首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Abstract

THE DISCOVERING OF THE KETELEERIA'S POLLEN-GRAIN IN SOME QUATERNARY DEPOSITS OF THE CENTRAL AND NORTHERN ITALY. — The Author observes the specy of Keteleeria with the pollen analysis executed on deposits of turfys, clays and brown coals of some Umbro-Marchigiano and of the Po Plain localyties.

The Keteleeria to-day is living only in China and Japan; in Italy it was living also during the early and middle Pleistocene.  相似文献   

2.
Both pollen and seed dispersal components of gene flow were examined in the annual plant Chamaecrista fasciculata (Leguminosae) and quantified in terms of Wright's neighborhood area. Pollen dispersal was estimated by measuring pollinator flight movement throughout the flowering season and the contribution of pollen carryover to pollen dispersal was determined by comparing pollinator flight movement with dispersal of electrophoretic markers in an experimental transect. Phenological effects on the probability of fruit set were measured to determine whether pollinations should be weighted differentially across the flowering season. The outcrossing rate, a major determinant of the role of pollen dispersal in gene flow, was estimated from electrophoretic analysis of progeny arrays and by measuring the proportion of nongeitonogamous pollinator flight movements. Seed dispersal was measured in a prairie habitat and in experimental plots without surrounding vegetation. Seed dispersal was small in comparison to pollen dispersal in both environments. Fruit set was low at the beginning and end of the flowering season, periods when flower density is low and pollinator flight distances are large. Although the outcrossing rate was high (t = 80%) and pollen carryover substantial, pollen dispersal was limited. Averaged over 4 years, neighborhood area, based on both seed and pollen dispersal, was 17.6 m2, and corresponds to a circle of radius 2.4 m. The observed limited gene dispersal suggests the population of C. fasciculata is genetically subdivided into small breeding units of related individuals.  相似文献   

3.
濒危植物大别山五针松母树林花粉传播规律   总被引:2,自引:0,他引:2  
大别山五针松是典型的风媒传粉植物,花粉流是种群基因流的重要形式。用重力玻片法研究大别山五针松母树林的花粉飞散特征,分析了时间和空间对花粉飞散的影响,结合林分密度和气象因子探讨花粉飞散的特点。结果表明:大别山五针松从5月中旬开始传粉,散粉期为14d,盛粉期为3d,种植密度低的下坡花粉密度比密度大的上坡的要高。日散粉最大值出现在10:00~14:00,植株中上部花粉密度较高,距花粉源50m处花粉密度最高。建议对种植密度大的区域移栽以促进花芽生成,以保证结实率与提高种子品质。  相似文献   

4.
Abstract

Selected examples of pollen and seed dispersal in Mediterranean plants are described. The aspects of pollination considered are: comparison between cleistogamous and chasmogamous forms in the same species; differences in attractants and rewards; duration of pollen viability according to pollination syndrome. The aspects of seed dispersal considered are: presence or absence of specialized structures for dispersal; examples of active, passive and induced dispersal; animals involved in seed dispersal and their reward; type and functions of elaiosomes.  相似文献   

5.
Background and aimsThis paper is about pollen ecophysiology, anther opening, pollen dispersal and the timing of the male and female phases in Parietaria judaica (Urticaceae).MethodsEcophysiological (effects of different relative humidities (RHs) and osmotic relationships) and cytological methods (stigmatic receptivity, pollen viability, histology and histochemistry) were used to determine pollen and pollination features during the long blooming period of this species.Key resultsPollen is dispersed by rapid uncurling of the filament and anther opening. The filament and anther lack cells with lignified wall thickenings, which are usually responsible for anther opening and ballistic pollen dispersal. Instead, dispersal is the result of the sudden movement of the filament. Pollen is of the partially hydrated type, i.e. with a water content greater than 30% at shedding, and readily loses water, and hence viability, at low RH. Pollen carbohydrate reserves differ with season. Starchless grains germinate quickly and are less subject to water loss. Flowers are protogynous, pollen release occurring only after complete cessation of the female phase within an inflorescence.ConclusionParietaria has partially hydrated pollen which differs from typical pollen of this type because of its reduced size and the absence of callose. Because of its low water content at the time of shedding it survives better at higher RH. Dispersal and pollination are adapted to pollen features.  相似文献   

