首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Biosynthesis of acid indolauxins in young barley plants labelled with C14. Effects of irradiation on seeds. — With this preliminary research we wanted to begin the study of the setting-up of a system in order to mark young plants cultivated in several groups and kept under the same growth conditions. This apparatus has been utilized for the first time to study the irradiation effect of barley seeds on the biosynthesis of the acid indolderivates (PIA, BIA, IAA). The data in literature on the effect of radiations on the indolauxin-synthesis are barely uniform and we can summarize them so: Skoog (1935) has demonstrated that the auxin content of irradiated plants decreases already at very small doses; the results have been reached by the biological test and seem to be barely reproducible.

Afterwards, Gordon (1957) has confirmed the Skoog's data about different species of plants remarking that also with small doses of radiations the quantity of free auxins decreases quickly soon after irradiation. Gordon has also utilized for his experiments the biological test.

The author, supposing that the free auxins of plants were prevalently IAA, has irradiated IAA solutions: the results have pointed out that the molecule of this auxin is not particularly radiosensible. From these results Gordon concluded that in irradiate plants the decrease of IAA was not given to a direct action of irradiations of the molecule, but to a decrease of its biosyntesis. This assumption has also been maintained by Gordon on account of the results of a further experiment: giving triptophane to sprouts of irradiated seedlings of peas the author remarked a lessening of the IAA synthesis as the doses of irradiation increased. He demonstrated, by another experiment made on omogenates, that radiations caused a rent at the enzyme level which turnes the indolacetic aldeid into acid. On the other hand the data obtained by Gordon on the radiosensibility of IAA aqueous solutions are in opposition to the ones got by Skoog by experiments in vitro and by Cervigni and Belli (1962) which confirmed Skoog's data. These A.A. have demonstrated that the results obtained by Gordon are contestable on account of the analytical technique used. It is well known that seed irradiation causes an evident lessening of growth in young plants development. This phenomenon at least on one side might be connected with an alteration of the metabolic system, which causes the growth regulators synthesis, as the indolauxin.

This experiment wants to bring a contribution to the study of this important problem.

In this first experiment barley has been chosen because the irradiation of the seed at the employed doses. (7,5 and 15 Kr of X rays) does not causes a lessening of the germinability, while it does effect the growth.

Young plants derived from irradiated seeds and from the control ones, on the seventh day from the sowing were put into contact with an atmosphere of C14O2 for 42 hoūrs. From the experimental data it has resulted that the synthesis of indolderivates acid in young plants originated from irradiated seeds does not decrease. On the contrary it seems that at least as far as the leaves are concerned there is a greater synthesis by increasing the irradiation dose.

If these first results will be confirmed by further experiments, we can think that the lessening of growth caused by irradiation it does not depend on the decreased synthesis of the acid auxins group, as Gordon and others stated, but rather on the alteration of other regulator systems, strictly connected with the plant's development. It cannot also be excluded that the lessening of growth caused by irradiation, may be attributed to a less sensibility of the tissues to the acid indolauxins.  相似文献   

2.
Sterile embryos of barley (Hordeum vulgare) and cultures of Lemna perpusilla have been labeled with 32Pi and the chromatin proteins prepared and separated by acid-urea and sodium dodecyl sulfate gel electrophoresis. Under these conditions chromatin proteins became labeled and the gel radioactivity profiles which were complex indicated a probable minimum of 15 to 20 proteins phosphorylated with molecular weights ranging from 104 to 105. The majority of the radioactivity, 80 to 90% of the total, is found in the acidic protein fraction and this can be recovered as serine phosphate after partial acid hydrolysis.  相似文献   

