首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Plant Ecology & Diversity》2013,6(3-4):405-422
Background: Steep environmental gradients, coupled with predicted high temperature rises in the Arctic make arctic mountain vegetation highly suitable for surveillance of changes related to global warming. However, guidelines and baselines for such a purpose are widely lacking since arctic mountain vegetation has been little explored.

Aims: We explore options for long-term surveillance on the basis of a detailed analysis of extant plant community patterns and their underlying environmental conditions in the mountainous inland of West Greenland.

Methods: Distribution, abundance and site conditions of vegetation types were analysed, using 664 vegetation samples and detailed vegetation maps in four altitudinal belts.

Results: Most plant communities had a restricted elevation distribution and were confined to special habitats predominantly defined by mesotopography and soil moisture.

Conclusions: Based on the strong linkage to habitat conditions, horizontal and vertical changes of species distribution and vegetation pattern are excellent indicators for inferring underlying environmental changes on three different scales. The recommendations given concerning climate sensitive species and plant communities, ecotones for setting up observation sites as well as stratification of analysis by habitats can be the basis for establishing long-term surveillance programmes on arctic mountain vegetation.  相似文献   

2.
Abstract

A new station of Dianthus glacialis Haenke ssp. glacialis, on the Stelvio National Park in Cedech Valley (Valfurva-Lombardy). – The author refers to a new station of Dianthus glacialis Haenke ssp. glacialis on the Stelvio National Park in Cedech Valley, 2700 m. Many specimens collected have very short stems (f. reducta f. nova) in comparison with the forma normale which has the stems 1–5 (10) cm long. Examination of the soil characteristics of the station suggests the possibility that the plant grows in this station rich in limestone, since it is protected from the limestone by a certain stratum of organic matter.  相似文献   

3.
Abstract

The genus Baldellia Parl. has always been a complex taxon. Three species and three subspecies have been proposed for the Iberian Peninsula. The morphological variation of this genus in the Iberian Peninsula, Balearic islands and northern Morocco, and its thermo-pluviometric and altitudinal correlation are the focus of this contribution. Twenty-eight morphological variables were examined and subjected to a multivariate statistical analysis. The three morphotypes observed (Form 1, which includes B. ranunculoides subsp. repens and B. alpestris; Form 2, which includes B. ranunculoides and Form 3 – for the new combination B. ranunculoides subsp. ranunculoides var. tangerina (Pau) J. Rocha, A. Crespí, M. García-Barriuso, R. Almeida, J. Honrado, comb. nova proposed here for the first time) seem to represent different reproductive strategies. Morphological variables related with the presence or absence of stolons and the architecture of the inflorescence; the size and number of fruits are the most discriminating variables. Form 1 represents the asexual morphotype; Forms 2 and 3 correspond to morphotypes for which sexual reproduction is preferential. The environmental approach revealed that the asexual form (Form 1) grows in temperate, in more humid conditions, and within a broad altitudinal range. In contrast, the two sexual forms are more common in warmer and drier conditions, and occur over a narrower interval of altitudes.  相似文献   

4.
《Plant Ecology & Diversity》2013,6(3-4):423-433
Background : Intraspecific functional variability (IFV) along altitudinal gradients is a powerful proxy to infer the responses of plants to abrupt environmental changes. We envisage that IFV shows distinctive patterns in tropical and extratropical alpine regions.

Aims : To characterise the patterns and explore the origin of IFV in a tropical alpine species in a context of upward range extension.

Methods : We examined variations in a series of plant functional traits in Lasiocephalus ovatus, inside and outside a nurse plant along a 600 m altitudinal gradient in the Ecuadorian Andes, and we studied its genetic variability.

Results : More conservative traits were developed at higher elevation, in contrast to extratropical alpine plants, which commonly develop opportunistic traits in response to late snowmelt close to their upper altitudinal limit. The presence of nurse cushions did not alter this trend. Increasing genetic distance along the gradient suggested that IFV might be partly genetically induced.

