首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Elena Maugini 《Plant biosystems》2013,147(2-3):233-242
Abstract

Anatomical and histological differences between ♀ and ♂ plants of GINKYO BILOBA L. — Morphological characters in several ♀ and ♂ specimens of Ginkyo have been checked, with the aim to put in evidence those which are sex-linked. Anatomical data from a previous research have been utilized. (Maugini 1965).

The main results are here summarized.

In the climate of Florence the female plants unfold their buds in the first ten days of April, the male ones in the middle of March, so that the males break their dormancy about one month before the females.

From the buds opening, brachyblasts are formed both in males and females, and catkins and ovules appear. At the beginning of May, the ovules have considerably grown, and catkins are faded. In the meanwhile the leaves have completely grown up in both sexes. Between the end of September and the beginning of October, the seeds become gold-yellow and begin to be shed off. Dissemination may go on for a long while, and still be active when all the leaves are fallen.

Buds are formed during summer, they are very little and sharp in the female, round and bigger in the male.

In both sexes leaves turn yellow and begin to fall between the end of October and the beginning of November. Females are generally considered more precocious than males in shedding leaves, but this behaviour did not result constant in the plants under observations so that the « leaf-fall time » cannot be considered a sex-linked character.

In shoots and stems of males and females, proceeds downwards tracheid deposition and differentiation, the highest activity being in the brachyblasts, where cambium works continuosly, and the lowest in the stem, where late wood formation can be found only in the male plants. Unevenness of cambial activity along the plant axis is particularly evident in the female, where late wood formation in the stem is rare.

The rhythm of cambial activity along shoots and stems of males and females have been compared with that of the buds, with the following results: both in the female and male plants the young leaves start expanding about two months before cambium activity starts in the stem. The male plant is more precocious than the female, probably the slower vegetation rhythm of the female being related to the seed ripening process.  相似文献   

2.
3.

Background  

Differentiation of long and short shoots is an important developmental trait in several species of the Rosaceae family. However, the physiological mechanisms controlling this differentiation are largely unknown. We have studied the role of gibberellin (GA) in regulation of shoot differentiation in strawberry (Fragaria × ananassa Duch.) cv. Korona. In strawberry, differentiation of axillary buds to runners (long shoot) or to crown branches (short shoot) is promoted by long-day and short-day conditions, respectively. Formation of crown branches is a prerequisite for satisfactory flowering because inflorescences are formed from the apical meristems of the crown.  相似文献   

4.
Elena Maugini 《Plant biosystems》2013,147(2-3):206-226
Abstract

Wood ring evolution in male and female plants of GINKYO BILOBA L. — A morphological examen of the wood rings in Ginkyo biloba L. has been performed on stem sections from specimens of the Botanical Institute of Florence, on wood samples from the collection of Adriano Fiori and on wood cores extracted from the stem of male and female plants growing in the Botanical Garden of Florence.

At the same time the development of the growth ring has been followed on wood samples tacken off the stems of two adult Ginkyo plants growing in the Botanical Garden of Florence.

All the material which has been studied shows the same characters, that is the frequency of uncomplete crescent-shaped wood rings, and consequently a large degree of eccentricity of the stems, depending not only upon the uncomplete wood rings, but also on the changing width of each ring.

Microscopical analysis has pointed out the presence of false rings, limited by discontinuous late wood, particularly in the female plant. This character has been observed only in a fossil wood of Ginkyo bonesii.

It has not been possible to assers how many rings or crescents are formed during one year. From dating records made on wood cores it seems that more than one ring could differentiate during one year, but the cambium shows a very irregular activity in Ginkyo. The factors which control the formation of false and uncomplete wood rings (wood crescents) are also unknown; their formation possibly depending upon environment conditions.

External factors such as water deficiency probably control cambial activity through auxin production. Larson (1964) has shown that draught causes a decrease in tracheids diameter, and the formation of false growth rings; thus the same causes could have been in action in our plants.

Noteworthy are also the data by Gungkel and Thimann (in Larson 1964) showing that auxin content increases downwards in the shoots of Ginkyo and that the apical bud has a very low auxin production, so that it seems possible that in Ginkyo the leaves supply something which the cortical tissue converts into auxin.