3.
Synthesis of chlorophyll was initiated in 5- to 6-day-old dark-grown barley (Hordeum vulgare L. cv. Clipper)seedlings by exposing them to light in the presence of 1-14 C glutamic acid supplied via the roots.The plants were then returned to darkness. At the end of light treatment (T) and after 7 or 18 h dark treatment chlorophylls a and b were extracted, quantified (μgleaf1). purified by HPLC to their magnesium-free derivatives (pheophytin a and b) and their molar radioactivities determined. After 2 h exposure to light followed by 6 h illumination in the presence of 1-14 C glutamic acid, seedlings had accumulated 4-7 nmol chlorophyll leaf1 and had incorporated between 900-1 350 Bq (g fresh weight)1 of radioactive label into the chlorophyll pool. When seedlings were transferred to darkness, label continued to be incorporated and after 18 h the radioactivity of the chlorophyll pool had increased by 300-700 Bq (g fresh weight)1. Net chlorophyll content, however, remained constant during dark treatment. The increase in radioactivity of the chlorophyll pool in darkness represented the difference between a net increase of label incorporated into chlorophyll a and a small loss of label from chlorophyll b. The absence of measurable radioactivity in the phytol moiety of labelled chlorophyll a, extracted at the endof dark treatment, demonstrated thatincorporation of label was into the tetrapyrrole moiely of chlorophyll and not into the phytol chain. Light-independent incorporation of 1-14 C glutamic acid into chlorophyll of greening barley seedlings transferred to darkness indicates that chlorophyll synthesis continues when light is withheld. We interpret the net gain in radioactivity of chlorophyll in darkness, in the absence of a net gain in chlorophyll content, to chlorophyll turnover i.e. to simultaneous synthesis and breakdown of chlorophyll when etiolated greening barley seedlings are transferred to darkness.  相似文献   

4.
Basu PS  Tuli V 《Plant physiology》1972,50(4):507-509
Homogenates of pea (Pisum sativum L., var. Alaska) seedlings exposed to 14C-indole-3-acetic acid or 14C-3-methyleneoxindole, an oxidation product of indole-3-acetic acid, were extracted with phenol. In both cases 90% of the bound radioactivity was found associated with the protein fraction and 10% with the water-soluble, ethanol-insoluble fraction. The binding of radioactivity from 14C-indole-3-acetic acid is greatly reduced by the addition of unlabeled 3-methyleneoxindole as well as by chlorogenic acid, an inhibitor of the oxidation of indole-3-acetic acid to 3-methyleneoxindole. Chlorogenic acid does not inhibit the binding of 14C-3-methyleneoxindole. The labeled protein and water-soluble, ethanol-insoluble fractions of the phenol extract were treated with an excess of 2-mercaptoethanol. Independently of whether the seedlings had been exposed to 14C-indole-3-acetic acid or 14C-3-methyleneoxindole, the radioactivity was recovered from both fractions in the form of a 2-mercaptoethanol-3-methyleneoxindole adduct. These findings indicate that 3-methyleneoxindole is an intermediate in the binding of indole-3-acetic acid to macromolecules.  相似文献   

5.
Arginine decarboxylase activity in the shoots of seedlings was high in oats, intermediate in barley and low in rice, maize, wheat and rye. After partial purification, the arginine decarboxylase from the shoots of potassium deficient oat seedlings was separated into two fractions, A (MW 195 000) and B (MW 118 000), by gel chromatography. On gel electrophoresis, the mobilities of these fractions were respectively 0.12 and 0.55 relative to bromophenol blue at pH 9.5. Fraction A was twice as active as fraction B in extracts of seedlings grown with both normal and potassium deficient nutrition, despite the greater activity ( × 5) of the potassium deficient plants. The properties of the two fractions were similar with respect to pH optimum (7–7.5), Km (3 × 10 ?5M) and the effect of inhibitors. Fraction A was purified to apparent homogeneity by DEAE-cellulose chromatography. The enzyme was specific for l-arginine and it was strongly inhibited by NSD 1055, d-arginine and canavanine. Mercaptoethanol and dithiothreitol stimulated the enzyme by ca 50% and p-chloromercuribenzoate was an inhibitor. Pyridoxal phosphate stimulated activity by ca 30% and EDTA stimulated activity by 30%. Ca2+ and Mg2+ inhibited the enzyme by 50% at ca 20 mM. Putrescine and the polyamines showed only moderate inhibition at 10 mM, but agmatine reduced activity to 30% at this concentration.  相似文献   

