, and its climatic niche expanded geographically to the north and higher elevation. GARP predicted a more conservative expansion. The projected spatial and temporal patterns of P. stenoptera can provide reference for the development of forest management and protection strategies.  相似文献   

2.
中国梧桐属(Firmiana)在世界梧桐属中占比较大,且除梧桐外其余种均为中国特有且分布范围狭窄的植物种,灭绝风险大,研究气候变化对中国梧桐属树种的影响对于维护生物多样性具有重要的意义。结合多时期第六次国际气候耦合模式比较计划(CMIP6)气候变量数据和中国八种梧桐属树种的分布数据,基于R语言kuenm程序包优化的最大熵(Maxent)模型模拟分析中国八种梧桐属树种在多尺度下的潜在适生区,得出梧桐属最适宜的模拟尺度、潜在适生区的面积变化和迁移方向、梧桐属多样性保护关键区域及保护空缺。结果表明:(1)梧桐属最适宜的模拟尺度为亚洲;(2) Maxent模型的接收者操作特征曲线下面积(AUC)值均大于0.9,表明模型对梧桐属潜在适生区预测结果具有较高准确度;(3)气候变化影响下除云南梧桐(Firmiana major)外其它树种的潜在适生区都将在未来有所扩大;(4)中国八种梧桐属树种潜在适生区迁移方向主要为东西向,南北向大跨度迁移较少,纬度变化不大;(5)丹霞梧桐(Firmiana danxiaensis)的稳定潜在适生区最小;(6)中国梧桐属多样性保护关键区域主要分布于广西壮族自治区及云南、广东、海南等省区;(7)中国梧桐属多样性保护空缺区域主要分布于广西壮族自治区中部及海南省北部;(8)梧桐属多样性保护关键区域正在为人造地表所侵蚀。研究分析气候变化对中国八种梧桐属树种的影响及其潜在适生区变化、中国梧桐属多样性保护状态,可为中国梧桐属建立多样性保护廊道提供相关建议,为制定多样性保护规划及相应措施提供参考。  相似文献   

3.
为了解气候对紫楠(Phoebe sheareri)分布的影响,应用Maxent和GARP模型模拟了紫楠在当前气候下的中国适宜分布区,分析了影响其分布的主要环境因子,并预测了未来气候情境下其分布区的变化。结果表明,紫楠适宜分布在长江中下游及以南的各省区。影响紫楠分布的主要环境因子有年降雨量、最干季均温、降雨的季节性、相对湿度和6-8月的日照时数,这5个因子的累积贡献率达84.3%。在未来气候情境下,广东、云南、广西和海南等地区的适生区面积会显著锐减,而陕西中部、河南南部、安徽东部和江苏北部适生区面积会大幅度增加。因此,在未来气候变化背景下,紫楠的适宜分布区有向北扩张的趋势。  相似文献   

4.
An expanded taxonomic study of the narrowly understood Macromitrium cavaleriei Cardot & Thér. identified four new synonyms, M. cancellatum Y.X.Xiong, M. giraldii var. acrophylloides Müll.Hal., M. handelii Broth. and M. rigbyanum Dixon. With the discovery of the new synonyms, the range of M. cavaleriei is extended to India, Nepal, South Korea and Vietnam. To determine the potential distribution range of the species, we described its macroclimatic niche from its extant distribution with the maximum entropy algorithm modelling program (Maxent), contrasting the impact of different geographic backgrounds on the models. We found that the potential range of the species included central, southern, southwestern China to northern Vietnam, Myanmar, Bhutan, Nepal and India, and northwards to Japan and the Korean Peninsula. This estimation of the potential distribution range is largely confirmed by the herbarium specimens. The predicted climate suitability for M. cavaleriei is higher in the areas where the annual temperature range is about 26°C and precipitation during the warmest quarter, wettest quarter and month, and driest month are 500–600 mm, 500 mm, 200–210 mm, and 50 mm, respectively.  相似文献   

5.
Evidence of anthropogenic global climate change is accumulating, but its potential consequences for insect distributions have received little attention. We use a ''climate response surface'' model to investigate distribution changes at the northern margin of the speckled wood butterfly, Pararge aegeria. We relate its current European distribution to a combination of three bioclimatic variables. We document that P. aegeria has expanded its northern margin substantially since 1940, that changes in this species'' distribution over the past 100 years are likely to have been due to climate change, and that P. aegeria will have the potential to shift its range margin substantially northwards under predicted future climate change. At current rates of expansion, this species could potentially colonize all newly available climatically suitable habitat in the UK over the next 50 years or more. However, fragmentation of habitats can affect colonization, and we show that availability of habitat may be constraining range expansion of this species at its northern margin in the UK. These lag effects may be even more pronounced in less-mobile species inhabiting more fragmented landscapes, and highlight how habitat distribution will be crucial in predicting species'' responses to future climate change.  相似文献   