6.
Understanding the patterns of contemporary, pollen-mediated gene flow is of great importance for designing appropriate conservation strategies. In this study, ten novel polymorphic microsatellite loci were isolated for the rare dioecious tree, Eurycorymbus cavaleriei, and the patterns of pollen dispersal were investigated in an ex situ conserved population. A combination of microsatellite markers with high-collective exclusion power (0.932) was used to assign paternity to 240 seeds collected from eight maternal trees. The average effective pollen dispersal distance (δ) was 292.6 m and the frequency distribution of pollen movement suggested extensive pollen movement in the population. The effective pollen donors per maternal tree (N ep) ranged from 5 to 10, and the most isolated maternal trees were observed with the largest number of N ep = 10. Although a trend of near-neighbor mating was found in seven of eight maternal trees, no significant correlations were detected between the average effective pollen dispersal distance (δ) and the geographic distances (d1 and d2) between maternal and male trees. The increased average effective distance of pollen dispersal and number of N ep for isolated maternal trees might be a compound consequence of low density and long-distance flight of pollinators of this species. The conservation implications of these results are discussed.  相似文献   

7.
While the biophysics of anemophilous pollen dispersal is understood in principle, empirical studies for testing such principles are rare, particularly in native ecosystems. This paper describes mechanisms underlying the dispersal of Artemisia pollen in a Wyoming sagebrush steppe. The relationships between meteorological variables and pollen flux were defined during the 1999 Artemisia flowering season, and detailed processes at the individual plant level were experimentally tested in the field in 2000. Results indicated that Artemisia pollen presentation is continuous but with early morning maxima. Atmospheric pollen concentrations and potential dispersal rates are controlled at diurnal time scales by individual flower development together with characteristic changes in temperature/humidity and wind speeds, at multi-day scales by frontal weather patterns, and at week-long scales by flowering phenology.  相似文献   

8.
Considering the complexity of real-world pollen dispersal, a single set of parameters may be inadequate to model pollen dispersal, especially as dispersal occurs on both local and regional scales. Here we combine more than one dispersal function into a composite dispersal function (CDF). The function incorporates multiple parameters and different modes of pollen transportation, and thus has the potential to better simulate the relationship between deposited pollen and the surrounding vegetation than would otherwise be possible. CDFs based on different dispersal functions and combinations of dispersal functions were evaluated using a pollen-trap dataset from the Swiss Alps. Absolute pollen productivity (APP) was estimated at 7,700 ± 2,000 grains cm−2 year−1 for Larix decidua, 13,500 ± 1,900 grains cm−2 year−1 for Picea abies and 95,600 ± 17,700 grains cm−2 year−1 for Pinus cembra (with 95% confidence level). The results are consistent with previous APP estimates made from the same dataset using different methods.  相似文献   

9.
ABSTRACT

Cupressus sempervirens L. var. pyramidalis and C. sempervirens var. horizontalis were examined for their pollen morphometry and ultrastructure to verify whether, in addition to phenotype, pollen could also show characteristics useful to discriminate the two infraspecific taxa. C. sempervirens var. pyramidalis compared to C. sempervirens var. horizontalis has mainly larger, subcircular pollen with a higher percentage of apolar and germinating grains, and a wall with thicker intine; the cytoplasm has a greater number of callose-containing vesicles. C. sempervirens var. horizontalis has pollen distributed in five classes of shape. In addition it is smaller and shows a higher percentage of ruptured grains, and a lower percentage of germination in vitro. The cytoplasm contains vesicles rich in callose and also a higher amount of osmophilic bodies. Pollen grains in both varietas contain only one cell at dispersal. The reported differences in pollen morphometry, structure and biology, together with the phenotypic characteristics of the tree, support the validity of two infraspecific taxa.  相似文献   

10.
Seed and pollen dispersal shape patterns of gene flow and genetic diversity in plants. Pollen is generally thought to travel longer distances than seeds, but seeds determine the ultimate location of gametes. Resolving how interactions between these two dispersal processes shape microevolutionary processes is a long‐standing research priority. We unambiguously isolated the separate and combined contributions of these two dispersal processes in seedlings of the animal‐dispersed palm Oenocarpus bataua to address two questions. First, what is the spatial extent of pollen versus seed movement in a system characterized by long‐distance seed dispersal? Second, how does seed dispersal mediate seedling genetic diversity? Despite evidence of frequent long‐distance seed dispersal, we found that pollen moves much further than seeds. Nonetheless, seed dispersal ultimately mediates genetic diversity and fine‐scale spatial genetic structure. Compared to undispersed seedlings, seedlings dispersed by vertebrates were characterized by higher female gametic and diploid seedling diversity and weaker fine‐scale spatial genetic structure for female gametes, male gametes and diploid seedlings. Interestingly, the diversity of maternal seed sources at seed deposition sites (N em) was associated with higher effective number of pollen sources (N ep), higher effective number of parents (N e) and weaker spatial genetic structure, whereas seed dispersal distance had little impact on these or other parameters we measured. These findings highlight the importance maternal seed source diversity (N em) at frugivore seed deposition sites in driving emergent patterns of fine‐scale genetic diversity and structure.  相似文献   

