首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
海南和台湾蕨类植物多样性及其大陆性特征   总被引:10,自引:1,他引:10  
海南和台湾是我国南部和东部两个最重要的大陆性岛屿,具有极为丰富的蕨类植物多样性。特有现象揭示着植物区系和植物多样性的历史,间断分布揭示着与邻近或相关植物区系的联系;特别是在岛屿地区,这种现象和意义尤其明显。海南有蕨类植物区系55科、135属、466种,其中特有种有32种,台湾蕨类植物区系57科、142属、599种,其中特有种达66种。在海南与台湾两地,有共有属104属,共有种仅有176种。台湾海峡出现始于晚白垩世,持续至第四纪;琼州海峡出现于早第四纪,因此,两地的特有现象远少于种子植物(台湾有801种,海南有501种),原因与蕨类植物具有更广的散布性相关,而且在被子植物中起重要作用的物种生物学障碍(机制)在蕨类是缺乏的;形态学的、生殖生物学特征导致蕨类植物具有较缓慢的物种演化历史和较低的灭绝率(Smith,1972)。海南和台湾蕨类植物区系的比较还表明,地理位置和海拔高度对植物区系的物种分化和物种多样性产生了极大的影响。  相似文献   

2.
3.
Aim We used insular lizard communities to test the predictions of two hypotheses that attempt to explain patterns of species richness on small islands. We first address the subsidized island biogeography (SIB) hypothesis, which predicts that spatial subsidies may cause insular species richness to deviate from species–area predictions, especially on small islands. Next, we examine the small island effect (SIE), which suggests small islands may not fit the traditional log‐linear species–area curve. Location Islands with arthropodivorous lizard communities throughout the Gulf of California. Methods To evaluate the SIB hypothesis, we first identified subsidized and unsubsidized islands based on surrogate measures of allochthonous productivity (i.e. island size and bird presence). Subsequently, we created species–area curves from previously published lizard species richness and island area data. We used the residuals and slopes from these analyses to compare species richness on subsidized and unsubsidized islands. To test for an SIE, we used breakpoint regression to model the relationship between lizard species richness and island area. We compared results from this model to results from the log‐linear regression model. Results Subsidized islands had a lower slope than unsubsidized islands, and the difference between these groups was significant when small islands were defined as < 1 km2. In addition to comparing slopes, we tested for differences in the magnitude of the residuals (from the species–area regression of all islands) for subsidized vs. unsubsidized islands. We found no significant patterns in the residual values for small vs. large islands, or between islands with and without seabirds. The SIE was found to be a slightly better predictor of lizard species richness than the traditional log‐linear model. Main conclusions Predictions of the SIB hypothesis were partially supported by the data. The absence of a significant SIE may be a result of spatial subsidies as explained by the SIB hypothesis and data presented here. We conclude by suggesting potential scenarios to test for interactions between these two small island hypotheses. Future studies considering factors affecting species richness should examine the possible role of spatial subsidies, an SIE, or a synergistic effect of the two in data sets with small islands.  相似文献   

4.
Aim To investigate the biological meaning of equations used to apply the general dynamic model (GDM) of oceanic island biogeography proposed by R. J. Whittaker, K. A. Triantis and R. J. Ladle. Location Analyses are presented for 17 animal groups living on the Aeolian Islands, a volcanic archipelago in the central Mediterranean, near Sicily. Methods In addition to the mathematical implementation of the GDM proposed by Whittaker, Triantis and Ladle, and termed here logATT2 (, where S is species number or any other diversity metric, t is island age, A is island area, and a, b, c and d are fitted parameters), a new implementation based on the Arrhenius equation of the species–area relationship (SAR) is investigated. The new model (termed powerATT2) is: . For logATT2 and powerATT2 models, equations were developed to calculate (1) the expected number of species at equilibrium (i.e. when the island has reached maturity) per unit area (Seq), and (2) the time required to obtain this value (teq). Whereas the intercept in the Gleason model (S = C + z log A) or the coefficient of the Arrhenius power model (S = CAz) of the SAR can be considered measures of the expected number of species per unit area, this is not the case for the parameter a of the ATT2 models. However, values of Seq can be used for this purpose. The index of ‘colonization ability’ (CAB), calculated as the ratio , may provide a measure of the mean number of species added per unit area per unit time. Results Both ATT2 models fitted most of the data well, but the powerATT2 model was in most cases superior. Equilibrial values of species richness (Seq) varied from c. 3 species km?2 (reptiles) to 100 species km?2 (mites). The fitted curves for the powerATT2 model showed large variations in d, from 0.03 to 3. However, most groups had values of d around 0.2–0.4, as commonly observed for the z‐values of SARs modelled by a power function. Equilibration times ranged from about 170,000 years to 400,000 years. Mites and springtails had very high values of CAB, thus adding many more species per unit area per unit time than others. Reptiles and phytophagous scarabs showed very low values, being the groups that added fewest species per unit area per unit time. Main conclusions Values of equilibrial species richness per unit area are influenced by species biology (e.g. body size and ecological specialization). Theoretical and empirical evidence suggests that higher immigration rates should increase the z‐values of the Arrhenius model. Thus, in the same archipelago, groups with larger z‐values should be characterized by higher dispersal ability. Results obtained here for the parameter d conform to this prediction.  相似文献   