Lastly, the almost continuous growth activity of the cambium in Ginkyo must be pointed out, this causes a great difficulty in checking the beginning and the end of this process along the year. It is any way possible to establish the time of the highest cambial activity, which lies in June-July both in the female and in the male plants.  相似文献   

5.
Floral sex allocation (weight of male flower buds over weight of female flower buds) was examined at the levels of current-year shoot, individual tree and population, and the tree individual level and population level floral sex ratio was explained as a consequence of the behavior of current-year shoots in the shoot-level monoecious (flowering current-year shoots have both male and female flowers) species, Siberian alder (Alnus hirsuta var. sibirica). The current-year shoot level floral sex allocation was not size-dependent and not different over years. However, in the year when the reproductive intensity was high, individual tree level floral sex allocation was size-dependent and the population level floral sex allocation was relatively female-biased. The female-biased floral sex allocation at the population level resulted from many gynoecious shoots (current-year shoots which have only female flowers). These results suggest that the floral sex allocation of Siberian alder was controlled not by changing the floral sex allocation of each current-year shoot, but by shifting the sex expression of current-year shoots from shoot-level monoecy to shoot-level gynomonoecy.  相似文献   

6.
Syzygiella rubricaulis is a dioecious leafy liverwort disjunctly distributed and restricted to high‐altitude mountains in the Neotropics and the Azores. This study is part of a larger project examining the phylogeography of S. rubricaulis in the Neotropics, and our main goals were to understand its reproductive biology, where sex expression occurs, if vegetative propagules are frequently found, how the sexes are distributed in populations, how frequently sporophytes are formed and what environmental conditions influence sexual expression. S. rubricaulis patches are mostly female, but all patches also contain non sex‐expressing shoots. Out of 42 patches examined, 29 (69%) were sex‐expressing: 25 were unisexual (21 female and four male) and four of mixed sex (two male‐biased and two unbiased). At shoot level, out of 4200 shoots 18% were female and 7% male; among sex‐expressing shoots, 73% were female, representing a sex ratio of 0.8 (female‐biased). We encountered a total of 33 sporophytes in six patches (in Brazil, Venezuela and Ecuador). Leaf regenerants were found in one patch in Mexico. Low rates of sporophytes were likely related to low frequencies of male shoots and large distances between the sexes. As 25% of S. rubricaulis shoots expressed sex (occasionally producing sporophytes), we suggest that short‐distance (and rarely long‐distance) spore dispersal events occur in mountainous areas on a short‐term basis. On a long‐term basis, however, these events likely contribute to dynamic exchanges among populations in the Neotropics.  相似文献   

7.
Ethylene plays a key role in sex determination of cucumber flowers. Gynoecious cucumber shoots produce more ethylene than monoecious shoots. Because monoecious cucumbers produce both male and female flower buds in the shoot apex and because the relative proportions of male and female flowers vary due to growing conditions, the question arises as to whether the regulation of ethylene biosynthesis in each flower bud determines the sex of the flower. Therefore, the expression of a 1-aminocyclopropane-1-carboxylic acid synthase gene, CS-ACS2, was examined in cucumber flower buds at different stages of development. The results revealed that CS-ACS2 mRNA began to accumulate just beneath the pistil primordia of flower buds at the bisexual stage, but was not detected prior to the formation of the pistil primordia. In buds determined to develop as female flowers, CS-ACS2 mRNA continued to accumulate in the central region of the developing ovary where ovules and placenta form. In gynoecious cucumber plants that produce only female flowers, accumulation of CS-ACS2 mRNA was detected in all flower buds at the bisexual stage and at later developmental stages. In monoecious cucumber, flower buds situated on some nodes accumulated CS-ACS2 mRNA, but others did not. The proportion of male and female flowers in monoecious cucumbers varied depending on the growth conditions, but was correlated with changes in accumulation of CS-ACS2 mRNA in flower buds. These results demonstrate that CS-ACS2-mediated biosynthesis of ethylene in individual flower buds is associated with the differentiation and development of female flowers.  相似文献   