11.
Pollen and seed dispersal are key processes affecting the demographic and evolutionary dynamics of plant species and are also important considerations for the sustainable management of timber trees. Through direct and indirect genetic analyses, we studied the mating system and the extent of pollen and seed dispersal in an economically important timber species, Entandrophragma cylindricum (Meliaceae). We genotyped adult trees, seeds and saplings from a 400‐ha study plot in a natural forest from East Cameroon using eight nuclear microsatellite markers. The species is mainly outcrossed (= 0.92), but seeds from the same fruit are often pollinated by the same father (correlated paternity, rp = 0.77). An average of 4.76 effective pollen donors (Nep) per seed tree contributes to the pollination. Seed dispersal was as extensive as pollen dispersal, with a mean dispersal distance in the study plot approaching 600 m, and immigration rates from outside the plot to the central part of the plot reaching 40% for both pollen and seeds. Extensive pollen‐ and seed‐mediated gene flow is further supported by the weak, fine‐scale spatial genetic structure (Sp statistic = 0.0058), corresponding to historical gene dispersal distances (σg) reaching approximately 1,500 m. Using an original approach, we showed that the relatedness between mating individuals (Fij = 0.06) was higher than expected by chance, given the extent of pollen dispersal distances (expected Fij = 0.02 according to simulations). This remarkable pattern of assortative mating could be a phenomenon of potentially consequential evolutionary and management significance that deserves to be studied in other plant populations.  相似文献   

12.
Summary

Extensive hybridisation between the two sympatric species Quercus petraea and Q.robur is suggested by the near lack of genetic differentiation between the two species and supported by controlled crosses and mating system analysis in mixed stands. Further ecological and genetic evidence suggest that hybridisation does not impede the ecological specialisation of the two species, raising the issue of its evolutionary significance in oaks. Preferential unidirectional hybridization (pollen Q. petraea to ovule Q. robur) has been shown in various mixed stands and facilitates the introduction of sessile oak in existing pedunculate stands. If this unidirectional trend is reinforced in later backcrosses, then hybridisation leads to the dispersal of Q. petraea in existing stands of Q. robur. Hybridisation can therefore be seen as a ‘pollen-mediated’ dispersal mechanism, and has most likely contributed to the rapid migration of Q. petraea in Europe. Given the extant distribution of the species in Europe, migration through pollen swamping should be seen at the edges of the natural distribution of Q. petraea where the demographic imbalance of the two species will reinforce backcrosses.  相似文献   

13.
Seed and pollen dispersal contribute to gene flow and shape the genetic patterns of plants over fine spatial scales. We inferred fine-scale spatial genetic structure (FSGS) and estimated realized dispersal distances in Phytelephas aequatorialis, a Neotropical dioecious large-seeded palm. We aimed to explore how seed and pollen dispersal shape this genetic pattern in a focal population. For this purpose, we genotyped 138 seedlings and 99 adults with 20 newly developed microsatellite markers. We tested if rodent-mediated seed dispersal has a stronger influence than insect-mediated pollen dispersal in shaping FSGS. We also tested if pollen dispersal was influenced by the density of male palms around mother palms in order to further explore this ecological process in large-seeded plants. Rodent-mediated dispersal of these large seeds occurred mostly over short distances (mean 34.76 ± 34.06 m) while pollen dispersal distances were two times higher (mean 67.91 ± 38.29 m). The spatial extent of FSGS up to 35 m and the fact that seed dispersal did not increase the distance at which male alleles disperse suggest that spatially limited seed dispersal is the main factor shaping FSGS and contributes only marginally to gene flow within the population. Pollen dispersal distances depended on the density of male palms, decreasing when individuals show a clumped distribution and increasing when they are scattered. Our results show that limited seed dispersal mediated by rodents shapes FSGS in P. aequatorialis, while more extensive pollen dispersal accounts for a larger contribution to gene flow and may maintain high genetic diversity. Abstract in Spanish is available with online material.  相似文献   