5.
In this paper, species diversity of demersal fish communities was analysed over an area covering about 45,000 km2 of the Italian side of the Strait of Sicily (central Mediterranean). Fish abundance data come from a 10-year series (1994–2003) of experimental bottom trawl surveys carried out within the framework of the international program MEDITS. A simple GIS-based method was proposed to identify areas supporting high or low values of diversity and evaluate their temporal stability. A well-defined spatio-temporal pattern in diversity emerged from the analysis, with some areas of great ecological relevance being identified. Importantly, the greatest diversity within the fish communities was consistently seen at the offshore bank on the western part of the south Sicilian shelf (Adventure Bank). The site also supports high total biomass of demersal resources and shows the presence of species of great concern to fisheries. Results suggest that Adventure Bank represents a priority site for investigating the possibility of innovative management of marine ecosystems and demersal fisheries in offshore zones.  相似文献   

6.
The Macarthur-Wilson equilibrium theory of island biogeography has had a contradictory role in ecology. As a lasting contribution, the theory has created a new way of viewing insular environments as dynamical systems. On the other hand, many of the applications of the theory have reduced to mere unimaginative curve-fitting. I analyze this paradox in semiotic terms: the theory was mainly equated with the simple species-area relationship which became a signifier of interesting island ecology. The theory is, however, better viewed as a theoretical framework that suggests specific hypotheses on the ecology of colonization of insular environments. This paradox is inherent in the use of simplifying analytic models. Analytic models are necessary and fruitful in the work of ecologists, but they ought to be supplemented with a broader, pluralistic appreciation of the role of theories in general.  相似文献   

7.
Aim We looked at the biogeographical patterns of Oniscidean fauna from the small islands of the Mediterranean Sea in order to investigate the species–area relationship and to test for area‐range effects. Location The Mediterranean Sea. Methods We compiled from the literature a data set of 176 species of Oniscidea (terrestrial isopods) distributed over 124 Mediterranean islands. Jaccard's index was used as input for a UPGMA cluster analysis. The species–area relationship was investigated by applying linear, semi‐logarithmic, logarithmic and sigmoid models. We also investigated a possible ‘small island effect’ (SIE) by performing breakpoint regression. We used a cumulative and a sliding‐window approach to evaluate scale‐dependent area‐range effects on the log S/log A regression parameters. Results Based on similarity indexes, results indicated that small islands of the Mediterranean Sea can be divided into two major groups: eastern and western. In general, islands from eastern archipelagos were linked together at similarity values higher than those observed for western Mediterranean islands. This is consistent with a more even distribution of species in the eastern Mediterranean islands. Separate archipelagos in the western Mediterranean could be discriminated, with the exception of islets, which tended to group together at the lowest similarity values regardless of the archipelago to which they belong. Islets were characterized by a few common species with large ranges. The species–area logarithmic model did not always provide the best fit. Most continental archipelagos showed very similar intercepts, higher than the intercept for the Canary island oceanic archipelago. Sigmoid regression returned convex curves. Evidence for a SIE was found, whereas area‐range effects that are dependent on larger scale analyses were not unambiguously supported. Main conclusions The Oniscidea fauna from small islands of the Mediterranean Sea is highly structured, with major and minor geographical patterns being identifiable. Some but not all of the biogeographical complexity can be explained by interpreting the different shapes of species–area curves. Despite its flexibility, the sigmoid model tested did not always provide the best fit. Moreover, when the model did provide a good fit the curves looked convex, not sigmoid. We found evidence for a SIE, and minor support for scale‐dependent area‐range effects.  相似文献   

8.
赵淑清  方精云  雷光春 《生态学报》2001,21(7):1171-1179
全球面临着生境破碎化的危机,物种保护已成为人类面临的重大课题,并不是所有的人对岛屿生物地理学理论的产生及其关注的海洋岛屿都很熟悉,但是越来越多生物赖以生存的自然栖息地的丧失和破碎化都是有目共睹的,岛屿生物地理学和集合种群理论是目前物种保护的两个基本理论,物种迁入率和绝灭率的动态变化决策岛屿上的物种丰富度是岛屿生物地理学理论的核心内容,而集合种群理论关注的是局部种群之间个体迁移的动态以及物种的续存条件,在概述两个理论形成、发展及其核心内容的基础上,着重比较它们的异同点以及在生态学理论和实践中的应用,并论述物种保护理论范式从岛屿生物地理学向集合种群理论转变的基本背景和原因。  相似文献   