6.
On feeding 14CO2 to the shoots of lupine (25 mCi per plant) 30 min was the minimal time needed to determine the incorporation of label into bacteroid compounds. The predominant incorporation, exhibited in all root, nodule and bacteroid samples after 30 min exposure, was into sucrose (45–90% of the corresponding fraction radioactivity) of the neutral fraction; into malate (30–40%) of the acid fraction; into aspartic acid and asparagine (60–80% in sum) of the basic fraction. The composition of carbon compounds containing the greatest amount of 14C in the cytosol of nodules and in bacteroids was similar. Their radioactivity after 30 min exposure was for bacteroids (nCi per g of bacteroid fr. wt): sucrose 5.73, glucose 1.00, malate 0.15, succinate 0.11; for the nodule cytosol (nCi per g of nodule fr. wt): sucrose 200.00, glucose 8.40, malate 9.34, succinate 8.50. Thus it was demonstrated that in lupine, sucrose is the main photoassimilate entering not only into nodules but also into bacteroids. The biosynthesis of aspartic acid and asparagine occurs during nitrogen fixation in bacteroids.  相似文献   

7.
Following application of 3H-Gibberellin A20 (GA20) to roots of G2 pea seedlings and homogenization of the roots, about 3% of the radioactivity in the tissue could be precipitated from a 30,000 × g supernatant with trichloroacetic acid (TCA) (soluble fraction) while about 5% of the radioactivity pelleted at 30,000 × g (particulate fraction). The radioactivity in the particulate fraction was soluble in sodium dodecyl sulfate (SDS), but was not dialyzable and was insoluble in ethanol. Electrophoresis of the soluble fraction gave only one band of radioactivity, while that of the particulate fraction gave multiple bands. Acid hydrolysis of the soluble fraction released radioactivity that ran coincident with acid-treated GA20 on silicic-acid column chromatography. The particulate fraction gave numerous radioactive peaks following acid hydrolysis, two of which were coincident with GA20 and GA29 (hydroxylation product of GA20) on silicic acid chromatography. Treatment of the particulate and soluble fractions with RNase, DNase, and proteases showed a significant solubilization of radioactivity only with the proteases, suggesting that the GA is bound to a proteinaceous macromolecule. Complete proteolytic hydrolyis followed by thin layer chromatography showed 65% of the radioactivity from the soluble fraction running separately from free GAs or the individual amino acids; the particulate fraction gave mainly (60%) free GAs on enzymatic hydrolysis and much smaller amounts (17%) in a position separate from that of the GAs or amino acids. Binding of 3H-GA to protease-sensitive material was obtained with biologically active 3H-GA20 and 3H-GA1.  相似文献   

8.
The duration of the mitotic cycle and its individual phases was estimated in root meristems of isolated barley embryos and intact barley seedlings by means of pulse labelling with3H-thymidine and construction of labelled mitoses curve. The duration of the whole mitotic cycle in the cell population of root meristems of isolated barley embryos cultivated in the aerated liquid complete medium is 12.2 h. The mitotic cycle time of root meristems of intact barley seedlings, oultived in Petri dishes on wet blotting paper is 9.2 h. Most of root meristem cells belong to the fraction of rapidly proliferating cells, but this fraction exerts a high degree of variability by itself. Pulse treatment by3H-thymidine in our experimental conditions (74 kBq ml-1 - or 2 μCi ml-1, exposure 0.5 h) did not induoe any chromosomal aberrations in unlabelled cells and only a very low frequency of chromosomal aberrations in labelled cells. Measuring the cell population kinetics by pulse labelling with3H-thymidine can be used simultaneously with the study of induction of ohromosomal aberrations by mutagens.  相似文献   

