首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction kinetics of the 680 nm chlorophyll fluorescence were measured on attached leaves of Kalanchoë daigremontiana R. Hamet et Perr. (CAM plant), Sedum telephium L. and Sedum spectabile Bor. (C3 plant in spring, CAM plant in summer) and Raphanus sativus L. (C3 plant) at three different times during a 12/12 h day/night cycle. During the fluorescence transient the fluorescence intensity at the O, P and T-level (fO, fmax, fst,) was different for the plant species tested; this may be due to their different leaf structure, pigment composition and organization of their photosystems. The kinetics of the fluorescence induction depended on the time of preillumination or dark adaptation during the light/dark cycle but not on the type of primary CO2 fixation mechanism (C3 and CAM). For dark adapted leaves measured either at the end of the dark phase or after dark adaptation of plants taken from the light phase a higher P-level fluorescence, a higher variable fluorescence (P-O) and a larger complementary area were found than for leaves of plants taken directly from the light phase. This indicates the presence of largely oxidized photosystem 2 acceptor pools during darkness. During the light phase the fluorescence decline after the P-level was faster than during the dark phase; from this we conclude that the light adaptation of the photosynthetic apparatus (state 1state 2 transition, pH) during the induction period proceeded faster in plants taken from the light phase than in plants taken from the dark phase.Abbreviations C3 plant plant with primary CO2 fixation on ribulose-1,5-bis-phosphate (Calvin-Benson cycle) - CAM Crassulacean Acid Metabolism  相似文献   

2.
Species in the Laxa and Grandia groups of the genus Panicum are adapted to low, wet areas of tropical and subtropical America. Panicum milioides is a species with C3 photosynthesis and low apparent photorespiration and has been classified as a C3/C4 intermediate. Other species in the Laxa group are C3 with normal photorespiration. Panicum prionitis is a C4 species in the Grandia group. Since P. milioides has some leaf characteristics intermediate to C3 and C4 species, its photosynthetic response to irradiance and temperature was compared to the closely related C3 species, P. laxum and P. boliviense and to P. prionitis. The response of apparent photosynthesis to irradiance and temperature was similar to that of P. laxum and P. boliviense, with saturation at a photosynthetic photo flux density of about 1 mmol m-2 s-1 at 30°C and temperature optimum near 30°C. In contrast, P. prionitis showed no light saturation up to 2 mmol m-2 s-1 and an optimum temperature near 40°C. P. milioides exhibited low CO2 loss into CO2-free air in the light and this loss was nearly insensitive to temperature. Loss of CO2 in the light in the C3 species, P. laxum and P. boliviense, was several-fold higher than in P. milioides and increased 2- to 5-fold with increases in temperature from 10 to 40°C. The level of dark respiration and its response to temperature were similar in all four Panicum species examined. It is concluded that the low apparent photorespiration in P. milioides does not influence its response of apparent photosynthesis to irradiance and temperature in comparison to closely related C3 Panicum species.Abbreviations AP apparent photosynthesis - I CO2 compensation point - gl leaf conductance; gm, mesophyll conductance - PPFD photosynthetic photon flux density - PR apparent photorespiration rate - RuBPC sibulose bisphosphate carboxylase  相似文献   