Conclusions : Our data combined with existing literature in tropical alpine environments lead the way to a stimulating scientific challenge: determining if patterns of plant altitudinal distribution in tropical alpine areas in response to climate change are predictable from patterns described in extratropical alpine areas.  相似文献   

5.
Bird species diversity of the altitudinal belts of the Eastern Himalayas was analyzed in the early spring of 2005 and 2014. Species richness is revealed to be decreasing from the belts of subtropical mixed and coniferous forests to the alpine belt. Specific species that are not beyond the limits of a corresponding belt are immanent to three of four investigated altitudinal belts. The avifaunas of two adjacent belts also have comparatively many common species. One hundred and thirty-three bird species met in both years belong to six faunal complexes, among which most species are Himalayan endemics and subendemics, as well as Palearctic species. The abundance of background species has been determined for each altitudinal belt.  相似文献   

6.
《农业工程》2020,40(1):30-43
IntroductionDistribution pattern and diversity of flora was compared along an altitudinal gradient using the stratified random sampling design for identifying major plant communities of Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India. The reconnaissance of flora is presented, along with the analysis of the distribution of species, genera, and families within five (5) altitudinal zones. Kedarnath Wildlife Sanctuary which is situated in the Indian Himalayas harbours a rich variety of flora and fauna. The Himalayas are recognized for diverse vegetation distributed over a wide range of topographical conditions.ResultsThe analysis of diversity within five (5) altitudinal zones was carried out and a total of 324 plant species, representing 219 genera belonging to 92 families, were found. The dominant family was Asteraceae; the co-dominant family was Rosaceae, followed by Lamiaceae and Ranunculaceae. Eight (8) families were observed in all the altitudinal zones, while forty (40) families were observed in a single altitudinal zone, and the remaining forty-four (44) families were found in more than one (1) altitudinal zone. Most of the tree species were contagiously distributed, but a few of them were randomly distributed in all the altitudinal zones. The shrubs and herbs were contagiously distributed in all the altitudinal zones. The correlation analysis (P < 0.05) between altitude and number of species showed that altitude is negatively correlated with tree (r = −0.96), shrub (r = −0.61), and herb species (r = −0.20). As per the cluster analysis of tree layer, altitudinal zone - III (2450–2650 m) and altitudinal zone - IV (2900–3100 m) were found most similar. Altitudinal zone–V (3350–3550 m) was found to be dissimilar from the other zones for herbs.ConclusionsAlthough species composition varies with altitude, but there is a complex relationship between species richness and altitudinal gradient. A decreasing pattern in both species richness and family richness for trees, shrubs and herbs, was recorded with increasing altitude. The predominant factors underlying this variability in plant species and biogeography appear to be climatic and specific to each taxonomic group.  相似文献   

7.
  • Steep climatic gradients boost morphological and physiological adjustments in plants, with consequences on performance. The three principal woody species of the Sierras Grandes Mountains of central Argentina have marked differences in sapling performance along their altitudinal distribution. We hypothesize that the steep gradient of climatic conditions across the species’ altitudinal distribution promotes trait differences between populations of different altitudes that are inherited by the following generation.
  • Seeds from different altitudes were exposed to three temperature regimes to assess differential germination responses. Saplings were then transplanted to a greenhouse to assess possible variations in attributes and performance after 18 months.
  • The three species showed differences in germination responses to temperature among altitudes and/or in sapling attributes and performance. In Maytenus boaria and Escallonia cordobensis, germination success was higher under high temperatures for the highest‐altitude, whereas lower temperatures boosted germination of the lowest altitudes. Polylepis australis showed no differences in germination among temperature treatments. In the greenhouse, saplings of the three species from intermediate altitudes showed high performance, whereas the upper and lower populations seemed to be adjusted to tolerating more stressful conditions (i.e., lower temperatures at the upper end and water stress at the lower end), showing lower performance toward both altitudinal limits.
  • These patterns agree with those described for saplings growing under field conditions, suggesting adjustments in response to environmental changes undergone by populations along the altitudinal range. The marked adjustments of populations to the local environment suggest a potentially high impact of climatic change on species distribution.
  相似文献   