9.
Cytokinins in addition to nitrate induce nitrate reductase activity (NRA) in some plants. Effects of cytokinins onNRA was investigated in stem pith parenchyma of kale, intact wheat and barley seedlings and isolated cucumber cotyledons. The most profound effect onNRA was found in barley and wheat seedlings.NRA in seedlings sprayed with 100 μM 6-benzylaminopurine (BAP) for three subsequent days was increased in leaves and decreased in roots. These changes were further enhanced in seedlings grown in nutrient solution lacking nitrate:NRA in wheat and barley leaves was increased by 57% and 202%, respectively, in plants supplied with nitrate theNRA increase was not significant: in wheat and barley leaves by 22% and 9%, respectively. Similar effect of BAP and kinetin was found in kale stem parenchyma and cucumber cotyledons. The cytokinin kinetin or BAP alone increasedNRA about twice in kale and three times in cucumber. Addition of nitrate to the medium enhanced the effect of kinetin in kale discs, but the two effects were not additive. Additive effect of nitrate and BAP onNRA was found in cucumber cotyledons in light. In general NRA was more affected by cytokinins in intact seedlings of wheat and barley as compared to explanted tissue of kale and cucumber, and lack of nitrogen made their effect more expressive.  相似文献   

10.
The uptake of [14C]thymidine, [14C]uridine and [14C]leucine by HeLa cells incubated in the presence of 1.52 μg/ml edeine A is inhibited by 7.5, 0 and 4%, respectively. Though edeine A has no gross cytopathic effect on HeLa cells, the peptide antibiotic enters the cells and h after addition to cell cultures is found in the nuclei. After 6 h of incubation, the highest intracellular concentration of edeine is located in the nuclear fraction, but, after 12 h, a higher proportion is in the post-mitochondrial supernatant fraction where it is associated with protein components in the range of molecular weights of 20 000 and 9 500 D. In the nucleus most of the [14C]edeine is bound to the chromatin fraction after 2 h of incubation. Exhaustive deoxyribonuclease digestion of the chromatin fraction releases all the radioactivity into one ultraviolet absorbing peak, which sediments to a density of 20% sucrose. Exhaustive ribonuclease digestion of the chromatin fraction releases all the radioactivity into two ultraviolet absorbing peaks which sediment to a density of 20 and 40%, respectively; subsequent proteolytic digestion of the RNAse-treated chromatin fraction frees about 70% of the edeine A from the ultraviolet absorbing peaks. This suggests that intranuclear edeine A associates with proteins in the chromatin. The radioactivity was recovered from the enzymatically digested chromatin fractions and characterized as biologically active edeine A.  相似文献   

11.
In cell-free homogenates of Saccharomyces cerevisiae, Denmert (S-1358) inhibited the incorporation of radioactivity from dl-mevalonate-2-14C into 14-desmethyl-lanosterol, 4α-methyl-cholesta-8,24-dien-3-one, 4α-methyl-zymosterol and 4-desmethyl sterols (zymosterol and episterol) at a concentration of 10?4 m. Concomitantly, a large accumulation of radioactivity was observed in the Ianosterol fraction.

In good agreement with the results described above, Denmert inhibited the conversion of 14C-labeled lanosterol to 4-desmethyl sterols, while the conversion of 14C-labeled 14-desmethyl-lanosterol to 4-desmethyl sterols was hardly affected by the fungicide. It is therefore evident that Denmert is a potent selective inhibitor of the demethylation at the C–14 position in ergosterol biosynthesis.

The fungicide, triarimol, was also found to exhibit the same effect on sterol biosynthesis as Denmert.  相似文献   