3.
The potential for C4 photosynthesis was investigated in five C3-C4 intermediate species, one C3 species, and one C4 species in the genus Flaveria, using 14CO2 pulse-12CO2 chase techniques and quantum-yield measurements. All five intermediate species were capable of incorporating 14CO2 into the C4 acids malate and aspartate, following an 8-s pulse. The proportion of 14C label in these C4 products ranged from 50–55% to 20–26% in the C3-C4 intermediates F. floridana Johnston and F. linearis Lag. respectively. All of the intermediate species incorporated as much, or more, 14CO2 into aspartate as into malate. Generally, about 5–15% of the initial label in these species appeared as other organic acids. There was variation in the capacity for C4 photosynthesis among the intermediate species based on the apparent rate of conversion of 14C label from the C4 cycle to the C3 cycle. In intermediate species such as F. pubescens Rydb., F. ramosissima Klatt., and F. floridana we observed a substantial decrease in label of C4-cycle products and an increase in percentage label in C3-cycle products during chase periods with 12CO2, although the rate of change was slower than in the C4 species, F. palmeri. In these C3-C4 intermediates both sucrose and fumarate were predominant products after a 20-min chase period. In the C3-C4 intermediates, F. anomala Robinson and f. linearis we observed no significant decrease in the label of C4-cycle products during a 3-min chase period and a slow turnover during a 20-min chase, indicating a lower level of functional integration between the C4 and C3 cycles in these species, relative to the other intermediates. Although F. cronquistii Powell was previously identified as a C3 species, 7–18% of the initial label was in malate+aspartate. However, only 40–50% of this label was in the C-4 position, indicating C4-acid formation as secondary products of photosynthesis in F. cronquistii. In 21% O2, the absorbed quantum yields for CO2 uptake (in mol CO2·[mol quanta]-1) averaged 0.053 in F. cronquistii (C3), 0.051 in F. trinervia (Spreng.) Mohr (C4), 0.052 in F. ramosissima (C3-C4), 0.051 in F. anomala (C3-C4), 0.050 in F. linearis (C3-C4), 0.046 in F. floridana (C3-C4), and 0.044 in F. pubescens (C3-C4). In 2% O2 an enhancement of the quantum yield was observed in all of the C3-C4 intermediate species, ranging from 21% in F. ramosissima to 43% in F. pubescens. In all intermediates the quantum yields in 2% O2 were intermediate in value to the C3 and C4 species, indicating a co-function of the C3 and C4 cycles in CO2 assimilation. The low quantum-yield values for F. pubescens and F. floridana in 21% O2 presumably reflect an ineffcient transfer of carbon from the C4 to the C3 cycle. The response of the quantum yield to four increasing O2 concentrations (2–35%) showed lower levels of O2 inhibition in the C3-C4 intermediate F. ramosissima, relative to the C3 species. This indicates that the co-function of the C3 and C4 cycles in this intermediate species leads to an increased CO2 concentration at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase and a concomitant decrease in the competitive inhibition by O2.Abbreviations PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - RuBP ribulose-1,5-bisphosphate  相似文献   

4.
The quantum yield for CO2 uptake was measured in C3 and C4 monocot species from several different grassland habitats. When the quantum yield was measured in the presence of 21% O2 and 340 cm3 m-3 CO2, values were very similar in C3 monocots, C3 dicots, and C4 monocots (0.045–0.056 mole CO2 · mole-1 quanta absorbed). In the presence of 2% O2 and 800 cm3 m-3 CO2, enhancements of the quantum yield values occurred for the C3 plants (both monocots and dicots), but not for C4 monocots. A dependence of the quantum yield on leaf temperature was observed in the C3 grass, Agropyron smithii, but not in the C4 grass, Bouteloua gracilis, in 21% O2 and 340 cm3 m-3 CO2. At leaf temperatures between 22–25°C the quantum yield values were approximately equal in the two species.  相似文献   

5.
Osamu Ueno 《Planta》1996,199(3):382-393
Eleocharis vivipara Link is a unique amphibious leafless sedge. The terrestrial form has Kranz anatomy and the biochemical traits of C4 plants while the submerged form develops structural and biochemical traits similar to those of C3 plants. The structural features of the culms, which are the photosynthetic organs, of the two forms were examined and compared. The culms of the terrestrial form have mesophyll cells and three bundle sheaths which consist of three kinds of cell, namely, the innermost Kranz cells that contain large numbers of organelles, the middle mestome sheath cells that lack chloroplasts, and the outermost parenchyma sheath cells that contain chloroplasts. The culms of the submerged form had a tendency towards reduction in numbers and size of Kranz cells and vascular bundles, as compared to the terrestrial form, and they had spherical mesophyll cells that were tightly packed without intercellular spaces inside the epidermis. The submerged form had a higher ratio of cross-sectional area of mesophyll cells plus parenchyma sheath cells to that of Kranz cells than the terrestrial form. The difference was mainly due to a decrease in the number and the size of the Kranz cells and to a marked increase in the size of the mesophyll cells and the parenchyma sheath cells in the submerged form, as compared to the terrestrial form. The Kranz cells of the terrestrial form had basically the structural characteristics of plants of the NAD-malic enzyme type, with the exception of the intracellular location of organelles. The Kranz cells of the submerged form included only a few organelles, and the percentage of organelles partitioned to the Kranz cells was significantly smaller in the submerged form than in the terrestrial form. In addition, the size of chloroplasts of the Kranz cells was 60–70% of that of the terrestrial form. These structural differences between the two forms may be related to the functional differences in their mechanisms of photosynthesis.Abbreviations KC Kranz cell - MC mesophyll cell - PSC parenchyma sheath cell - NAD-ME NAD-malic enzyme - VB vascular bundle This study was supported by Grants-in-Aid from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Program for the Use of Biotechnological Procedures for Plant Breeding) and from the Science and Technology Agency of Japan (Enhancement of Center-of-Excellence, the Special Coordination Funds for Promoting Science and Technology).  相似文献   