8.
Ulex europaeus is a much-branched shrub with small, narrow, spine-tipped leaves and axillary thorn shoots. The origin and development of axillary shoots was studied as a basis for understanding the changes that occur in the axillary shoot apex as it differentiates into a thorn. Axillary bud primordia are derived from detached portions of the apical meristem of the primary shoot. Bud primordia in the axils of juvenile leaves on seedlings develop as leafy shoots while those in the axils of adult leaves become thorns. A variable degree of vegetative development prior to thorn differentiation is exhibited among these secondary thorn shoots even on the same axis. Commonly the meristems of secondary axillary shoots initiate 3–9 bracteal leaves with tertiary axillary buds before differentiating as thorns. In other cases the meristems develop a greater number of leaves and tertiary buds as thorn differentiation is delayed. The initial stages in the differentiation of secondary shoot meristems as thorns are detected between plastochrons 10–20, depending on vigor of the parent shoot. A study of successive lateral buds on a shoot shows an abrupt conversion from vegetative development to thorn differentiation. The conversion involves the termination of meristematic activity of the apex and cessation of leaf initiation. Within the apex a vertical elongation of cells of the rib meristem initials and their immediate derivatives commences the attenuation of the apex which results in the pointed thorn. All cells of the apex elongate parallel to the axis and proceed to sclerify basipetally. Back of the apex some cortical cells in which cell division has persisted longer differentiate as chlorenchyma. Although no new leaves are initiated during the extension of the apex, provascular strands are present in the thorn tip. Fibrovascular bundles and bundles of cortical fibers not associated with vascular tissue differentiate in the thorn tip and are correlated in position with successive incipient leaves in the expected phyllotactic sequence, the more developed bundles being related to the first incipient leaves. Some secondary shoots displayed variable atypical patterns of meristem differentiation such as abrupt conversion of the apex resulting in sclerification with limited cell elongation and small, inhibited leaves. These observations raise questions concerning the nature of thorn induction and the commitment of meristems to thorns.  相似文献   

9.
Summary Factors affecting in vitro shoot production and regeneration of Cercis yunnanensis Hu et Cheng were investigated by comparing various growth regulators and explant types. For optimum shoot production from axillary buds, Murashige and Skoog (MS) media containing 6-benzyladenine, either alone or in combination with a low concentration of thidiazuron, resulted in the greatest number of shoots formed per explant (>3). Explants (2 mm long) containing one axillary bud placed in directcontact with the medium yielded the most shoots per bud (1.6) when grown on growth regulator-free medium. Root formation on 70–80% of shoot explants was accomplished using either indole-3-butyric acid or α-naphthaleneacetic acid in the medium, with significantly more roots formed on explants possessing and apical bud than those without the bud. Direct shoot organogenesis from leaf explants occurred on MS medium containing 10–30 μM thidiazuron, with up to 42% of leaf explants producing shoots.  相似文献   

10.
火灾后兴安落叶松长短枝变化及其对生存的影响   总被引:1,自引:0,他引:1  
研究了兴安落叶松的长短枝习性及火灾对其影响.结果表明,短枝在春季发叶迅速,而长枝的生长对兴安落叶松的枝条及树冠结构的形成起决定性作用,且在1个长枝上能形成10.5个短枝.中度火烧使兴安落叶松的树冠及枝条受到很大伤害,火烧可刺激1级侧枝上37%的短枝芽变成长枝,加速了火烧后兴安落叶松树冠结构的恢复,火后第3年兴安落叶松的短枝总量达到火前水平的98.46%.  相似文献   

11.
Summary A family of genes expressed during early stages of shoot development were isolated fromPinus radiata. A homologue of theLEAFY/FLORICAULA flower meristem-identity genes,NEEDLY (NLY), and three MADS-box genes,PrMADS1, PrMADS2 andPrMADS3 (Pinus radiata MADS-box genes), were expressed at early stages of initiation and differentiation of reproductive (male and female) cone buds, as well as vegetative buds. Expression ofNLY in transgenicArabidopsis thaliana promoted floral fate, demonstrating that it encodes a functional ortholog of theFLORICAUL A/LEAFY genes of angiosperms.Abbreviations DSB dwarf shoot bud - LSTB long-shoot terminal bud - PCB pollen cone bud - SCB seed cone bud - LD long day - SD short day  相似文献   