6.
With changing climate, many species are projected to move poleward or to higher elevations to track suitable climates. The prediction that species will move poleward assumes that geographically marginal populations are at the edge of the species' climatic range. We studied Pinus coulteri from the center to the northern (poleward) edge of its range, and examined three scenarios regarding the relationship between the geographic and climatic margins of a species' range. We used herbarium and iNaturalist.org records to identify P. coulteri sites, generated a species distribution model based on temperature, precipitation, climatic water deficit, and actual evapotranspiration, and projected suitability under future climate scenarios. In fourteen populations from the central to northern portions of the range, we conducted field studies and recorded elevation, slope and aspect (to estimate solar insolation) to examine relationships between local and regional distributions. We found that northern populations of P. coulteri do not occupy the cold or wet edge of the species' climatic range; mid‐latitude, high elevation populations occupy the cold margin. Aspect and insolation of P. coulteri populations changed significantly across latitudes and elevations. Unexpectedly, northern, low‐elevation stands occupy north‐facing aspects and receive low insolation, while central, high‐elevation stands grow on more south‐facing aspects that receive higher insolation. Modeled future climate suitability is projected to be highest in the central, high elevation portion of the species range, and in low‐lying coastal regions under some scenarios, with declining suitability in northern areas under most future scenarios. For P. coulteri, the lack of high elevation habitat combined with a major dispersal barrier may limit northward movement in response to a warming climate. Our analyses demonstrate the importance of distinguishing geographically vs. climatically marginal populations, and the importance of quantitative analysis of the realized climate space to understand species range limits.  相似文献   

7.
杨蕾  杨立  李婧昕  张超  霍兆敏  栾晓峰 《生态学报》2019,39(3):1082-1094
气候变化广泛影响着物种多样性及其分布变迁。优化模型模拟结果,获取气候变化影响下的优先保护区域将为制定应对气候变化的物种保护政策或行动提供理论依据,提升保护绩效。选取东北地区五种代表性动物,包括黑熊(Ursus thibetanus)、驼鹿(Alces alces)、水獭(Lutra lutra)、紫貂(Martes zibellina)及黑嘴松鸡(Tetrao parvirostris);结合最大熵模型(Maxent)模拟在不同RCP情景下未来3个年代(2030s,2050s,2070s)的物种潜在栖息地。根据九个常用气候模式的评价结果,获取东北地区合适的气候模式,了解气候变化对物种潜在栖息地的影响,同时开展物种保护规划,识别保护空缺,为应对气候变化、保持生物多样性提供支持。结果显示,在气候变化背景下物种潜在栖息地面积整体呈现下降趋势,但不同气候模式之间存在差异;评价结果推荐CCSM4、Nor ESM1-M、Had GEM2-AO及GFDL-CM3气候模式,推荐在东北地区使用以上气候模式进行物种未来潜在分布的研究。5个物种潜在栖息地平均面积变化率分别为-62.16%,-73.93%,-78.46%(2030s,2050s,2070s)。综合5个重点保护物种的保护优先区,大兴安岭的呼中、汗马与额尔古纳国家级自然保护区,延边地区的天佛指山、老爷岭东北虎、珲春东北虎与汪清原麝国家级自然保护区,长白山国家级自然保护区是气候变化下物种保护的热点区域。  相似文献   

8.
The geographic distribution of plant species is already being affected by climate change. Cropping patterns of edible plant species and their wild relatives will also be affected, making it important to predict possible changes to their distributions in the future. Currently, species distribution models are valuable tools that allow the estimation of species’ potential distributions, in the recent past as well as during other time spans for which climate data have been obtained. With the aim of evaluating how species distributions respond to current and future climate changes, in this work species distribution models were generated for two cultivated species of the Porophyllum genus (Asteraceae), known commonly as ‘pápalos' or ‘pápaloquelites', as well as their Mexican wild relatives, at five points in time (21,000 years ago, present, 2020, 2050, and 2080). Using a database of 1442 entries for 16 species of Porophyllum and 19 environmental variables, species distribution models were constructed for each time period using the Maxent modelling algorithm; those constructed for the future used a severe climate change scenario. The results demonstrate contrasting effects between the two cultivated species; for P. linaria, the future scenario suggests a decrease in distribution area, while for P. macrocephalum distribution is predicted to increase. Similar trends are observed in their wild relatives, where 11 species will tend to decrease in distribution area, while three are predicted to increase. It is concluded that the most important agricultural areas where the cultivated species are grown will not be greatly affected, while the areas inhabited by the wild species will. However, while the results suggest that climate change will affect the distribution of the cultivated species in contrasting ways, evaluations at finer scales are recommended to clarify the impact within cultivation zones.  相似文献   