6.
The C4 pathway: an efficient CO2 pump   总被引:2,自引:0,他引:2  
The C4 pathway is a complex combination of both biochemical and morphological specialisation, which provides an elevation of the CO2 concentration at the site of Rubisco. We review the key parameters necessary to make the C4 pathway function efficiently, focussing on the diffusion of CO2 out of the bundle sheath compartment. Measurements of cell wall thickness show that the thickness of bundle sheath cell walls in C4 species is similar to cell wall thickness of C3 mesophyll cells. Furthermore, NAD-ME type C4 species, which do not have suberin in their bundle sheath cell walls, do not appear to compensate for this with thicker bundle sheath cell walls. Uncertainties in the CO2 diffusion properties of membranes, such as the plasmalemma, choroplast and mitochondrial membranes make it difficult to estimate bundle sheath diffusion resistance from anatomical measurements, but the cytosol itself may account for more than half of the final calculated resistance value for CO2 leakage. We conclude that the location of the site of decarboxylation, its distance from the mesophyll interface and the physical arrangement of chloroplasts and mitochondria in the bundle sheath cell are as important to the efficiency of the process as the properties of the bundle sheath cell wall. Using a mathemathical model of C4 photosynthesis, we also examine the relationship between bundle sheath resistance to CO2 diffusion and the biochemical capacity of the C4 photosynthetic pathway and conclude that bundle sheath resistance to CO2 diffusion must vary with biochemical capacity if the efficiency of the C4 pump is to be maintained. Finally, we construct a mathematical model of single cell C4 photosynthesis in a C3 mesophyll cell and examine the theoretical efficiency of such a C4 photosynthetic CO2 pump. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The cassava plant, Manihot esculenta, grows exceptionally well in low fertility and drought prone environments, but the mechanisms that allow this growth are unknown. Earlier, and sometimes contradictory, work speculated about the presence of a C4-type photosynthesis in cassava leaves. In the present work we found no evidence for a C4 metabolism in mature attached cassava leaves as indicated i) by the low, 2 to 8%, incorporation of 14CO2 into C4 organic acids in short time periods, 10 s, and the lack of 14C transfer from C4 acids to other compounds in 12CO2, ii) by the lack of C4 enzyme activity changes during leaf development and the inability to detect C4 acid decarboxylases, and iii) by leaf CO2 compensation values between 49 and 65 l of CO2 1–1 and by other infrared gas exchange photosynthetic measurements. It is concluded that the leaf biochemistry of cassava follows the C3 pathway of photosynthesis with no indication of a C3-C4 mechanism.However, cassava leaves exhibit several novel characteristics. Attached leaves have the ability to effectively partition carbon into sucrose with nearly 45% of the label in sucrose in about one min of 14CO2 photosynthesis, contrasting with 34% in soybean (C3) and 25% in pigweed (C4). Cassava leaves displayed a strong preference for the synthesis of sucrose versus starch. Field grown cassava leaves exhibited high rates of photosynthesis and curvilinear responses to increasing sunlight irradiances with a tendency to saturate only at high irradiances, above 1500 mol m–2 s–1. Morphologically, the cassava leaf has papillose epidermal cells on its lower mesophyll surface that form fence-like arrangements encircling guard cells. It is proposed that the active synthesis of sugars has osmotic functions in the cassava plant and that the papillose epidermal cells function to maintain a healthy leaf water status in various environments.Abbreviations ADP adenosine diphosphate - Asp aspartate - BSA bovine serum albumin - CoA coenzyme A - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - FBP fructose-1,6-biphosphate - Gly glycine - HEPES N-2-hydroxyethylpiperazine-N-2-ethansulfonic acid - Mal malate - NAD nicotinamide adenine dinucleotide (oxidized form) - NADH nicotinamide adenine dinucleotide (reduced form) - NADP nicotinamide adenine dinucleotide phosphate (oxidized form) - PAR photosynthetic active radiation (400–700 nm) - PEP phosphenolpyruvate carboxylase - p-FBPase plastid fructose-1,6-biphosphatase - PGA 3-phosphoglyceric acid - PMSF phenylmethylsulfonyl fluoride - PVP polyvinylpyrrolidone - Rubisco ribulose-1,5-biphosphate carboxylase/oxygenase - RuBP ribulose-1,5-biphosphate - Ser serine - sugar-P sugar-phosphates  相似文献   