8.
The altitudinal distribution of plants is restricted by various environmental factors, with climatic conditions being one of the primary constraints. Here, we investigate what limits the altitudinal range of the introduced species Erigeron annuus in the Swiss Alps. We planted offspring of E. annuus plants originating from different altitudes into two common gardens, one located at an altitude representing the main area of distribution (400 m) and the other close to the current altitudinal limit of E. annuus in Switzerland (1000 m). In both common gardens all established plants survived and grew vigorously during the growing season. However, there was high winter mortality of seedlings at 1000 m. Furthermore, plant phenology was delayed and reproductive output was reduced at 1000 m, although the seeds produced were larger. The general lack of adaptation to altitude and only moderate levels of plasticity suggest that there is little potential for E. annuus to persist beyond its current altitudinal limit in the Swiss Alps. However, climate warming might promote the upward range expansion of E. annuus by reducing winter mortality and by increasing the chance of producing seeds within the growing season.  相似文献   

9.
Capsule: Grazing by livestock can have complex effects on drivers of population change in the Clamorous Reed Warbler Acrocephalus stentoreus and Dead Sea Sparrow Passer moabiticus.

Aims: To investigate the effect on two specialist bird species on wetland degradation in the Jordan Valley.

Methods: The direct and indirect effects of grazing on the probability of occurrences of two specialist bird species, Clamorous Reed Warbler A. stentoreus and Dead Sea Sparrow P. moabiticus, were analysed during the breeding season at the patch scale, using path analysis.

Results: Tamarix shrub density was a strong predictor for the presence of both species. Grazing had a negative total effect on both; a significant indirect effect on Dead Sea Sparrow via its impact on the mean height of shrubs, and a significant, negative indirect effect on Clamorous Reed Warbler by reducing reed cover. Intensive grazing and browsing by livestock including goats, sheep and camels, apparently had a negative effect on the overall density of native Tamarix shrubs, while promoting encroachment by invasive Prosopis juliflora.

Conclusion: This may be part of a long-term cascade leading to an ecological transition and loss of important wetland habitats in the arid Jordan Valley.  相似文献   

10.
Aim The decrease in species richness with increasing elevation is a widely recognized pattern. However, recent work has shown that there is variation in the shape of the curve, such that both negative monotonic or unimodal patterns occur, influenced by a variety of factors at local and regional scales. Discerning the shape of the curve may provide clues to the underlying causes of the observed pattern. At regional scales, the area of the altitudinal belts and mass effects are important determinants of species richness. This paper explores the relationship between bird species richness, elevation, mass effects and area of altitudinal zones for birds in tropical mountains. Location The three Andean ranges of Colombia and the peripheral mountain ranges of La Macarena and Santa Marta. Methods Lists of bird species were compiled for altitudinal belts in eastern and western slopes of the three Andean Cordilleras and for La Macarena and Santa Marta. The area of the altitudinal belts was computed from digital elevation models. The effect of area was analysed by testing for differences among altitudinal belts in the slopes and intercepts of the species‐area relationships. Mass effects were explored by separately analysing two sets of species: broadly distributed species, i.e. lowland species whose distributions extend into the Andes, and tropical Andean species, i.e., species that evolved in the Andes. Results Plotting total number of species in each altitudinal belt revealed a decline in species richness with elevation. In slopes with a complete elevational gradient from lowlands to mountain peaks, the decrease was monotonic. In internal Andean slopes where the lower elevational belts are truncated, there was a peak at mid elevations. There was a linear relationship between number of species and area of the altitudinal belts. When controlling for area, there were no differences in the number of species among altitudinal belts (500–2600 m), except for the two upper‐elevation zones (2600–3200 and > 3200 m), which had lower species richness. Diversity of widely distributed species declined monotonically with elevation, whereas tropical Andean species exhibited a mid‐elevation peak. Main conclusions A large proportion of the variation in species richness with elevation was explained by area of the altitudinal belts. When controlling for area, species richness remained constant up to 2600 m and then decreased. This pattern contrasts with a previously reported hump‐shaped pattern for Andean birds. Diversity patterns of widely distributed species suggested that immigration of lowland species inflates diversity of lower elevational belts through mass effects. This influence was particularly evident in slopes with complete altitudinal gradients (i.e. connected to the lowlands). Tropical Andean species, in contrast, were more diverse in mid‐elevational belts, where speciation rates are expected to be higher. The influence of these species was more prevalent in internal Andean slopes with no connection to the lowlands. The decline of species richness at high elevations may be related to higher extinction rates and lower resource levels.  相似文献   