9.
Aim To determine the potential combined effects of climate change and land transformation on the modelled geographic ranges of Banksia. Location Mediterranean climate South West Australian Floristic Region (SWAFR). Methods We used the species distribution modelling software Maxent to relate current environmental conditions to occurrence data for 18 Banksia species, and subsequently made spatial predictions using two simple dispersal scenarios (zero and universal), for three climate‐severity scenarios at 2070, taking the impacts of land transformation on species’ ranges into account. The species were chosen to reflect the biogeography of Banksia in the SWAFR. Results Climate‐severity scenario, dispersal scenario, biogeographic distribution and land transformation all influenced the direction and magnitude of the modelled range change responses for the 18 species. The predominant response of species to all climate change scenarios was range contraction, with exceptions for some northern and widespread species. Including land transformation in estimates of modelled geographic range size for the three climate‐severity scenarios generally resulted in smaller gains and larger declines in species ranges across both dispersal scenarios. Including land transformation and assuming zero dispersal resulted, as expected, in the greatest declines in projected range size across all species. Increasing climate change severity greatly increased the risk of decline in the 18 Banksia species, indicating the critical role of mitigating future emissions. Main conclusions The combined effects of climate change and land transformation may have significant adverse impacts on endemic Proteaceae in the SWAFR, especially under high emissions scenarios and if, as expected, natural migration is limiting. Although these results need cautious interpretation in light of the many assumptions underlying the techniques used, the impacts identified warrant a clear focus on monitoring across species ranges to detect early signs of change, and experiments that determine physiological thresholds for species in order to validate and refine the models.  相似文献   

10.
Nabis pseudoferus Remane and N. palifer Seidenstucker are predators that feed on a wide range of insect pests. To reveal their current potential habitats, the effects of climate change and their future distribution in various areas of Iran we used maximum entropy modeling (Maxent). To produce the models, samples were collected from 218 areas of Iran resulting in discovering 271 points where the nabids were found. The accuracy and performance of distribution models were also evaluated by the area under receiver operating characteristic curve and jack‐knife analysis. In the Maxent model, the climatic, elevation and land cover layers were the major bases for the current models. In modeling future distribution, the land cover layer was excluded. The distribution of N. pseudoferus was independent of the type of vegetation while the distribution of N. palifer varied according to differences in type of vegetation. Using jack‐knife analysis, the land cover and precipitation were the most effective predictors driving the two Nabis species range expansion. From 2013 to 2050 the impacts of climate change on N. pseudoferus distribution was predicted to have a negative impact but have a positive effect on N. palifer range expansion. Results could be used in preparation of predators' conservation, translocation and reintroduction programs and application in pest management strategies.  相似文献   

11.

Aim

We examined whether and how tree radial‐growth responses to climate have changed for the world's southernmost conifer species throughout its latitudinal distribution following rapid climate change in the second half of the 20th century.

Location

Temperate forests in southern South America.

Methods

New and existing tree‐ring radial growth chronologies representing the entire latitudinal range of Pilgerodendron uviferum were grouped according to latitude and then examined for differences in growth trends and non‐stationarity in growth responses to a drought severity index (scPDSI) over the 1900–1993 AD period and also before and after significant shifts in climate in the 1950s and 1970s.

Results

The radial‐growth response of P. uviferum climate was highly variable across its full latitudinal distribution. There was a long‐term and positive association between radial growth and higher moisture at the northern and southern edges of the distribution of this species and the opposite relationship for the core of its distribution, especially following the climatic shifts of the 1950s and 1970s. In addition, non‐stationarity in moisture‐radial growth relationships was observed in all three latitudinal groups (southern and northern edges and core) for all seasons during the 20th century.