8.
The characteristics of oscillations in photosynthetic carbon fixation and chlorophyll fluorescence in leaves of the C4 plant Amaranthus caudatus L. were compared to those shown by the C3 plant Spinacia oleracea L. As in spinach, oscillations could be observed in Amaranthus when leaves were illuminated after periods of darkening, particularly at temperatures below 20°C, less so or not at all at higher temperatures. However, in contrast to spinach, pronounced oscillations occurred in Amaranthus after a sudden dark/light transition only at low, not at high photon flux densities. Whereas in spinach maxima in carbon uptake were observed slightly after minima in chlorophyll fluorescence had occurred, in Amaranthus maxima in carbon uptake were close to maxima in chlorophyll fluorescence. Since the quantum efficiency of electron transport through photosystem II of the chloroplast electron-transport chain was higher during the minima of chlorophyll fluorescence than during the maxima, the observations suggest that in Amaranthus photosynthetic water oxidation did not occur as synchronously with carbon uptake as in spinach. It is proposed that, in contrast to spinach, photosynthetic oscillations in Amaranthus are related to the diffusional transport of photosynthetic intermediates between mesophyll and bundle-sheath cells.Abbreviations Fo, Fm, Fs initial, maximal and steady-state chlorophyll a fluorescence - PFD photon flux density - QA primary quinone acceptor of PSII We are grateful to Professors D.A. Walker, FRS, Robert Hill Institute, University of Sheffield, Sheffield, UK., and Agu Laisk, Chair of Plant Physiology, University of Tartu, Tartu, Estonia, for helpful discussions and to Ms. S. Neimanis for help with the experiments. Our work was performed within the research of the Sonderforschungsbereich 251 of the University of Würzburg. It was supported by the Stiftung Volkswagenwerk. A.S.R. acknowledges also support by the Alexander-von-Humboldt-Stiftung and U.G. by the Graduate College of the University of Würzburg.  相似文献   

9.
J. C. Vogel  A. Fuls  A. Danin 《Oecologia》1986,70(2):258-265
Summary The relation between photosynthetic pathway and habitat of the grass species recorded in the desert regions of Sinai, Negev, and Judea was investigated. The climatic conditions and micro-environments in the study area vary considerably, and the distribution of the various species is found to conform to specific patterns which reveal the adaptive advantages of the different photosynthetic pathways. There is also a distinct correlation between the phytogeographic origin of the grass species and the photosynthetic pathways that they utilize.The survey shows that the majority of the grass species in the region are of the C3 type and all except one of these species belong to the Holarctic domain. This is in accordance with the fact that the region forms part of the Mediterranean winter rainfall regime and that C3 species have an adaptive advantage where minimum temperatures are low during the winter growing season.The occurence of C4 species increases with decreasing rainfall and they dominate in those districts where temperatures are high throughout the year. These C4 grasses are of both Holarctic and Palaeotropic origin according to the classification adopted here, but they are essentially all elements of the Saharo-Arabian, Irano-Turanian, Sudanian, or Tropical phytogeographic regions and are not typical of the Mediterranean or Euro-Siberian floras. The plants with multi-regional distributions that occur in Mediterranean communities may well be intrusive.Analysis of the three subtypes of the C4 species suggests that the malate-forming NADP-me grasses grow where water stress is not a dominating factor, while the aspartateforming NAD-me grasses are more successful under xeric conditions. The PEP-ck species are not abundant and form an intermediate group between the NADP-me and NAD-me subtypes.  相似文献   