11.
《Journal of bryology》2013,35(1):18-26
Abstract

The distribution patterns of 18 Sphagnum species along base-richness and altitudinal gradients were studied in Bulgarian treeless wetlands which are noteworthy because of the edge-of-range occurrence of many mire species including Sphagnum. Of 483 spring and mire sites studied, 202 samples contained some Sphagnum species. The most common species were S. subsecundum (n=85), S. platyphyllum (46), S. contortum (41), S. teres (40) and S. capillifolium (26). The significance of Sphagnum responses to environmental gradients was tested by comparing generalized additive models against the null model. Many Sphagnum species displayed a significant response to the altitudinal gradient. Several species were clearly linked to low or to high altitudes, but the realized niche of other species was wide with respect to altitude. Most species significantly responded to water pH, both above and below the timberline. The same result was obtained for water conductivity below the timberline, whereas only a few species had a significant response to conductivity above the timberline. The highest water conductivity under which Sphagnum species occurred was 280 μS cm?1. Sphagnum contortum was the species occupying the mires with the highest mineral content. On the contrary, Sphagnum warnstorfii, one of the most calcitolerant species in many regions of Europe, often occurred in extremely mineral-poor mires above the timberline. Some other Sphagnum species growing in mineral-rich mires below the timberline, also inhabited extremely mineral-poor mires above the timberline. This could be explained by adaptation to local conditions during long-term isolation on mineral-poor bedrock or by changed competition pressure.  相似文献   

12.
The two forest-defoliating geometrid moth species Operophtera brumata and Epirrita autumnata are known to exhibit different altitudinal distribution patterns in northern birch forests. One possible explanation for this is that altitudinal climatic variation differentially affects the performance of two species through mismatching larval and host plant phenology. We explored this hypothesis by investigating the relationship between larval phenology and leaf phenology of Betula pubescens, which is the main host plant of both moth species, along ten replicate altitudinal transects during two springs with contrasting climate in northern Norway. There was a distinct monotonous cline in host plant phenology with increasing altitude in both years of the study, but the development of the leaves were generally 14 days later in the first of the 2 years due to cold spring weather. We found that larval development of both species closely tracked host plant leaf phenology independent of altitude and year. However, at the time of sampling, E. autumnata was approximately one instar ahead of O. brumata at all altitudes, probably reflecting that E. autumnata has faster early instar growth than O. brumata. The abundance of O. brumata was lowest at the altitudinal forest-line, while E. autumnata was lowest near sea level. Our results do not indicate that the altitudinal distribution patterns of the two moth species is due to any phenological mismatch between larval and host plant phenology. We suggest rather that natural enemies at low altitudes limit larval survival and thus abundance of E. autumnata, while an early onset of winter at the forest limit reduces survival of late eclosing adults of O. brumata.  相似文献   

13.
Abstract. Large succulent leaf rosettes are a characteristic life form in many deserts. In certain areas they become the dominant life form, creating a vegetation type indicated as rosette scrub. The large number of rosette species suggests a close relationship between form and environment. Rosettes are excellent harvesters of low‐intensity rains and fogs. We propose that some rosette‐dominated formations of the Mexican mountains, namely the montane rosette scrub, occur in altitudinal belts around mountains where fog is abundant. We sampled four altitudinal gradients in mountains with different flora recording the abundance and richness of plants. At one site, the Tehuacán Valley, we also measured the quantity of fog along the gradient, below, above and in the rosette scrub for one year. We found that the abundance and richness of succulent rosette species are strongly associated with altitude, showing maximum values in the well‐defined elevational belts where the montane rosette scrub occurs. Other life forms, such as stem succulent cacti or woody shrubs, do not show this mid‐elevation pattern. The altitudinal ranges where the montane rosette scrub occurs usually coincide with areas where clouds and fog form. Our micrometeorological measurements indicate that rosette plants growing within a cloud belt can increase their water supply by 10–100% by harvesting fog. Outside these belts fog harvest is negligible. Desert rosettes constitute one of the most common fog‐harvesting growth forms.  相似文献   