Main conclusions

Climate shifts in southern South America in the 1950s and 1970s resulted in different responses in the mean radial growth of P. uviferum at the southern and northern edges and at the core of its range. Dendroclimatic analyses document that during the first half of the 20th century climate‐growth relationships were relatively similar between the southern and northern range edges but diverged after the 1950s. Our findings imply that simulated projections of climate impacts on tree growth, and by implication on forest ecosystem productivity, derived from models of past climate‐growth relationships need to carefully consider different and non‐stationarity responses along the wide latitudinal distribution of this species.  相似文献   

12.
《农业工程》2022,42(4):398-406
The present study sought to identify the potential distribution range of critically endangered Gymnocladus assamicus in Arunachal Pradesh based on published data and field collection. We used the Maxent model to estimate the range of distribution and the result was then compared with three other models, i.e., the Generalized Linear Model (GLM), the Bioclim and the Random Forest model to assess the species' habitat suitability. A total of 23 different environmental variables were used, including bioclimatic ones, monthly minimum and maximum temperature, monthly precipitation and elevation data. The Maxent output listed 12 variables explaining 99.9% variation in the model. In comparison, Maxent showed the maximum region under habitat suitability criteria (1884.48 km2), followed by Random Forest (70.73 km2) and Bioclim (11.62 km2) model. Except for the Maxent model, suitable habitats predicted by other models are highly restricted within and across the study species' current distribution range. The average model prediction shows an expanded distribution range for the species up to Tawang which is the closest district of currently known distribution of the species in the state. Thus, the present study recognizes the importance of the geographic range of G. assamicus, a critically endangered species with very limited spatial distribution range and also provides some specific details to explore possible habitats for the species in new areas of potential occurrence in Arunachal Pradesh, India.  相似文献   

13.
该研究基于耐旱藓类连轴藓属5种53条在新疆的地理分布信息和7个气候变量,利用最大熵模型和ArcGIS 10.2软件,分别模拟现代气候和未来气候情景下连轴藓属在新疆的适生分布区,为探讨气候变化对干旱、半干旱区苔藓植物物种分布的影响提供参考。结果表明:(1)Maxent模型预测连轴藓属在新疆适生区的准确性非常高(AUC=0.957)。(2)年降雨量、最干季度降雨量和最暖季度平均气温是影响连轴藓属分布的主要气候因子。(3)连轴藓属在新疆的适生区主要集中在阿尔泰山和天山沿线,在未来(2061~2080年)气候情景下,连轴藓属分布面积将比现代气候下减少10.39%,其绝大部分现有南部适生区将丧失。  相似文献   

14.
由于栖息地质量下降,近年来齿突蟾属物种种群数量急剧减少,明确齿突蟾属物种空间分布,是监测、管理、保护齿突蟾属物种的基础。横断山区可能是齿突蟾属的起源中心和分化中心,但齿突蟾属在横断山区的地理分布格局尚不明确。利用优化后Maxent模型,首次预测西藏齿突蟾Scutiger boulengeri、刺胸齿突蟾Scutiger mammatus、胸腺齿突蟾Scutiger glandulatus、圆疣齿突蟾Scutiger tuberculatus、贡山齿突蟾Scutiger gongshanensis 5种高海拔齿突蟾属物种在横断山南生物多样性保护优先区域的潜在地理分布,并分析其与环境因子的关系。结果显示,5种齿突蟾属物种在横断山南的潜在地理分布格局存在差异,西藏齿突蟾主要分布在横断山南的北部,圆疣齿突蟾主要分布在横断山南东北部的四川省境内,贡山齿突蟾主要分布在横断山南的西南部,刺胸齿突蟾和胸腺齿突蟾的潜在分布格局较为相似,在横断山南的中部、西北部地区都有较多分布,但胸腺齿突蟾潜在分布区更为碎片化。另外,横断山南北部地区的齿突蟾属丰富度明显高于南部地区。环境变量贡献率和刀切法结果显示温度因子和降水因子是决定横断山南齿突蟾属潜在分布的主要因素,最冷季降水量对西藏齿突蟾、贡山齿突蟾、圆疣齿突蟾潜在分布有重要影响,但它们对最冷季降水量的偏好存在差异。此外,研究也显示,通过评估潜在的Maxent参数组合,选择最佳的Maxent模型是有效且必要的。  相似文献   