10.
Wang  R.Z. 《Photosynthetica》2002,40(3):321-329
Floristic compositions, life forms, reproductive types for forage species, and their responses to desertification in Hunshandake desert were studied. 164 species, in 30 families and 94 genera, were identified with C3 (137 species), C4 (25 species), and CAM (2 species) photosynthesis. Of the 25 C4 species, 76 % were grasses and Chenopodiaceae species (hereafter chenopods). This suggests that the C4 species mainly occurred in a few families in the desert region. The reduction of C3 species and the increase of C4 species with desertification indicated that C4 species might have higher tolerance to environmental stresses (e.g. dry and poor soil). Relatively more hemicrytophyte and therophyte forms in the desert are related to the local temperate climate and vegetation dynamics. Relatively greater proportions of C4/C3 and clonal species/sexual species at mobile dune showed that the C4 species and clonal species could make greater contribution to sand land restoration in the Hunshandake desert.  相似文献   

11.
Wang  R.Z. 《Photosynthetica》2004,42(2):219-227
Photosynthetic pathway Types (C3, C4, and CAM) and life forms of native species from Hulunbeier rangelands, north China were studied. Of the total 258 species, 216 species in 132 genera and 42 families had C3 photosynthetic pathway, including dominant herbs, e.g. Stipa baicalensis Roshev. and Leymus chinensis (Trin.) Tzvel., Filifolium sibiricum Kitam. and Arudinella hirta (Thunb.) Koidz. 38 species in 28 genera and 10 families were found with C4 photosynthesis, and 4 species in 2 genera and 1 family had CAM photosynthetic pathway. The occurrence of C4 species was common in Gramineae and Chenopodiaceae, and the two families were leading ones within C4 plants. More than 52 % of the total 258 species were in H form, 21 % in Th form, 19 % in G form; the other life form Types, e.g. Ch, M, N, and HH, formed less than 3 %. 68 % of C4 species were in Th form and 24 % in H form, indicating that these Types were the dominant life forms for C4 species in the rangeland region. The occurrence of C4 species was closely related with plant habitats, disturbed lands had the highest C4 abundance (55 % of the total C4 species), followed by grasslands and sandy soil, and forests had the lowest C4 abundance (8 %). Hence the occurrence of C4 species could be efficient indicator for rangeland dynamics in Hulunbeier rangelands.  相似文献   

12.
Eva Melzer  Marion H. O'Leary 《Planta》1991,185(3):368-371
In a previous study (Melzer and O'Leary, 1987, Plant Physiol. 84, 58–60), we used isotopic methods to show that a substantial fraction of protein-bound aspartic acid in tobacco is derived from anaplerotic synthesis via phosphoenolpyruvate (PEP) carboxylase. Similar studies in soybean (Glycine max L.) and spinach (Spinacia oleracea L.) showed a similar pattern, and this pattern persists with age because of slow protein turnover. A more quantitative analysis indicates that about 40% of protein-bound aspartate is derived in this manner. Analyses of free aspartic and malic acids show that contribution of PEP carboxylase to the synthesis of these acids decreases with increasing age. The C4 plant Zea mays L. did not show this pattern.Abbreviations and Symbols RuBP ribulose bisphosphate - PEP phosphoenolpyruvate - OAA oxaloacetic acid - PGA 3-phosphoglyceric acid - 13C carbon-13 - isotopic content [R(sample)/R(standard)-1] × 1000, where R = [13CO2]/[12CO2] This work was supported by contract DE-ACO2-83ER 13076 and grant DE-FGO2-86ER13534 from the U.S. Department of Energy. E. M. was supported by a fellowship from Deutsche Forschungsgemeinschaft. We are grateful to Isabel Treichel for assistance with isotopic analyses.  相似文献   