14.
Abstract

The present study focused on the bryoflora of watercourses of the Tiber River basin watercourses (Central Italy). A total of 20 bryophyte species, which included 14 mosses and 6 liverworts, were collected at 32 river stations. Most species were recorded at stations of the watercourses' upper sections, which have rocky substrate and where there is cool and well oxygenated running water, with low trophic load. Only few species, such as Leptodictyum riparium, Cinclidotus fontinaloides and Riccia fluitans, were also found at stations of the middle and lower sections, which are characterized by slow-flowing, turbid, warm and eutrophic waters. Some species are widely distributed, among which Fontinalis antipyretica ssp. antipyretica and Platyhypnidium riparioides, while others are very rare, such as Cinclidotus aquaticus, Dialytrichia mucronata and R. fluitans. Some of the collected species are new regional records (Hygroamblystegium fluviatile, D. mucronata), regional confirmations of rare taxa in Italy (C.aquaticus) or confirmations of old regional reports (Hygroamblystegium tenax, C. fontinaloides, Aneura pinguis).  相似文献   

15.
The mountain wetlands studied represent a unique habitat on the southern slopes of the Alborz mountain range, the second largest range in Iran. In comparison with other parts of this range the western section is ecologically and botanically unknown. Floristic and vegetation variation were assessed using diverse environmental variables along a broad altitudinal span (350 m to 3200 m a.s.l.). Using both statistical and ordination analyses floristic variation was assessed on three defined altitudinal belts which were delimited based on Alborz macro-climatic boundaries. The distribution of individual wetland plant species, of phytogeographic elements and of life-forms all differ among altitudinal belts. This result is also shown in both direct and indirect analyses of ordinations. The proportion of geophytes significantly increases with altitude and geophytes are very well represented in the upper altitudinal belt. The number of species of a narrow phytogeographical distribution (e.g. endemics) increases with altitude, soil pH and EC declined with altitude. The first axis of DCA ordination with passively projected environmental variables indicates that, organic matter and concentration of Fe2+ are increased toward higher altitude. The second axis of ordination is related to both soil texture and slope inclination. The distribution of species in the CCA species plot is also close to the distribution of those in the DCA ordination. This study indicates that altitude and slope together with other dependent environmental variables (pH, EC, Ca2+ and soil texture) are the main ecological factors controlling species distribution across the Western Alborz wetland sites.  相似文献   

16.
Summary We document activity field temperatures, daily activity patterns, and extent of thermoregulation in four species of Liolaemus lizards inhabiting at high altitude (above 3500 m) in the Andes of northern Chile. These four species have similar activity field temperature (Tb near 29°C) despite their being distributed at different altitudinal belts. However, conspicuous differences exist between higher-altitude (L. alticolor and L. jamesi) and lower-altitude (L. islugensis and L. ornatus) lizards regarding extent of thermoregulation and activity period. Some differences in morphology, behavior, and patterns of microhabitat occupancy are also apparent among these four species and are seemingly related to the thermal environment to which they are subjected. In comparison to eight low-altitude Liolaemus species in central Chile (Tb near 35°C) the four high-altitude species in northern Chile have lower activity field temperature. The latter is apparently due to the constraints imposed by the harsh Andean thermal environment, a hypothesis supported by the fact that high-altitude Liolaemus lizards under laboratory conditions demonstrate body temperatures that exceed by 5°C or more, those recorded in the field.  相似文献   