9.
10.
Islands acquire species through immigration and speciation. Models of island biogeography should capture both processes; however quantitative island biogeography theory has either neglected speciation or treated it unrealistically. We introduce a model where the dominance of immigration on small and near islands gives way to an increasing role for speciation as island area and isolation increase. We examine the contribution of immigration and speciation to the avifauna of 35 archipelagoes and find, consistent with our model, that the zone of radiation comprises two regions: endemic species diverged from mainland sister-species at intermediate isolation and from insular sister-species at higher levels of isolation. Our model also predicts species-area curves in accord with existing research and makes new predictions about species ages and abundances. We argue that a paucity of data and theory on species abundances on isolated islands highlights the need for island biogeography to be reconnected with mainstream ecology.  相似文献   

11.
12.
Aim A detailed database of distributions and phylogenetic relationships of native Hawaiian flowering plant species is used to weigh the relative influences of environmental and historical factors on species numbers and endemism. Location The Hawaiian Islands are isolated in the North Pacific Ocean nearly 4000 km from the nearest continent and nearly as distant from the closest high islands, the Marquesas. The range of island sizes, environments, and geological histories within an extremely isolated archipelago make the Hawaiian Islands an ideal system in which to study spatial variation in species distributions and diversity. Because the biota is derived from colonization followed by extensive speciation, the role of evolution in shaping the regional species assemblage can be readily examined. Methods For whole islands and regions of each major habitat, species–area relationships were assessed. Residuals of species–area relationships were subjected to correlation analysis with measures of endemism, isolation, elevation and island age. Putative groups of descendents of each colonist from outside the Hawaiian Islands were considered phylogenetic lineages whose distributions were included in analyses. Results The species–area relationship is a prominent pattern among islands and among regions of each given habitat. Species number in each case correlates positively with number of endemics, number of lineages and number of species per lineage. For mesic and wet habitat regions, island age is more influential than area on species numbers, with older islands having more species, more single‐island endemics, and higher species : lineage ratios than their areas alone would predict. Main conclusions Because species numbers and endemism are closely tied to speciation in the Hawaiian flora, particularly in the most species‐rich phylogenetic lineages, individual islands’ histories are central in shaping their biota. The Maui Nui complex of islands (Maui, Moloka‘i, Lāna‘i and Kaho‘olawe), which formed a single large landmass during most of its history, is best viewed in terms of either the age or area of the complex as a whole, rather than the individual islands existing today.  相似文献   

13.
We here explore the use of a Bayesian approach to island biogeography for disentangling the evolutionary origins of a continental-scale floristic pattern, the enigmatic ‘Rand Flora’. The existence of disjunct distributions across many plant lineages between Macaronesia–northwest Africa, Horn of Africa–southern Arabia and east–south Africa has long intrigued botanists, but only now can we start analysing it within a statistical framework.Phylogenetic and distributional data from 13 plant lineages exhibiting this disjunct distribution were analysed to estimate area carrying capacities and historical rates of biotic exchange between areas. The results indicate that there has been little exchange between southern Africa and the northern African region, and that this exchange occurred via east Africa. Northwest Africa–Macaronesia shows the smallest carrying capacity but highest dispersal rate with other regions, suggesting that its flora was built up by immigration of lineages, probably from the Mediterranean region and western Asia. In contrast, southern Africa shows the highest carrying capacity and lowest dispersal rate, suggesting a flora formed by in situ diversification.We discuss further improvements of the method for addressing more complex hypotheses, such as asymmetric dispersal between regions or repeated cyclical events.  相似文献   

14.
Numbers of flea (Siphonaptera) species (flea species richness) on individual mammals should be higher on large mammals, mammals with dense populations, and mammals with large geographic ranges, if mammals are islands for fleas. I tested the first two predictions with regressions of H. J. Egoscue's trapping data on flea species richness collected from individual mammals against mammal size and population density from the literature. Mammal size and population density did not correlate with flea species richness. Mammal geographic range did, in earlier studies. The intermediate‐sized (31 g), moderately dense (0.004 individuals/m2) Peromyscus truei (Shufeldt) had the highest richness with eight flea species on one individual. Overall, island biogeography theory does not describe the distribution of flea species on mammals in the Great Basin Desert, based on H. J. Egoscue's collections. Alternatively, epidemiological or metapopulation theories may explain flea species richness.  相似文献   

