首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Laminariales from western Mediterranean Sea: taxonomical and phytosociological study. — Laminariales found in the Mediterranean Sea are: Laminaria rodriguezii Bornet, L. ochroleuca De la Pylaie, Saccorhiza polyschides Batters, Phyllaria reniformis Rostafinski, Ph. purpurascens Rostafinski. By diving technique L. rodriguezii and Ph. reniformis was collected off isles Ustica, Stromboli, Pianosa and Montecristo (Thyrrenean Sea) from 50 to 90 mts depth in the coralligenous biocoenose; L. ochroleuca and Ph. purpurascens between Scilla and Ganzirri in the straits of Messina from 45 to 85 mts depth in facies of deep rheophilous biocoenoses; S. polyschides and Ph. reniformis near Villa S. Giovanni and Messina in the facies with Ulva-Corallina-Dictyopteris of photophilous algae biocoenose. Algal vegetation associated with these species of Laminariales in the straits of Messina is characterized by Atlantic-temperate elements (Ulva olivascens, Halurus equisetifolius, Cryptopleura ramosa, Giffordia hincksiae, etc…).  相似文献   

2.
Abstract

Marine phytocoenoses in the Eastern Mediterranean Setz. — In this paper a survey is given on the benthic communities observed in the Eastern Basin of the Mediterranean Sea. The investigation was carried out in 13 localities with aid of diving technique, down to 70 mt. depth. Samples at greater depths were collected with the use of a bottom-dredge. The data obtained from 56 phytoso-ciological «relevés» are shown in the 6 tables in the text. The ecological analysis has pointed out the subtropical character of the biocoenoses encoutered, due to the environmental factors. The surface Corallinaceae communities and the depth one, markedly in its precorraligenous facies, have exhibited the most conspicuous and subtropical characters. A comparative survey is carried out with the analogous formation which are found in the Western Mediterranean Basin. An attempt is made to interpret the ecological requirements of some algal species, whose distribution in the Mediterranean Sea is of particular interest. The conclusions are given as temporary assumption in view of a more detailed synthetic work to be carried out in the next years on the problems concerning the algal communities in the Mediterranean Sea.  相似文献   

3.
Abstract

A study on Cystoseira spinosa community and Cystoseira zosteroides community from Catania (Eastern coast of Sicily) is presented. It is based on monthly samples carried out throughout a year. That permitted to better characterize the communities as regards their periodism and floristic composition. From the comparative examination of samples made, resulted that the communities differ each other mainly in the Cystoseira species since their floristic composition are on the whole quite similar.  相似文献   

4.
Most marine sponges establish a persistent association with a wide array of phylogenetically and physiologically diverse microbes. To date, the role of these symbiotic microbial communities in the metabolism and nutrient cycles of the sponge‐microbe consortium remains largely unknown. We identified and quantified the microbial communities associated with three common Mediterranean sponge species, Dysidea avara, Agelas oroides and Chondrosia reniformis (Demospongiae) that cohabitate coralligenous community. For each sponge we quantified the uptake and release of dissolved organic carbon (DOC) and nitrogen (DON), inorganic nitrogen and phosphate. Low microbial abundance and no evidence for DOC uptake or nitrification were found for D. avara. In contrast A. oroides and C. reniformis showed high microbial abundance (30% and 70% of their tissue occupied by microbes respectively) and both species exhibited high nitrification and high DOC and NH4+ uptake. Surprisingly, these unique metabolic pathways were mediated in each sponge species by a different, and host specific, microbial community. The functional convergence of microbial consortia found in these two sympatric sponge species, suggest that these metabolic processes may be of special relevance to the success of the holobiont.  相似文献   

5.
The solitary ascidian Halocynthia papillosa (Linnaeus, 1767) is proposed as a good indicator of the deleterious effect of SCUBA diving on the Mediterranean coralligenous communities. A comparative survey of H. papillosa populations at frequented and unfrequented localities was carried out over a two-year period (during 2006 and 2007), before and after a peak diving season in the Sierra Helada Marine Park (SW Western Mediterranean Sea). We observed bigger and more abundant individuals of H. papillosa at undived sites than at frequented dived sites during the period of study. Furthermore, individuals of H. papillosa in the most frequented localities occupied more cryptic positions than in the undived localities. H. papillosa was shown to be very sensitive to the adverse effects of SCUBA diving. This species could represent a reliable bioindicator of diving activity and as such constitute a useful tool for the quick and easy monitoring of impact on coralligenous communities before this damage becomes unmitigatable.  相似文献   