17.
Allozyme variability was examined in populations of three endemic species of the species complex Lophuromys flavopunctatussensu lato: L. chrysopus, L. brevicaudus, and L. melanonyx. These species replace each other in adjacent altitudinal belts of the Bale Massif in Ethiopia. A deficit of heterozygotes at several loci was found in most samples of all species studied. Moreover, the samples included animals homozygous for two or three minor alleles and heterozygous for alleles that are rare and unique for the given species. It is suggested that the Bale Massif are inhabited by numerous genetically isolated populations of eachLophuromys species, which exchange genes at an extremely low rate. Genotypic disequilibrium observed in most samples is explained by the fact that most sampling localities comprise ranges of two and more micropopulations. In our view, microgeographic subdivision of the populations is caused by recurrent fragmentation of habitats during the Pleistocene glaciation of the Bale Massif and subsequent prolonged isolation of local populations. Gene drift accompanying these processes resulted in high genetic differentiation of the local populations, which probably persisted until the present. Geographical isolation of the Bale Massif, its uniquely diverse ecological conditions, and extraordinary allozyme structure of the Lophuromys populations suggest that these populations represent remnants or direct descendants of relic local populations.  相似文献   

18.

Aims

To delineate boundaries of vegetation belts, characterize these belts by indicator species, plant functional types and plant distribution types, and explore options for climate change monitoring.

Location

Three research sites in the continental inland of West Greenland.

Methods

Based on spatially constrained clustering of 147 vegetation relevés and 145 transect plots of plant communities, boundaries of altitudinal vegetation belts were assessed. Indicators for altitudinal sections were identified from 664 vegetation relevés among vascular plants, bryophytes, lichens and plant functional types using indicator species analysis. The performance of different plant groups along the altitudinal gradient was visualized with response curves.

Results

Boundaries of altitudinal vegetation belts were detected at 400, 800 and 1175 m a.s.l. on north‐facing slopes and at 450, 900 and 1250 m a.s.l. on south‐facing slopes. The resulting four vegetation belts were well defined by 99 indicator species and nine indicator plant functional types. Species, plant functional types and vascular plant distribution types showed clear sequences along the altitudinal gradient, which partly resemble their distribution along the latitudinal gradient.

Conclusions

As an easily observable expansion of shrubs and a decline of mosses and lichens is expected, the boundary at 400/450 m a.s.l. is particularly promising for climate change monitoring. The anticipated replacement of numerous cryophilous by thermophilous indicator species, as well as an obvious shift of plant functional types suggest several monitoring options at 800/900 m a.s.l. The summit areas above 1175/1250 m a.s.l., having a discontinuous plant cover, are considered to be especially vulnerable to fast invasion by species of lower altitudes such as woody plants and sedges. Due to steep gradients and short migration distances in mountains, it can be assumed that these anticipated changes in the study area will be stronger and faster than the already observed changes along the latitudinal gradient in lowland areas of the Arctic.
  相似文献   

19.
Summary Variation in life history characteristics was examined in three closely related species of univoltine grasshopper, Praxibulus sp., Kosciuscola cognatus and K. usitatus, along three altitudinal transects in South East Australia. With increasing altitude females lay fewer eggs in total over the summer season but lay their eggs in larger clutches. This pattern of variation, which is not related to variation in egg size, is observed both between and within species. The relationship between clutch size and altitude is similar in all three species but quite distinct reproductive strategies are maintained between species even where different species are found together at the same altitude. It is proposed that both the length and predictability of the summer growing season could be impratant in determining the evolution of life history characteristics along the altitudinal gradient.  相似文献   

20.
The distribution of Calliphoridae along an altitudinal gradient was investigated in Central Spain using carrion-baited traps. Significant differences were found between elevation and mean abundances of almost all species of blow-flies. Several species of flies could be grouped according to their altitudinal preferences so that samples at high elevations are defined by Calliphora vomitoria and Calliphora vicina while samples at low elevations are defined by two thermophilous species: Lucilia sericata and Chrysomya albiceps. The remaining species show preferences for mid-elevations where wooded areas are more characteristic along the altitudinal gradient. Calliphora vomitoria and Chrysomya albiceps are the most abundant species representing the 87.74 % of all captures. Both species are spatially segregated along the altitudinal gradient. The changing patterns of abundance are discussed in relation to differences in climate conditions along the altitudinal gradient concluding that the environmental variables that influence the seasonality of many species also play an important role to explain the spatial distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号