12.
Barley (Hordeum vulgare), corn (Zea mays), bean (Phaseolus vulgaris), and radish (Raphanus sativus) seedlings were continuously irradiated under a lighting device for 5–10 d at an increased ultraviolet (UV)-B fluence rate. In their growth parameters, composition, and leaf surface, these four species responded differently to the increased UV-B exposure. Bean seedlings suffered the most serious effects, radish and barley less, and corn was hardly influenced at all. In all plant species, the fresh weight, the leaf area, the amounts of chlorophylls, carotenoids and the galactolipids of the chloroplasts were reduced. The lipid content of the corn and bean seedlings also diminished. But all the irradiated plants showed a rise in their protein content compared to the control plants. The content of flavonoids increased in barley and radish seedlings by about 50%. The effects on growth parameters and composition were more extensive with increasing UV-B fluence rates, at least as shown in the case of barley seedlings. The fresh weights fell proportionally with the chlorophylls and carotenoids. In contrast, the flavonoid content of barley leaves rose parallel to the increasing UV-B fluence rates and reached 180% of the value in the control plants with the highest UV-B fluence rate. Scorching appeared regularly in the form of bronze leaf discoloration at the highest UV-B fluence rates. Scanning electron micrographs of the leaf surface of UV-B irradiated plants showed deformed epidermal structures.Abbreviations MGDG monogalactosyldiglyceride - DGDG digalactosyldiglyceride - SL sulfoquinovosyldiglyceride - PG phosphatidylglycerol - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - LA leaf are - FW fresh weight - DW dry weight - SEM scanning electron microscopy - C total carotenoids - Chl total chlorophyll  相似文献   

13.
Diurnally grown barley (Hordeum vulgare L. cv. Clipper) seedlings of various ages (3–4, 5–6 and 10–11-days-old) were transferred to darkness for 17 h and changes in leaf fresh weight, chlorophyll a, chlorophyll b and protochlorophyllide measured. The results were consistent with previous evidence of a light-independent chlorophyll biosynthetic pathway in light-grown barley. There was a net gain in chlorophyll (μg leaf-1) in 5–6- and 10–11-day-old plants after 17 h dark treatment. The amounts of chlorophyll that accumulated were similar (5.9 and 4.3 μg Chl leaf-1), despite a twofold difference in leaf size at T0. The rate of leaf expansion in 5–6-day-old plants greatly exceeded the rate of chlorophyll accumulation and leaves were noticeably paler after dark treatment i.e. there was a reduction in chlorophyll concentration (μg g fresh weight-1) in spite of an increase in chlorophyll content (μg leaf-1). The ability of light-grown barley to accumulate chlorophyll in darkness was a function of seedling age. Very young seedlings (3–4-day-old) generally lost chlorophyll in darkness. The decrease in chlorophyll per leaf resulted mainly from loss of chlorophyll b. Preferential loss of chlorophyll b resulted in dramatic increases in the chlorophyll a:b ratio. Since 3–4-day-old seedlings (1) accumulated 5-aminolevulinic acid in the presence of levulinic acid at a rate comparable to older seedlings, and (2) converted exogenous 5-aminolevulinic acid to chlorophyll in the absence of light, it is unlikely that failure of the youngest plants to accumulate chlorophyll in darkness was due to blocks at these steps in the pathway. Net loss of chlorophyll (μg leaf-1) in 3–4-day-old seedlings in darkness was eliminated by the addition of chloramphenicol, which occasionally produced a small, but significant, gain in total chlorophyll. These results imply that chlorophyll degradation in young barley leaves is strongly influenced by the chloroplast genome, and is a major factor influencing changes in chlorophyll levels in darkness. The present findings are consistent with the suggestion that the failure of 3–4-day-old barley seedlings to accumulate chlorophyll in darkness may be due to chlorophyll turnover in which the rate of degradation exceeds the rate of synthesis.  相似文献   

14.
The biosynthesis of the pyrrolidine ring of nicotine has been studied using short-term steady-state exposures of Nicotiana glutinosa seedlings to 14CO2. The pyrrolidine ring of the labeled nicotine has been degraded in a systematic manner to ascertain the radioactivity at each carbon, and a new method has been developed for obtaining C-2′ with complete radiochemical integrity. Some of the labeling patterns obtained were symmetrical while others were clearly unsymmetrical. The duality of the labeling patterns found in these 14CO2 biosyntheses, together with other data on pyrrolidine ring biosynthesis which are critically examined, is best rationalized by postulating two biosynthetic pathways for formation of the pyrrolidine ring, one involving a symmetrical precursor and the other an unsymmetrical one.  相似文献   