6.
Temperate reefs, built by multilayers of encrusting algae accumulated during hundreds to thousands of years, represent one of the most important habitats of the Mediterranean Sea. These bioconstructions are known as “coralligenous” and their spatial complexity allows the formation of heterogeneous microhabitats offering opportunities for a large number of small cryptic species hardly ever considered.Although sponges are the dominant animal taxon in the coralligenous rims with both insinuating and perforating species, this group is until now poorly known. Aim of this work is to develop a reference baseline about the taxonomic knowledge of sponges and, considering their high level of phenotypic plasticity, evaluate the importance of coralligenous accretions as a pocket for biodiversity conservation.Collecting samples in four sites along the coast of the Ligurian Sea, we recorded 133 sponge taxa (115 of them identified at species level and 18 at genus level). One species, Eurypon gracilis is new for science; three species, Paratimea oxeata, Clathria (Microciona) haplotoxa and Eurypon denisae are new records for the Italian sponge fauna, eleven species are new findings for the Ligurian Sea. Moreover, seventeen species have not been recorded before from the coralligenous community. The obtained data, together with an extensive review of the existing literature, increase to 273 the number of sponge species associated with the coralligenous concretions and confirm that this habitat is an extraordinary reservoir of biodiversity still largely unexplored, not only taxonomically, but also as to peculiar adaptations and life histories.  相似文献   

7.
General index     
Abstract

Phytobenthos from Eastern Mediterranean Sea. — The A. states the results of an exploration, by diving techniques, in the Eastern Mediterranean Sea, along 13 stations located in the midle-western and southern region of the Aegean Sea. Besides to the values of various ecology elements (saltness, brightness, nutrition salts), informations about reologic regime in the Aegean Sea are reported. It has been collected 175 floral entities, with the following per cent composition: Chlorophyceae 14,5%, Phoeophyceae 17,0%, Rhodophyceae 68,3%. Eastern Mediterranean Sea underwater flora presents in the explored stations a R/P index equal to 4, which characterizes it as a subtropical one.  相似文献   

8.
Symbiotic dinoflagellates of the genus Symbiodinium, also called zooxanthellae, are found in association with a wide diversity of shallow-water anthozoans. The Symbiodinium genus includes numerous lineages, also referred to as clades or phylotypes, as well as a wide diversity of genetic sub-clades and sub-phylotypes. There are few studies characterizing the genetic diversity of zooxanthellae in Mediterranean anthozoans. In this study, we included anthozoans from the Western Mediterranean Sea and by means of internal transcriber (ITS) and large sub-unit (LSU) rRNA markers we corroborate what has been previously identified, demonstrating that phylotype “Temperate A” is very common among host Cnidaria in this basin. Our finding of fixed differences in ITS and LSU markers that correspond to different host taxa, indicate that this clade may comprise several closely-related species. Previous studies have reported the occurrence of Symbiodinium psygmophilum (formerly sub-clade B2) associated with Oculina patagonica and Cladocora caespitosa in the Eastern Mediterranean. Here, we identify this association in O. patagonica from the Western Mediterranean but not in C. caespitosa, suggesting some differences in symbiotic combinations between the Western and Eastern Mediterranean Basins.  相似文献   

9.
The seasonal and spatial distribution of vitamin B12 was investigated in Eastern Mediterranean (Saronicos Gulf, Aegean Sea). Vitamin B12 concentration had an annual range 0.12–7.93 ng. 1−1 and an annual mean 1.88 ng. 1−1. The statistical analysis of data indicated significant seasonal and regional variations of vitamin B12 in this area and an inverse relationship of this vitamin with chl a. The results showed that the Eastern Mediterranean Sea contains less vitamin B12 than the Western Mediterranean Sea.  相似文献   