15.
16.
Aim Climate changes are thought to be responsible for the retreat and eventual extinction of subtropical lauroid species that covered much of Europe and North Africa during the Palaeogene and early Neogene; little is known, however, of the spatial and temporal patterns of this demise. Herein we calibrate ecological niche models to assess the climatic requirements of Laurus L. (Lauraceae), an emblematic relic from the Tethyan subtropical flora, subsequently using these models to infer how the range dynamics of Laurus were affected by Plio‐Pleistocene climate changes. We also provide predictions of likely range changes resulting from future climatic scenarios. Location The Mediterranean Basin and Macaronesian islands (Canaries, Madeira, Azores). Methods We used a maximum‐entropy algorithm (Maxent) to model the relationship between climate and Laurus distribution over time. The models were fitted both to the present and to the middle Pliocene, based on fossil records. We employed climatic reconstructions for the mid‐Pliocene (3 Ma), the Last Glacial Maximum (21 ka) and a CO2‐doubling future scenario to project putative species distribution in each period. We validated the model projections with Laurus fossil and present occurrences. Results Laurus preferentially occupied warm and moist areas with low seasonality, showing a marked stasis of its climatic niche. Models fitted to Pliocene conditions successfully predicted the current species distribution. Large suitable areas existed during the Pliocene, which were strongly reduced during the Pleistocene, but humid refugia within the Mediterranean Basin and Macaronesian islands enabled long‐term persistence. Future climate conditions are likely to re‐open areas suitable for colonization north of the current range. Main conclusions The climatic requirements of Laurus remained virtually unchanged over the last 3 Myr. This marked niche conservatism imposed largely deterministic range dynamics driven by climate conditions. This species's relatively high drought tolerance might account for the survival of Laurus in continental Europe throughout the Quaternary whilst other Lauraceae became extinct. Climatic scenarios for the end of this century would favour an expansion of the species's range towards northern latitudes, while severely limiting southern populations due to increased water stress.  相似文献   

17.
The chestnut phylloxerid, Moritziella castaneivora, has been recently recorded as a forest pest in China. It heavily damaged chestnut trees and has caused serious economic losses in some main chestnut production areas. In order to effectively monitor and manage this pest, it is necessary to investigate its potential geographical distribution worldwide. In this study, we used two ecological niche models, Genetic Algorithm for Rule‐set Production (GARP) and Maximum Entropy (Maxent), along with the geographical distribution of the host plants, Japanese chestnut (Castanea crenata) and Chinese chestnut (Castanea mollissima), to predict the potential geographical distribution of M. castaneivora. The results suggested that the suitable distribution areas based on GARP were general consistent with those based on Maxent, but GARP predicted distribution areas that extended more in size than did Maxent. The results also indicated that the suitable areas for chestnut phylloxerid infestations were mainly restricted to Northeast China (northern Liaoning), East China (southern Shandong, northern Jiangsu and western Anhui), North China (southern Hebei, Beijing and Tianjin), Central China (eastern Hubei and southern Henan), Japan (Kinki, Shikoku and Tohoku) and most parts of the Korean Peninsula. In addition, some provinces of central and western China were predicted to have low suitability or unsuitable areas (e.g. Xinjiang, Qinghai and Tibet). A jackknife test in Maxent showed that the average precipitation in July was the most important environmental variable affecting the distribution of this pest species. Consequently, the study suggests several reasonable regulations and management strategies for avoiding the introduction or invasion of this high‐risk chestnut pest to these potentially suitable areas.  相似文献   

18.
Modelling chestnut biogeography for American chestnut restoration   总被引:1,自引:0,他引:1  
Aim Chestnuts (Castanea spp.) are ecologically and economically important species. We studied the general biology, distribution and climatic limits of seven chestnut species from around the world. We provided climatic matching of Asiatic species to North America to assist the range‐wide restoration of American chestnut [C. dentata (Marsh.) Borkh.] by incorporating blight‐resistant genes from Asiatic species. Location North America, Europe and East Asia. Methods General chestnut biology was reviewed on the basis of published literature and field observations. Chestnut distributions were established using published range maps and literature. Climatic constraints were analysed for the northern and southern distribution limits and the entire range for each species using principal component analysis (PCA) of fourteen bioclimatic variables. Climatic envelope matching was performed for three Chinese species using Maxent modelling to predict corresponding suitable climate zones for those species in North America. Results Chestnuts are primarily distributed in the warm‐temperate and subtropical zones in the northern hemisphere. PCA results revealed that thermal gradient was the primary control of chestnut distribution. Climatic spaces of different species overlap with one another to different degrees, but strong similarities are shown especially between Chinese species and American species. Climatic envelope matching suggested that large areas in eastern North America have a favourable climate for Chinese species. Main conclusions The general biological traits and climatic limits of the seven chestnut species are very similar. The predictions of Chinese species climatic range corresponded with most of the historical American chestnut range. Thus, a regionally adapted, blight‐resistant, introgressed hybrid American chestnut appears feasible if a sufficiently diverse array of Chinese chestnut germplasm is used as a source of blight resistance. Our study provided a between‐continent climate matching approach to facilitate the range‐wide species restoration, which can be readily applied in planning the restoration of other threatened or endangered species.  相似文献   