15.
A method is described for the chemical synthesis of stigmasta-5,24-dien-3β-ol-[26-14C] and (24S)-24-ethylcholesta-5,25-dien-3β-ol-[26-14C] (clerosterol). 28-Isofucosterol-[7-3H2] fed to developing barley seedlings (Hordeum vulgare) was incorporated into sitosterol and stigmasterol confirming the utilisation of a 24-ethylidene sterol intermediate in 24α-ethyl sterol production in this plant. Also, the use of mevalonic acid-[2-14C(4R)-4-3H1] verified the loss of the C-25 hydrogen of 28-isofucosterol during its conversion into sitosterol and stigmasterol in agreement with the previously postulated isomerisation of the 24-ethylidene sterol to a Δ24(25)-sterol prior to reduction. However, feeding stigmasta-5,24-dien-3β-ol [26-14C] to barley seedlings gave very low incorporation into sitosterol. Attempts to trap radioactivity from mevalonic-[2-14C(4R)-4-3H1] in stigmasta-5,24-dien-3β-ol when this unlabelled sterol was administered to barley seedlings gave only a very small incorporation although both 28-isofucosterol and sitosterol were labelled.  相似文献   

16.
Summary

The Author studies the cyto-histological effects produced by ultraviolet radiations on root tips of Scilla obtusifolia Poir. and finds that the most frequent effects are negative curvatures, i. e., the ones causing the withdrawal of the root tip from the irradiating source.

The cyto-histological effects produced by ultraviolet radiations are as follows: 1) The root tip is normal; 2) The zone of elongation is normal too; only the dermatogen, which is limited by the piliferous layer on the irradiated side, is replaced by a necrotic tissue on the non irradiated side; 3) In the piliferous layer, on the irradiated part the epidermis produces a lot of root hairs; the cells of the cortex are very large, elongated and greatly vacuolised; the stele, at the level of the piliferous layers looks normal; on the contrary the cells of the cortex on the opposite side of the irradiation-source are degenerating and the epidermis seems to be necrotic.

If irradiation time is very long and fixation is made 14–24 days after the treatment, the piliferous layer on the irradiated side, has only a few root hairs, since cells, even though with meristemoid characters don't develop into root hairs.

From these data the Author thinks that the stimulating action, on the epidermis directly exposed to ultraviolet radiations, is balanced by the inhibiting one on the opposite side not directly influenced by ultraviolet radiations.

The ultraviolet rays probably break the balance of the growth and inhibition substances acting as auxines, which show a different action according to their concentration.

The different penetration-power of ultraviolet rays on the various levels of the meristematic radical tissues and of the piliferous layer obviously causes more or less intense action.

It is clear that on the side directly irradiated the stimulating action is very evident, but it produces only a phenomenon of hypertrophy, since there is no cell-multiplication.

In all the treatment ultraviolet radiations have caused no hyperplasy-phenomenon.  相似文献   

17.
The incorporation of sodium acetate-[1-14C] into the heterocyst glycolipids of Anabaena cylindrica cultures from 60–234 hr old is reported. Incorporation of radioactivity was maximal in 88 hr old cultures. In 60 hr and 88 hr cultures about 90 % of the radioactivity of the heterocyst glycolipids was found in the non-saponifiable glycolipid fraction, whereas in older cultures this fraction contained only 75 % of the radioactivity. Acid hydrolysis of non-saponifiable heterocyst glycolipid fractions showed that in 60 hr cultures, 81 % of the radioactivity occurs in the lipid moiety, whereas in older cultures a greater proportion (40–53 %) of the radioactivity was found in the sugar residue. The lipid fraction obtained by acid hydrolysis contained a mixture of labelled long chain mono-, di- and trihydric alcohols. In young (60 hr) cultures the primary alcohol fraction was most heavily labelled (57.3 % of the radioactivity in the non-saponifiable glycosides) with much smaller amounts in the diol and triol (8.4 and 15.1 % respectively), whereas in older cultures (234 hr) the primary alcohol (23.6 %) diol (22.5 %) and triol (18.9 %) fractions contained ca equal amounts of radioactivity.  相似文献   