13.
C(4) photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C(3) photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C(4) than C(3) type under atmospheric CO(2) depletion, high light and temperature, suggesting these factors as important selective agents. This hypothesis is consistent with comparative analyses of grasses, which indicate repeated evolutionary transitions from shaded forest to open habitats. However, such environmental transitions also impact strongly on plant-water relations. We hypothesize that excessive demand for water transport associated with low CO(2), high light and temperature would have selected for C(4) photosynthesis not only to increase the efficiency and rate of photosynthesis, but also as a water-conserving mechanism. Our proposal is supported by evidence from the literature and physiological models. The C(4) pathway allows high rates of photosynthesis at low stomatal conductance, even given low atmospheric CO(2). The resultant decrease in transpiration protects the hydraulic system, allowing stomata to remain open and photosynthesis to be sustained for longer under drying atmospheric and soil conditions. The evolution of C(4) photosynthesis therefore simultaneously improved plant carbon and water relations, conferring strong benefits as atmospheric CO(2) declined and ecological demand for water rose.  相似文献   

14.
R.Z. Wang 《Photosynthetica》2005,43(4):535-549
Of the total 570 species, 194 species in 116 genera and 52 families were found with C3 photosynthesis, 24 species in 17 genera and 6 families with C4 photosynthesis, and 2 species in 1 genera and 1 family with CAM photosynthesis. 90 % of the total species can be found in Changbai Mountain flora, more a half (69 %) in North China flora, and about 1/3 in Mongolian flora and Xinan flora, respectively. The occurrence of C4 species was not as common as that in adjacent grasslands and deserts, but relatively more than in the adjacent forests. Of the total 24 C4 species, 63 % C4 species (15 of 24) was found in Gramineae. Nine life form types can be found, reflecting the moist climate in the region, especially the occurrence of epiphyte and liana forms. Relatively more geophyte life form plants suggested the winter in the region was much colder than in grasslands. These indicated that both ecological studies and land management decisions must take into account plant photosynthetic pathway and life form patterns, for both of them are closely related to climatic changes and land use.  相似文献   

15.
The light dependence of quantum yields of Photosystem II (II) and of CO2 fixation were determined in C3 and C4 plants under atmospheric conditions where photorespiration was minimal. Calculations were made of the apparent quantum yield for CO2 fixation by dividing the measured rate of photosynthesis by the absorbed light [A/I=CO2 and of the true quantum yield by dividing the estimated true rate of photosynthesis by absorbed light [(A+Rl)/Ia=CO2·], where RL is the rate of respiration in the light. The dependence of the II/CO2 and II/CO2 * ratios on light intensity was then evaluated. In both C3 and C4 plants there was little change in the ratio of II/CO2 at light intensities equivalent to 10–100% of full sunlight, whereas there was a dramatic increase in the ratio at lower light intensities. Changes in the ratio of II/CO2 can occur because respiratory losses are not accounted for, due to changes in the partitioning of energy between photosystems or changes in the relationship between PS II activity and CO2 fixation. The apparent decrease in efficiency of utilization of energy derived from PS II for CO2 fixation under low light intensity may be due to respiratory loss of CO2. Using dark respiration as an estimate of RL, the calculated II/CO2 * ratio was nearly constant from full sunlight down to approx 5% of full sunlight, which suggests a strong linkage between the true rate of CO2 fixation and PS II activity under varying light intensity. Measurements of photosynthesis rates and II were made by illuminating upper versus lower leaf surfaces of representative C3 and C4 monocots and dicots. With the monocots, the rate of photosynthesis and the ratio of II/CO2 exhibited a very similar patterns with leaves illuminated from the adaxial versus the abaxial surface, which may be due to uniformity in anatomy and lack of differences in light acclimation between the two surfaces. With dicots, the abaxial surface had both lower rates of photosynthesis and lower II values than the adaxial surface which may be due to differences in anatomy (spongy versus palisade mesophyll cells) and/or light acclimation between the two surfaces. However, in each species the response of II/CO2 to varying light intensity was similar between the two surfaces, indicating a comparable linkage between PS II activity and CO2 fixation.Abbreviations A measured rate of CO2 assimilation - A+RL true rate of CO2 assimilation; e - CO2 estimate of electrons transported through PSII per CO2 fixed by RuBP carboxylase - f fraction of light absorbed by Photosystem II - F'm yield of PSII chlorophyll fluorescence due to a saturating flash of white light under steady-state photosynthesis - Fs variable yield of fluorescence under steady-state photosynthesis; PPFD-photosynthetic photon flux density - Ia absorbed PPFD - PS II Photosystem II - Rd rate of respiration in the dark - RI rate of respiration in the light estimated from measurement of Rd or from analysis of quantum yields - apparent quantum yield of CO2 assimilation under a given condition (A/absorbed PPFD) - true quantum yield of CO2 assimilation under a given condition [(A+RL)/(absorbed PPFD)] - quantum yield for photosynthetic O2 evolution - electrons transported via PS II per quantum absorbed by PS II Supported by USDA Competitive Grant 90-37280-5706.  相似文献   