10.
The Mediterranean bath sponge Spongia officinalis is an iconic species with high socio‐economic value and precarious future owing to unregulated harvesting, mortality incidents and lack of established knowledge regarding its ecology. This study aims to assess genetic diversity and population structure of the species at different geographical scales throughout its distribution. For this purpose, 11 locations in the Eastern Mediterranean (Aegean Sea), Western Mediterranean (Provence coast) and the Strait of Gibraltar were sampled; specimens were analysed using partial mitochondrial cytochrome oxidase subunit I (COI) sequences, along with a set of eight microsatellite loci. According to our results (i) no genetic differentiation exists among the acknowledged Mediterranean morphotypes, and hence, S. officinalis can be viewed as a single, morphologically variable species; (ii) a notable divergence was recorded in the Gibraltar region, indicating the possible existence of a cryptic species; (iii) restriction to gene flow was evidenced between the Aegean Sea and Provence giving two well‐defined regional clusters, thus suggesting the existence of a phylogeographic break between the two systems; (iv) low levels of genetic structure, not correlated to geographical distance, were observed inside geographical sectors, implying mechanisms (natural or anthropogenic) that enhance dispersal and gene flow have promoted population connectivity; (v) the genetic diversity of S. officinalis is maintained high in most studied locations despite pressure from harvesting and the influence of devastating epidemics. These findings provide a basis towards the effective conservation and management of the species.  相似文献   

11.
A stable and specific bacterial community was shown to be associated with the Mediterranean sponge Chondrilla nucula. The associated bacterial communities were demonstrated to be highly similar for all studied specimens regardless of sampling time and geographical region. In addition, analysis of 16S rDNA clone libraries revealed three constantly C. nucula-associated bacterial phylotypes belonging to the Acidobacteria, the Gamma- and Deltaproteobacteria present in sponge specimens from two Mediterranean regions with distinct water masses (Ligurian Sea and Adriatic Sea). For the first time, candidate division TM7 bacteria were found in marine sponges. A major part (79%) of the C. nucula-derived 16S rDNA sequences were closely related to other sponge-associated bacteria. Phylogenetic analysis identified 14 16S rRNA gene sequence clusters, seven of which consisted of exclusively sponge-derived sequences, whereas the other seven clusters contained additional environmental sequences. This study adds to a growing database on the stability and variability of microbial consortia associated with marine sponges.  相似文献   

12.
13.
Although the mesophotic zone of the Mediterranean Sea has been poorly investigated, there is an increasing awareness about its ecological importance for its biodiversity, as fish nursery and for the recruitment of shallow water species. Along with coastal rocky cliffs, isolated coralligenous concretions emerging from muddy bottoms are typical structures of the Mediterranean Sea mesophotic zone. Coralligenous concretions at mesophotic depths in the South Tyrrhenian Sea were investigated to assess the role of these coralligenous oases in relation to the biodiversity of surrounding soft sediments. We show here that the complex structures of the coralligenous concretions at ca. 110 m depth influence the trophic conditions, the biodiversity and assemblage composition in the surrounding sediments even at considerable distances. Coral concretions not only represent deep oases of coral biodiversity but they also promote a higher biodiversity of the fauna inhabiting the surrounding soft sediments. Using the biodiversity of nematodes as a proxy of the total benthic biodiversity, a high turnover biodiversity within a 200 m distance from the coralligenous concretions was observed. Such turnover is even more evident when only rare taxa are considered and seems related to specific trophic conditions, which are influenced by the presence of the coralligenous structures. The presence of a high topographic complexity and the trophic enrichment make these habitats highly biodiverse, nowadays endangered by human activities (such as exploitation of commercial species such as Corallium rubrum, or trawling fisheries, which directly causes habitat destruction or indirectly causes modification in the sedimentation and re-suspension rates). We stress that the protection of the coralligenous sea concretions is a priority for future conservation policies at the scale of large marine ecosystems and that a complete census of these mesophotic oases of biodiversity should be a priority for future investigations in the Mediterranean Sea.  相似文献   