15.
16.
Aim To study the importance of ecological and geographical factors in explaining arthropod species composition on islands. Location The Aeolian Islands, a volcanic archipelago in the central Mediterranean, near Sicily. Methods The influence of island area, age, distance to the mainland, distance to the nearest island and land cover categories on species composition of arthropod groups was analysed using canonical correspondence analysis (CCA). The use of multiple animal groups in the same archipelago allowed the development of two complementary approaches based on CCA – a ‘taxon‐focused’ approach and an ‘island‐focused’ approach – to elucidate, respectively, how different taxa respond to the same environmental factors, and which factors are mainly responsible for the composition of the faunas in different locations. Results Island area was an important factor in explaining species composition in Chilopoda, Orthoptera and Tenebrionidae. Distance to the mainland was important mainly for Carabidae. Distance to the closest island was important for many groups. By contrast, island age exerted a significant influence only on the species composition of Orthoptera. Various groups were influenced by a combination of broad‐leaved forest and natural grassland. Main conclusions The example of the arthropods of the Aeolian Islands indicates that the influence of a given island characteristic on species composition varies among groups, although measures of inter‐island isolation were typically more important for taxa than isolation from the mainland source. This suggests that colonization of islands may occur mostly by stepping‐stone dispersal.  相似文献   

17.
18.
Summary Species interactions, as revealed by historical introductions of predators and competitors, affect population densities and sometimes result in extinctions of island reptiles. Mongoose introductions to Pacific islands have diminished the abundance of diurnal lizards and in some cases have led to extinctions. Through these population level effects, biogeographic patterns are produced, such as the reciprocal co-occurrence pattern seen with the tuatara and its predator, the Polynesian rat, and with the tropical gecko competitorsHemidactylus frenatus andLepidodactylus lugubris in urban habitats in the Pacific. Although competition has led to changes in abundance and has caused habitat displacement and reduced colonization success, extinctions of established reptile populations usually occur only as a result of predation.These introductions, along with many manipulative experiments, demonstrate that present day competition and predation are potent forces shaping community structure and geographic distributions. The human introduction of species to islands can be viewed as an acceleration of the natural processes of range expansion and colonization. The immediate biotic consequences of these natural processes should be of the same intensity as those of the human introductions. Coevolution may subsequently act to ameliorate these interactions and reduce the dynamical response of one species to the other. The role played by coevolution in mediating interactions between competitors and predator and prey is highlighted by the susceptibility of predator-naive endemic species to introduced predators and the invalidity of species-poor communities.  相似文献   

19.
The Ionian archipelago is the second largest Greek archipelago after the Aegean, but the factors driving plant species diversity in the Ionian islands are still barely known. We used stepwise multiple regressions to investigate the factors affecting plant species diversity in 17 Ionian islands. Generalized dissimilarity modelling was applied to examine variation in the magnitude and rate of species turnover along environmental gradients, as well as to assess the relative importance of geographical and climatic factors in explaining species turnover. The values of the residuals from the ISAR log10‐transfomed models of native and endemic taxa were used as a measure of island floristic diversity. Area was confirmed to be the most powerful single explanatory predictor of all diversity metrics. Mean annual precipitation and temperature, as well as shortest distance to the nearest island are also significant predictors of vascular plant diversity. The island of Kalamos constitutes an important plant diversity hotspot in the Ionian archipelago. The recent formation of the islands, the close proximity to the mainland source and the relatively low dispersal filtering of the Ionian archipelago has resulted in islands with a flora principally comprising common species and a low proportion of endemics. Small islands keep a key role in conservation of plant priority sites.  相似文献   

20.
The general dynamic model of oceanic island biogeography (GDM) has added a new dimension to theoretical island biogeography in recognizing that geological processes are key drivers of the evolutionary processes of diversification and extinction within remote islands. It provides a dynamic and essentially non‐equilibrium framework generating novel predictions for emergent diversity properties of oceanic islands and archipelagos. Its publication in 2008 coincided with, and spurred on, renewed attention to the dynamics of remote islands. We review progress, both in testing the GDM's predictions and in developing and enhancing ecological–evolutionary understanding of oceanic island systems through the lens of the GDM. In particular, we focus on four main themes: (i) macroecological tests using a space‐for‐time rationale; (ii) extensions of theory to islands following different patterns of ontogeny; (iii) the implications of GDM dynamics for lineage diversification and trait evolution; and (iv) the potential for downscaling GDM dynamics to local‐scale ecological patterns and processes within islands. We also consider the implications of the GDM for understanding patterns of non‐native species diversity. We demonstrate the vitality of the field of island biogeography by identifying a range of potentially productive lines for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号