14.
We investigated pollen dispersal and breeding structure in the tropical tree species Caryocar brasiliense Camb. (Caryocaraceae), using genetic data from ten microsatellite loci. All adult trees (101) within a patch of 8.3 ha were sampled, and from these adults 18 open-pollinated maternal progeny arrays were analyzed (280 seeds from 265 fruits). Most fruits presented only one seed (median equal to 1.000) and mean number of ripened seeds per fruit was 1.053 (SD = 0.828). Our results showed that C. brasiliense presents a mixed-mating system, with 11.4% of self-pollination, multilocus outcrossing rate of t m = 0.891 ± 0.025, and high probability of full-sibship within progeny arrays (r p = 0.135 ± 0.032). Outcrossing rate and self-pollination varied significantly among mother trees. We could detect a maximum pollen dispersal distance of ∼500 m and a mean pollen dispersal distance of ∼132 m. However, most pollination events (80%) occurred at distances less than 200 m. Our results also indicated that pollen dispersal is restricted to a neighborhood of 5.4 ha with rare events of immigration (∼1% N e m = 0.35). C. brasiliense also presents a significant but weak spatial genetic structure (Sp = 0.0116), and extension of pollen dispersal distance was greater than seed dispersal (N b = 86.20 m). These results are most likely due to the foraging behavior of pollinators that may have limited flight range. The highly within-population synchronous flowering, high population density, and clumped distribution reinforce pollinator behavior and affect residence time leading to a short-distance pollen dispersal.  相似文献   

15.
An example from the genus Eucalyptus is used to argue that hybridization may be of evolutionary significance as a means of gene dispersal where seed dispersal is limited. A previous study of regeneration of E. risdonii and E. amygdalina indicated that the current selective regime was favoring E. risaonii. However, the dispersal of E. risdonii by seeds is shown to be limited (s, = 4.6 m). By comparison, the flow of E. risdonii genes into the range of E. amygdalina by pollen dispersal and F1 hybridization is widespread (sp = 82 m). While the actual level of hybridization is low, interspecific hybridization effectively doubles the dispersal of E. risdonii genes into the range of E. amygdalina. This pollen flow can have a significant genetic impact, since isolated hybrids or patches of abnormal phenotypes have been found 200–300 m from the species boundary. Based on lignotuber size, some of these patches appear to have been founded by F1 hybrids. The frequency of E. risdonii types in the patches appears to increase with patch size suggesting that there is selection for this phenotype in subsequent generations. E. risdonii-like individuals were recovered in the progeny from both intermediate and E. risdonii backcross phenotypes. These results suggest that E. risdonii may invade suitable habitat islands within the E. amygdalina forest, independently of seed migration, by long-distance pollen migration followed by selection for the gene combinations of the pollen parent.  相似文献   

16.
Pollen flow is a key biological process that connects plant populations, preventing genetic impoverishment and inbreeding. Pollen‐mediated long‐distance dispersal (LDD) events are especially important for plant species in increasingly fragmented landscapes. Patterns of pollen dispersal were directly estimated and dispersal kernels modelled in an experimental population of Ranunculus bulbosus and Trifolium montanum to determine the potential for LDD. Eight and 11 microsatellite markers were used for R. bulbosus and T. montanum, respectively, to run a likelihood‐based paternity analysis on randomly chosen offspring (Ntotal = 180 per species) from five maternal plants. High rates of selfing were found in R. bulbosus (average 45.7%), while no selfing was observed in T. montanum. The majority (60%) of mating events occurred at very short distances: the median of the observed dispersal distances was 0.8 m in both species, and the average distances were 15.9 and 10.3 m in R. bulbosus and T. montanum, respectively. Modelling the pollen dispersal kernel with four different distribution functions (exponential‐power, geometric, 2Dt and Weibull) indicated that the best fit for both species was given by a Weibull function. Yet, the tail of the T. montanum pollen dispersal kernel was thinner than in R. bulbosus, suggesting that the probability for LDD is higher in the latter species. Even though the majority of pollen dispersal occurred across short distances, the detection of several mating events up to 362 m (R. bulbosus) and 324 m (T. montanum) suggests that pollen flow may be sufficient to ensure population connectivity in these herb species across fragmented grasslands in Swiss agricultural landscapes.  相似文献   