14.
Most works concerning growth and reproduction of Mediterranean sponges have been performed in the oligotrophic western Mediterranean while little is known about sponge dynamics in the North-western Adriatic Sea, a basin characterized by low winter temperature and eutrophy. In order to deepen our understanding of sponges in the North Adriatic Sea and verify how its peculiar trophic and physical conditions affect sponge life cycles, temporal trend of sponge cover (%) and reproductive timing of Chondrosia reniformis and Tedania (Tedania) anhelans were studied over a 1-year period looking for a possible relation with variations of temperature or food availability. In C. reniformis, although little variations of sponge cover were evidenced around the year, the number of individuals and their size increase during spring. Asexual reproduction, via drop-like propagules, mainly occurs in spring and summer, while sexual reproduction is characterized by a maximum number of oocytes in August. T. anhelans progressively grows from spring to summer and develops propagules on its surface that reach their maximum size in July. In autumn, the sponge undergoes a process of progressive shrinkage and almost disappears in winter when temperature reaches 7–8°C. Larvae occur during summer. In the North Adriatic Sea sponges have larger sizes, higher density and a wider period of oocytes production compared with the same species from the Mediterranean Sea, suggesting these differences could be due to high food availability characterizing the eutrophic Adriatic basin. On the contrary, the sharp water temperature variations and the very low winter temperature, 5–6°C lower than what has been reported for the Mediterranean Sea, regulate temporal variations in abundance and cause the disappearance of thermophile species during winter.  相似文献   

15.
The structure, distribution, and temporal changes of epibenthic assemblages of a Mediterranean coralligenous reef were investigated using a multifactorial sampling design. The distribution of taxa on vertical walls and down-facing surfaces of overhangs and crevices was analysed at ten sites along 2 km of rocky reefs, south of Livorno (Ligurian Sea, Italy). The temporal variations were analysed between two periods (1995–1996 and 1997–1998) and among four sampling times within each period. Most of the space was dominated by prostrate seaweeds (including Peyssonnelia rubra, P. rosa-marina, and Mesophyllum lichenoides), turf-forming seaweeds, and the red coral Corallium rubrum. The cover of a variety of other invertebrates, mainly sponges and bryozoans, was less than 2%. All taxa were found on both vertical and down-facing surfaces. However, seaweeds dominated the vertical surfaces (mean cover >97%), while C. rubrum and other invertebrates dominated down-facing surfaces (mean density of C. rubrum >16 colonies dm−2). Although there was some fluctuation in the abundance of taxa, no obvious patterns were observed. These results support the model of limited temporal variability in Mediterranean coralligenous reefs, possibly related to the slow growth rates of the most abundant taxa and the reduced seasonality of physical conditions.  相似文献   

16.
Ostracod faunas from 18 gravity offshore cores taken from S-SW of Mersin–Ta?ucu harbour in Turkey (Eastern Mediterranean) at water depths comprised between 285 and 665 m were studied. Thirty-two (32) species have been identified. Argilloecia acuminata s.l. and Polycope cf. tholiformis are the dominant species in the studied area. The fauna corresponds very well to the “Argilloecia acuminata community, C11” from the Pleistocene to Holocene established by Sissingh (Sissingh, W., 1982. Ecostratigraphical outline history of the Late Cenozoic ostracode fauna of the Central and Eastern Mediterranean Basin. Proceedings of the Koninklijke Nederlandse Akademie van Wettenschappen B 85, 299–322), and indicates circalittoral to upper bathyal environment in the Mediterranean. The ostracod fauna of the Mersin offshore sediments also shows great similarities to those from the Adriatic Sea (Bonaduce, G., Ciampo, G., Masoli, M., 1975. Distribution of ostracoda in the Adriatic Sea. Pubblicazioni della Stazione Zoologica di Napoli 40 Suppl., 1–304), Sicily (Aiello, G., Barra, D., Bonaduce, G., 2000. Systematics and biostratigraphy of the Plio-Pleistocene Monte S. Nicola section (Gela, Sicily). Bollettino della Società Paleontologica Italiana 39, 83–112) and Bay of Naples (Müller, G.W., 1894. Die Ostracoden des Golfes von Neapel und der angrenzenden Meeresabschnitte. Zoologische Station zu Neapel. Fauna und Flora des Golfes von Neapel, Monographie 31, 1–404). Only a few species are common with the Aegean Sea and Sea of Marmara.  相似文献   