16.
In this report, the effects of light on the activity and allosteric properties of phosphoenolpyruvate (PEP) carboxylase were examined in newly matured leaves of several C3 and C4 species. Illumination of previously darkened leaves increased the enzyme activity 1.1 to 1.3 fold in C3 species and 1.4 to 2.3 fold in C4 species, when assayed under suboptimal conditions (pH 7) without allosteric effectors. The sensitivities of PEP carboxylase to the allosteric effectors malate and glucose-6-phosphate were markedly different between C3 and C4 species. In the presence of 5 mM malate, the activity of the enzyme extracted from illuminated leaves was 3 to 10 fold higher than that from darkened leaves in C4 species due to reduced malate inhibition of the enzyme from illuminated leaves, whereas it increased only slightly in C3 species. The Ki(malate) for the enzyme increased about 3 fold by illumination in C4 species, but increased only slightly in C3 species. Also, the addition of the positive effector glucose-6-phosphate provided much greater protection against malate inhibition of the enzyme from C4 species than C3 species. Feeding nitrate to excised leaves of nitrogen deficient plants enhanced the degree of light activation of PEP carboxylase in the C4 species maize, but had little or no effect in the C3 species wheat. These results suggest that post-translational modification by light affects the activity and allosteric properties of PEP carboxylase to a much greater extend in C4 than in C3 species.  相似文献   

17.
Carbon-isotope ratios were examined as 13C values in several C3, C4, and C3–C4 Flaveria species, and compared to predicted 13C, values generated from theoretical models. The measured 13C values were within 4 of those predicted from the models. The models were used to identify factors that contribute to C3-like 13C values in C3–C4 species that exhibit considerable C4-cycle activity. Two of the factors contributing to C3-like 13C values are high CO2 leakiness from the C4 pathway and pi/pa values that were higher than C4 congeners. A marked break occurred in the relationship between the percentage of atmospheric CO2 assimilated through the C4 cycle and the 13C value. Below 50% C4-cycle assimialtion there was no significant relationship between the variables, but above 50% the 13C values became less negative. These results demonstrate that the level of C4-cycle expression can increase from, 0 to 50% with little integration of carbon transfer from the C4 to the C3 cycle. As expression increaces above 50%, however, increased integration of C3- and C4-cycle co-function occurs.Abbreviations and symbols RuBP carboxylase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) - PEP carboxylase phosphoenolpyruvate carboxylase (EC 4.1.1.31) - pa atmospheric CO2 partial pressure - pi intercellular CO2 partial pressure - isotope ratio - quantum yield for CO2 uptake  相似文献   