17.
Abstract

The biotic vectors for pollen and seed dispersal are compared in respect to their task. The type of rewards as well as the attracting mechanisms for pollinators and animals responsible for seed dispersal are listed. The rise of deception mechanisms (false advertisements) from seduction mechanisms are described.  相似文献   

18.
Pollen and seed dispersal are the two key processes in which plant genes move in space, mostly mediated by animal dispersal vectors in tropical forests. Due to the movement patterns of pollinators and seed dispersers and subsequent complex spatial patterns in the mortality of offspring, we have little knowledge of how pollinators and seed dispersers affect effective gene dispersal distances across successive recruitment stages. Using six highly polymorphic microsatellite loci and parentage analyses, we quantified pollen dispersal, seed dispersal, and effective paternal and maternal gene dispersal distances from pollen‐ and seed‐donors to offspring across four recruitment stages within a population of the monoecious tropical tree Prunus africana in western Kenya. In general, pollen‐dispersal and paternal gene dispersal distances were much longer than seed‐dispersal and maternal gene dispersal distances, with the long‐distance within‐population gene dispersal in P. africana being mostly mediated by pollinators. Seed dispersal, paternal and maternal gene dispersal distances increased significantly across recruitment stages, suggesting strong density‐ and distance‐dependent mortality near the parent trees. Pollen dispersal distances also varied significantly, but inconsistently across recruitment stages. The mean dispersal distance was initially much (23‐fold) farther for pollen than for seeds, yet the pollen‐to‐seed dispersal distance ratio diminished by an order of magnitude at later stages as maternal gene dispersal distances disproportionately increased. Our study elucidates the relative changes in the contribution of the two processes, pollen and seed dispersal, to effective gene dispersal across recruitment. Overall, complex sequential processes during recruitment contribute to the genetic make‐up of tree populations. This highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal‐mediated pollen and seed dispersal on small‐scale spatial genetic patterns of long‐lived tree species.  相似文献   

19.
Pollinator foraging patterns and the dynamics of pollen transport influence the quality and diversity of flowering plant mating opportunities. For species pollinated by grooming pollinators, such as bees, the amount of pollen carried between a donor flower and potential recipient flowers depends on how grooming influences pollen transfer. To investigate the relationship between grooming and pollen‐mediated gene dispersal, we studied bumblebee (Bombus fervidus) foraging behavior and resulting gene dispersal in linear arrays of Mimulus ringens. Each of the 14 plants in an array had a unique multilocus genotype, facilitating unambiguous assignment of paternity to 1050 progeny. Each plant was trimmed to a single flower so that pollinator movements could be linked directly to resulting gene dispersal patterns. Pollen‐mediated gene dispersal was very limited. More than 95% of the seeds sired by a donor flower were distributed over the first three recipient flowers in the visitation sequence. However, seeds were occasionally sired on flowers visited later in the pollinator's floral visitation sequence. Intensive grooming immediately following pollen removal from a donor flower significantly increased the decay rate of the donor flower's gene dispersal curve. These results suggest that the frequency and relative intensity of grooming can have significant effects on patterns of pollen‐mediated gene dispersal from individual pollen donors.  相似文献   

20.
Tropical trees often display long‐distance pollen dispersal, even in highly fragmented landscapes. Understanding how patterns of spatial isolation influence pollen dispersal and interact with background patterns of fine‐scale spatial genetic structure (FSGS) is critical for evaluating the genetic consequences of habitat fragmentation. In the endangered tropical timber tree Dysoxylum malabaricum (Meliaceae), we apply eleven microsatellite markers with paternity and parentage analysis to directly estimate historic gene flow and contemporary pollen dispersal across a large area (216 km2) in a highly fragmented agro‐forest landscape. A comparison of genetic diversity and genetic structure in adult and juvenile life stages indicates an increase in differentiation and FSGS over time. Paternity analysis and parentage analysis demonstrate high genetic connectivity across the landscape by pollen dispersal. A comparison between mother trees in forest patches with low and high densities of adult trees shows that the frequency of short‐distance mating increases, as does average kinship among mates in low‐density stands. This indicates that there are potentially negative genetic consequences of low population density associated with forest fragmentation. Single isolated trees, in contrast, frequently receive heterogeneous pollen from distances exceeding 5 km. We discuss the processes leading to the observed patterns of pollen dispersal and the implications of this for conservation management of D. malabaricum and tropical trees more generally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号