12.
Summary Shoot development was investigated on branches of Larix laricina (Du Roi) K. Koch trees growing in their 8th year in two plantations and in a natural stand approximately 12 years old. Expansion of throughout-crown series of short and long shoots was measured weekly, and later colour change and natural fall of leaves were assessed. Similar shoots were collected at intervals and dissected, the long shoots by 25-leaf segments. Leaf area and weight, as well as time of bud formation, were determined. Increasing acropetal trends were evident in time to bud burst: duration of short-shoot leaf-cluster expansion; size of leaf clusters and number, area and weight of leaves per cluster; duration and rate of long-shoot elongation; number, area and weight of leaves on long shoots; time to terminal-bud formation on long shoots. Along each long shoot, stem and leaf elongation and lateral-axis formation progressed acropetally. Lateral axes were most numerous on second to fourth 25-leaf segments. On longer shoots, some axes in middle segments developed as sylleptic short shoots rather than as lateral buds. Leaves of short shoots and basal leaves on long shoots turned yellow and abscissed sooner than axial leaves on long shoots. Colour change and loss among axial leaves were acropetal along shoots and up the crown. Thus, last-formed leaves, in axils of some of which lastformed lateral buds occurred, were held longest.  相似文献   

13.
14.
In many woody plants, shoots emerging from buds can develop as short or long shoots. The probability of a bud to develop as a long or short shoot relies upon genetic, environmental and management factors and controlling it is an important issue in commercial orchard. We use peach (Prunus persicae) trees, subjected to different winter pruning levels and monitored for two years, to develop and calibrate a model linking the probability of a bud to develop as a long shoot to winter pruning intensity and previous year vegetative growth. Eventually we show how our model can be used to adjust pruning intensity to obtain a desired proportion of long and short shoots.  相似文献   

15.
1. The pattern of attack by the leaf‐galling insect Neopelma baccharidis (Homoptera: Psyllidae) was studied in three populations of the dioecious shrub Baccharis dracunculifolia (Asteraceae) in south‐eastern Brazil. The plant vigour hypothesis, which predicts higher rates of attack and increased herbivore performance on the longest plant shoots, was tested. This work also provides further information for the study of differential herbivory in dioecious plants. 2. In total, 9200 shoots were collected randomly from 46 male and 47 female plants belonging to the three populations. Shoot length, number of leaves per shoot, rate of galling, and survival of psyllids did not differ between male and female plants. Another population on the Campus of the Federal University of Minas Gerais was used only to determine the pattern of shoot growth. 3. The hypothesis of sex‐mediated herbivory was not corroborated in this study. 4. The frequency of galling increased with increasing shoot length, as predicted by the plant vigour hypothesis. Nevertheless, the number of oviposition sites (leaf buds) increased with shoot length. 5. The performance of the galling herbivore was not related to shoot length in the plant populations studied. 6. In conclusion, Neopelma baccharidis did not select shoots based on length only.  相似文献   

16.
To clarify mortality patterns of current-year shoots within the crown of Betula maximowicziana Regel after severe insect herbivory in central Hokkaido, northern Japan, we investigated the degree of defoliation, pattern of shoot development, shoot mortality, and leaf tissue-water relations. One hundred current-year long shoots growing in a B. maximowicziana plantation were observed for defoliation and mortality in June 2002. An outbreak of herbivorous insects (Caligula japonica and Lymantria dispar praeterea) occurred in the stand in mid-to-late June, and the monitored shoots were defoliated to various degrees. Within 1 month of defoliation, some of the severely defoliated shoots had produced new leaves on short shoots that had emerged from axillary buds. Stepwise logistic regression revealed that the probability that current-year long shoots would put out axillary short shoots with leaves is closely related to the degree of defoliation. To evaluate the water relations of the leaves, we determined pressure–volume curves for the leaves that survived the herbivorous insect outbreak and the new leaves that emerged after defoliation. The water potential at turgor loss (Ψl,tlp) and the osmotic potential at full turgidity (Ψπ,sat) were higher for the new leaves than for the surviving leaves, indicating a lower ability to maintain leaf cell turgor against leaf dehydration in the new leaves. Of the 100 shoots, 13 died after the emergence of new leaves. Stepwise logistic regression revealed that the probability that the long shoots would die generally increased with the emergence of new leaves, with increasing shoot height. This result suggests that the combined effect of the vulnerability of newly emerged leaves and low water availability, associated with higher shoot positions within the crown, caused shoot mortality. Based on our results, some possible mechanisms for mortality in severely defoliated B. maximowicziana are discussed.  相似文献   