18.
The biosynthesis of arabinoxylan was investigated using microsomal membranes isolated from wheat seedlings. Incubation of the microsomes with UDP-[     C]- d -xylose resulted in incorporation of radioactivity into polymeric product. Incorporation reached a maximum at day 3 during development of the seedlings. Treatment of the radiolabeled product with Aspergillus niger xylanase A released about 70% of the radioactivity to a 65% ethanol-soluble fraction. The released radioactivity was shown to be in the form of xylobiose, xylotriose and xylotetraose, which are the expected hydrolysis products of endo -xylanases. The synthesized xylan had an apparent molecular mass larger than 500 kDa.  相似文献   

19.
Xanthosine is a catabolite of purine nucleotides. Our studies using excised tissues of various plant species indicate that xanthosine salvage is negligible and that xanthosine is catabolised predominantly via xanthine. A recent report using intact Arabidopsis thaliana seedlings (Riegler et al., 2011. New Phytol. 191, 349–359) showed that significant amounts of xanthosine were utilised for RNA synthesis. We report here similar, more detailed 14C-feeding experiments of xanthosine and xanthine using intact mungbean seedlings. Less than 3% of radioactivity from [8-14C]xanthosine and 1% from [8-14C]xanthine was incorporated into the RNA fraction; the rest of the radioactivity was incorporated into purine catabolites, including ureides, urea and CO2. Allopurinol, which is a xanthine oxidoreductase inhibitor, markedly inhibited purine catabolism, and radioactivity from these two precursors was retained in xanthine. Even then, no significant salvage of xanthosine and xanthine was observed. Rapid catabolism and slow salvage of xanthosine and xanthine appear to be inherent properties of many plant species.  相似文献   

20.
岳小红  曹靖  耿杰  李瑾  张宗菊  张琳捷 《生态学报》2018,38(20):7373-7380
盐分胁迫不仅影响植物的生长,而且会影响植物根际微域环境。根际pH的改变对土壤养分的有效性和微生物群落组成的变化有重要影响。为了探究啤酒大麦幼苗对不同类型盐分胁迫的生理生态响应机制和根际pH变化影响的生理机制,采用水培法,通过不同类型盐分(对照、混合Na盐、混合Cl盐和NaCl)胁迫处理啤酒大麦幼苗,对其生长、离子平衡和根际pH变化进行了研究。结果表明,1)在3种不同类型盐分胁迫下,啤酒大麦幼苗地上部干重、含水量均有所降低,而根冠比增加,尤其在NaCl胁迫下啤酒大麦幼苗地上部干重较对照显著降低了17.88%,而根干重和根冠比则分别增加了19.12%和43.86%。不同类型盐分胁迫抑制了啤酒大麦幼苗根长的生长,尤其在混合Na盐胁迫下根长降低明显(P0.05),但促进了根表面积和根体积的增加,尤其在混合Cl盐胁迫下,根表面积和根体积分别增加了41.76%和84.38%。2)不同类型盐分胁迫下啤酒大麦幼苗地上部离子平衡发生改变,在混合Na盐和NaCl胁迫下啤酒大麦幼苗主要吸收Na~+,地上部K~+/Na~+、Ca~(2+)/Na~+和Mg~(2+)/Na~+显著降低;混合Cl盐和NaCl胁迫下则过量吸收Cl~-,抑制了H_2PO_4~-、NO_3~-和SO_4~(2-)的吸收。3)在混合Na盐、混合Cl盐和NaCl盐分胁迫下,啤酒大麦幼苗对阴离子的吸收总量高于对阳离子的吸收总量,离子平衡计算结果表明根际呈碱化现象,与原位显色结果一致,且在混合Cl盐胁迫下根际碱化程度最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号