19.
Recent range shifts towards higher latitudes have been reported for many animals and plants in the northern hemisphere, and are commonly attributed to changes in climate. Relatively little is known about such changes in the southern hemisphere, although it has been suggested that latitudinal distributions of the fruit‐bats Pteropus alecto and Pteropus poliocephalus changed during the 20th century in response to climate change in eastern Australia. However, historical changes in these species distributions have not been examined systematically. In this study we obtained historical locality records from a wide range of sources (including banding and museum records, government wildlife databases and unpublished records), and filtered them for reliability and spatial accuracy. The latitudinal distribution of each species was compared between eight time‐periods (1843–1920, 1921–1950, five 10‐year intervals between 1950 and 2000, and 2001–2007), using analyses of both the filtered point data (P. alecto 870 records, P. poliocephalus 2506) and presence/absence data within 50 × 50 km grid cells. The results do not support the hypothesis that either species range is shifting in a manner driven by climate change. First, neither the northern or southern range limits of P. poliocephalus (Mackay, Queensland and Melbourne, Victoria respectively) changed over time. Second, P. alecto's range limit extended southward by 1168 km (approximately 10.5 degrees latitude) during the twentieth century (from approximately Rockhampton, Queensland to Sydney, New South Wales). Within this zone of southward expansion (25–29°S), the percentage of total records that were P. alecto increased from 8% prior to 1950 to 49% in the early 2000s, and local count data showed that its abundance increased from several hundred to more than 10 000 individuals at specific roost sites, as range expansion progressed. Pteropus alecto expanded southward at about 100 km/decade, compared with the 10–26 km/decade rate of isotherm change, and analyses of historical weather data show that the species consequently moved into recently‐colder regions than it had previously occupied. Neither climate change nor habitat change could provide simple explanations to explain P. alecto's observed rapid range shift. More generally, climate change should not be uncritically inferred as a primary driver of species range shifts without careful quantitative analyses.  相似文献   

20.
曹雪萍  王婧如  鲁松松  张晓玮 《生态学报》2019,39(14):5232-5240
青海云杉(Picea crassifolia)是我国青藏高原东北缘特有树种,在维系我国西北地区生态平衡、水土保持、水源涵养和生物多样性等方面发挥着重要作用。基于其分布范围内的69个地理分布样点,利用最大熵(Maxent)模型对现实气候条件下青海云杉的潜在分布及其分布的主导气候因子进行分析,同时结合3种大气环流模型模拟青海云杉在3种气候变化情景(温室气候排放量不同)下未来2050s和2080s潜在分布区的变化。结果表明:Maxent模型对青海云杉潜在分布区的预测具有极高的准确度,所有模型的平均受试者工作特征曲线下面积(AUC测试值)均高于0.99;Jackknife检验和气候因子响应曲线表明年最低降雨量是限制青海云杉分布的主导因子;当前青海云杉的潜在分布区主要集中于青海东部、甘肃东南部、宁夏大部分地区、西藏东部、四川西部山区以及陕西、新疆和内蒙古部分地区。在未来3种增温情景下,青海云杉在2050s和2080s的潜在分布总面积与当前相比变化不明显,但不同适生等级的潜在分布面积变化较大,其中,中度适生区和低度适生区受气候增温影响显著,中度增温下这些区域在2080s的面积明显增大,而高度适生区(核心分布)则在所有增温情景下均呈缩小趋势。同时,在未来3种增温情景下,青海云杉在2050s和2080s的潜在分布区有向北移动趋势,但其心分布区域(高度适生区)仍然以青海东部、甘肃北部为主,无明显变迁趋势。从气候因素角度考虑,本研究表明未来气候变化情景下,青海云杉依然在西部高山地区,特别是作为我国重要生态屏障的祁连山、贺兰山等山区具有重要的经济价值并将持续其生态服务功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号