17.
Summary An efficient and reproduciblein vitro culture system has been developed for regeneration of multiple shoot clumps from intact seedlings of both lowland and upland cultivars of switchgrass (Panicum virgatum L.). The multiple shoots were induced on Murashige and Skoog medium supplemented with various combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 1-phenyl-3-(1,2,3-thiadiazol-5YL)-urea (thidiazuron or TDZ). Maximum response was obtained with 4.5 μM 2,4-D and 18.2 μM TDZ. These shoots proliferated and rooted efficiently on MS medium without growth regulators. The developmental pattern of the multiple shoots indicated their origin from the enlarged shoot apex via proliferation of axillary buds and subsequent reprogramming of shoot meristems followed by secondary differentiation of adventitious shoots The simplicity of the protocol and direct production of multiple shoots make this a potential system that is highly attractive and amenable for microprojectile-mediated gene transfer.  相似文献   

18.
Summary Shoot systems developed over 3 successive years were investigated on 55 understorey Tsuga canadensis (L.) Carr. trees. Paired comparisons of preformed-leaf content of terminal buds and numbers of leaves produced on new shoots showed that neoformed leaves were produced in large numbers. Parent-shoot character was not useful in predicting numbers of preformed leaves, was better related to total leaves produced, but left the majority of the variation unexplained. This reflected the capacity of any terminal bud to produce a shoot with more or less neoformation, depending on conditions for growth. All shoots over 6 cm long produced sylleptic shoots that bore from two to many leaves and were arranged in a mesitonic pattern along the parent. Some of the longer sylleptic shoots produced lateral buds or second-order sylleptic shoots. Monopodial second-year extensions of sylleptic-shoot axes followed an acrotonic pattern, as did proleptic shoots from the few lateral buds borne on the parent shoots. Such lateral buds were more frequent on shorter parent shoots: they typically occurred near the proximal and distal ends. Duration of shoot extension was positively correlated with shoot length: terminal buds became evident as shoot extension neared cessation.  相似文献   

19.
Hormonal Regulation of Pedicel Abscission in Begonia Flower Buds   总被引:1,自引:0,他引:1  
In order to analyse the hormonal regulation of flower bud shedding in Begonia, levels of indoleacetic acid (IAA), abscisic acid (ABA) and ethylene were determined in buds and pedicels. The translocation and metabolism of 14C-labeled IAA in pedicel segments were also studied. In a monoecious Begonia fuchsioides hybrid, abscising male flower buds contain about 1% of the IAA present in non-abscising female flowers. In a male Begonia davisii hybrid, the seasonal variation in bud drop coincides with changes in the IAA content of the buds, while also the release of IAA from the bud to the pedicel is hampered. Abscission zones of these pedicels always contain abscission promoting ethylene concentrations. The tissue is prevented from responding with abscission by IAA from the flower buds. The buds also contain ABA but without influencing abscission considerably. Pretreatment with ethylene or ABA does not affect IAA transport in pedicel segments. The rate of this transport is 4–6 mm × h–1:; the capacity increases with the transverse area. In young segments, IAA is decarboxylated and also otherwise metabolized.  相似文献   

20.
Bamboo is one of the fastest growing plants in the world, but their shoot buds develop very slowly. Information about the sugar storage and metabolism during the shoot growth is lacking. In the present study, we determined the activity of sucrose and starch metabolizing enzymes during the developmental period of Fargesia yunnanensis from shoot buds to the young culms that have achieved their full height. The soluble sugars and starch contents were also determined and analyzed in shoot buds and shoots at different developmental stages. The results showed that there were higher sucrose contents in shoot buds than shoots, which coincides with the sweeter taste of shoot buds. As the shoot buds sprouted out of the ground, the starch and sucrose were depleted sharply. Coupled with this, the activity of soluble acid invertase (SAI), cell wall-bound invertase (CWI), sucrose synthase at cleavage direction (SUSYC) and starch phosphorylase (STP) increased significantly in the rapidly elongating internodes. These enzymes dominated the rapid elongation of internodes. The activities of SAI, CWI, SUSYC and STP and adenosine diphosphate-glucose pyrophosphorylase were higher as compared to other enzymes in the shoot buds, but were far lower than those in the developing shoots. The slow growth of shoot buds was correlated with the low activity of these enzymes. These results complement our understanding of the physiological differences between shoot buds and elongating shoots and ascertain the physiological mechanism for the rapid growth of bamboo shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号