18.
The activities of the carboxylating enzymes ribulose-1,5-biphosphate (RuBP) carboxylase and phosphoenolpyruvate (PEP) carboxylase in leaves of three-week old Zea mays plants grown under phytotron conditions were found to vary according to leaf position. In the lower leaves the activity of PEP carboxylase was lower than that of RuBP carboxylase, while the upper leaves exhibited high levels of PEP carboxylase. Carbon dioxide compensation points and net photosynthetic rates also differed in the lower and upper leaves. Differences in the fine structure of the lowermost and uppermost leaves are shown. The existence of both the C3 and C4 photosynthetic pathways in the same plant, in this and other species, is discussed.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-biphosphate  相似文献   

19.
The aquatic angiosperm Hydrilla verticillata lacks Kranz anatomy, but has an inducible, C4-based, CO2 concentrating mechanism (CCM) that concentrates CO2 in the chloroplasts. Both C3 and C4 Hydrilla leaves showed light-dependent pH polarity that was suppressed by high dissolved inorganic carbon (DIC). At low DIC (0.25 mol m−3), pH values in the unstirred water layer on the abaxial and adaxial sides of the leaf were 4.2 and10.3, respectively. Abaxial apoplastic acidification served as a CO2 flux mechanism (CFM), making HCO3 available for photosynthesis by conversion to CO2. DIC at 10 mol m−3 completely suppressed acidification and alkalization. The data, along with previous results, indicated that inhibition was specific to DIC, and not a buffer effect. Acidification and alkalization did not necessarily show 1:1 stoichiometry; their kinetics for the apolar induction phase differed, and alkalization was less inhibited by 2.5 mol m−3 DIC. At low irradiance (50 μmol photons m−2 s−1), where CCM activity in C4 leaves is minimized, both leaf types had similar DIC inhibition of pH polarity. However, as irradiance increased, DIC inhibition of C3 leaves decreased. In C4 leaves the CFM and CCM seemed to compete for photosynthetic ATP and/or reducing power. The CFM may require less, as at low irradiance it still operated maximally, if [DIC] was low. Iodoacetamide (IA), which inhibits CO2 fixation in Hydrilla, also suppressed acidification and alkalization, especially in C4 leaves. IA does not inhibit the C4 CCM, which suggests that the CFM and CCM can operate independently. It has been hypothesized that irradiance and DIC regulate pH polarity by altering the chloroplastic [DIC], which effects the chloroplast redox state and subsequently redox regulation of a plasma-membrane H+-ATPase. The results lend partial support to a down-regulatory role for high chloroplastic [DIC], but do not exclude other sites of DIC action. IA inhibition of pH polarity seems inconsistent with the chloroplast NADPH/NADP+ ratio being the redox transducer. The possibility that malate and oxaloacetate shuttling plays a role in CFM regulation requires further investigation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The rate and extent of light activation of PEPC may be used as another criterion to distinguish C3 and C4 plants. Light stimulated phosphoenolypyruvate carboxylase (PEPC) in leaf discs of C4 plants, the activity being three times greater than that in the dark but stimulation of PEPC was limited about 30% over the dark-control in C3 species. The light activation of PEPC in leaves of C3 plants was complete within 10 min, while maximum activation in C4 plants required illumination for more than 20 min, indicating that the relative pace of PEPC activation was slower in C4 plants than in C3 plants. Similarly, the dark-deactivation of the enzyme was also slower in leaves of C4 than in C3 species. The extent of PEPC stimulation in the alkaline pH range indicated that the dark-adapted form of the C4 enzyme is very sensitive to changes in pH. The pH of cytosol-enriched cell sap extracted from illuminated leaves of C4 plants was more alkaline than that of dark-adapted leaves. The extent of such light-dependent alkalization of cell sap was three times higher in C4 leaves than in C3 plants. The course of light-induced alkalization and dark-acidification of cytosol-enriched cell sap was markedly similar to the pattern of light activation and dark-deactivation of PEPC in Alternanthera pungens, a C4 plant. Our report provides preliminary evidence that the photoactivation of PEPC in C4 plants may be mediated at least partially by the modulation of cytosolic pH.Abbreviations CAM Crassulacean acid metabolism - G-6-P glucose-6-phosphate - PMSF phenylmethylsulfonyl fluoride - PEPC phosphoenolpyruvate carboxylase - PEPC-PK phosphoenolpyruvate ca carboxylase-protein kinase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号