17.
Respiratory activity and metabolic CO2production of the microplankton in the Otranto Strait (Mediterranean Sea) were determined by monitoring the Electron Transport System activity. Ten stations were repeatedly investigated during two oceanographic surveys in February–March and August 1994. Respiratory activity and CO2 production, estimated from the surface to the bottom, were higher in the euphotic layers (0-200 m) during summer (mean values: Winter = 0.024 μg C h−1 dm−3; Summer = 0.042 μg C h−1 dm−3); in the aphotic zone (deeper than 200 m), the rates were similar throughout different seasons (0.013 and 0.014 μg C h−1 dm−3, respectively). A comparison with data collected by other authors from the euphotic layers of the Mediterranean Sea was made. Respiratory activities decreased from Western to Eastern Mediterranean Basins. The values of CO2 production, integrated between 200 and 1000 m in the Otranto Strait (mean value 237.7 mg C m−2 d−1), were compared with other data collected from the Mediterranean Sea as well as from the Pacific, Atlantic and Indian Oceans. The comparison showed the Otranto Strait to be a site of organic matter oxidation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
For the first time, a comprehensive assessment of Mesophyllum species diversity and their distribution in Atlantic Europe and the Mediterranean Sea is presented based on molecular (COI-5P, psbA) and morphological data. The distribution ranges were redefined for the four species collected in this study: M. alternans, M. expansum, M. macroblastum and M. sphaericum. Mesophyllum sphaericum, which was previously known only from a single maerl bed in Galicia (NW Spain), is reported from the Mediterranean Sea. The known range of M. expansum (Mediterranean and Macaronesia) was extended to the Atlantic Iberian Peninsula. The occurrence of M. alternans was confirmed along the Atlantic French coast south to Algarve (southern Portugal). Mesophyllum lichenoides was only recorded from the Atlantic, whereas M. macroblastum appears to be restricted to the Mediterranean Sea. A positive correlation was observed between maximum Sea Surface Temperature (SSTmax) and the depth at which M. expansum was collected, suggesting that this species may compensate for higher SST by growing in deeper habitats where the temperature is lower. The latter indicates that geographic shifts in the distribution of coastal species as a result of global warming can possibly be mitigated by changes in the depth profile at which these species occur. Mesophyllum expansum, an important builder of Mediterranean coralligenous habitats, may be a good target species to assess its response to climate change.  相似文献   

19.
Lithophyllum species in the Mediterranean Sea function as algal bioconstructors, contributing to the formation of biogenic habitats such as coralligenous concretions. In such habitats, thalli of Lithophyllum, consisting of crusts or lamellae with entire or lobed margins, have been variously referred to as either one species, L. stictiforme, or two species, L. stictiforme and L. cabiochiae, in the recent literature. We investigated species diversity and phylogenetic relationships in these algae by sequencing three markers (psbA and rbcL genes, cox2,3 spacer), in conjunction with methods for algorithmic delimitation of species (ABGD and GMYC). Mediterranean subtidal Lithophyllum belong to a well‐supported lineage, hereby called the L. stictiforme complex, which also includes two species described from the Atlantic, L. lobatum and L. searlesii. Our results indicate that the L. stictiforme complex consists of at least 13 species. Among the Mediterranean species, some are widely distributed and span most of the western and central Mediterranean, whereas others appear to be restricted to specific localities. These patterns are interpreted as possibly resulting from allopatric speciation events that took place during the Messinian Salinity Crisis and subsequent glacial periods. A partial rbcL sequence from the lectotype of L. stictiforme unambiguously indicates that this name applies to the most common subtidal Lithophyllum in the central Mediterranean. We agree with recent treatments that considered L. cabiochiae and L. stictiforme conspecific. The diversity of Lithophyllum in Mediterranean coralligenous habitats has been substantially underestimated, and future work on these and other Mediterranean corallines should use identifications based on DNA sequences.  相似文献   

20.
Multiple opening-closing nets of 0.05 mm mesh size were employed to study the community structure and vertical distribution of microcopepods at selected stations in the Red Sea, Arabian Sea and Eastern Mediterranean Sea down to a maximum depth of 1850 m. Calanoids, cyclopoids (Oithona and Paroithona) and poecilostomatoids (mainly Oncaea) were the 3 most abundant orders. In the epipelagic zone (0–100 m), these orders occurred at similar abundance levels, whereas in the meso- and bathypelagic zones the poecilostomatoid genus Oncaea dominated numerically by about 60–80% of all copepodids.The species diversity of Oncaea in the Red Sea is compared with preliminary results from the two adjacent regions. In the deep Eastern Mediterranean Sea, the number of species appears to be similar to that in the deep Red Sea and low as compared to the deep Arabian Sea. In this latter area an extremely speciose Oncaea fauna was found at depth below the oxygen-minimum-zone (900–1850 m). The results are related to the differences in the hydrographic conditions of these 3 areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号