首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gravid Angiostrongylus cantonensis can utilize radiolabelled bicarbonate, orotate, uracil, uridine and cytidine but not cytosine, thymine and thymidine for the synthesis of RNA and DNA. In cell-free extracts of the worm, a phosphoribosyltransferase was shown to convert orotate to OMP and uracil to UMP. A similar reaction was not observed with cytosine and thymine. Uridine was readily phosphorylated by a kinase but a similar reaction for thymidine and deoxyuridine was not found. Cytidine could be phosphorylated by a kinase or be deaminated by a deaminase to uridine. No deaminase for cytosine was detected. There was also no phosphotransferase activity for pyrimidine nucleosides in the cytosolic or membrane fractions. Pyrimidine nucleosides were, in general, converted to the bases by a phosphorylase reaction but only uracil and thymine could form nucleosides in the reverse reaction. The activity of thymidylate synthetase was also measured. These results indicate that the nematode synthesizes pyrimidine nucleotides by de novo synthesis and by utilization of uridine and uracil and that cytosine and thymine nucleotides are formed mainly through UMP. The thymidylate synthetase reaction appears to be vital for the growth of the parasite.  相似文献   

2.
Using 5-fluoropyrimidine analogues, high-performance liquid chromatography (HPLC), and the feeding of pyrimidine compounds to pyrimidine auxotrophs, the pathways for salvage of exogenous pyrimidine nucleosides and bases in Streptomyces were established. Selection for resistance to the analogues resulted in the isolation of strains of S. griseus lacking the following enzyme activities: uracil phosphoribosyltransferase (upp) and cytidine deaminase (cdd). The conversion of substrates in the pathway was followed using reverse-phase HPLC. The strains deficient in salvage enzymes were also verified by this method. In addition, feeding of exogenous pyrimidines to strains lacking the biosynthetic pathway confirmed the salvage pathway. Data from the analogue, HPLC, and feeding experiments showed that Streptomyces recycles the pyrimidine base uracil, as well as the nucleosides uridine and cytidine. Cytosine is not recycled due to a lack of cytosine deaminase.  相似文献   

3.
In Neisseria meningitidis, uridine, deoxyuridine, cytosine, cytidine, or deoxycytidine could not be used by uracil-requiring mutants as pyrimidine sources. Consistent with these findings, only 5-fluorouracil of the different fluoropyrimidine bases and nucleosides showed any inhibitory effect on the growth of four prototrophic strains of N. meningitidis. Likewise, only radioactive uracil was readily incorporated into nucleic acids, whereas uptake of radioactive uridine, cytosine, or cytidine could not be demonstrated. Uracil was converted to uridine 5'-monophosphate by uracil phosphoribosyltransferase, whereas enzyme activities for conversion of cytosine or any of the nucleosides were not detectable in meningococcal extracts.  相似文献   

4.
Pyrimidine base and ribonucleoside utilization was investigated in the two type strains of thePseudomonas alcaligenes group. As sole sources of nitrogen, the pyrimidine bases uracil, thymine and cytosine as well as the dihydropyrimidine bases dihydrouracil and dihydrothymine supported the growth ofPseudomonas pseudoalcaligenes ATCC 17440 but neither these bases nor pyrimidine nucleosides supportedPseudomonas alcaligenes ATCC 14909 growth. Ribose, deoxyribose, pyrimidine and dihydropyrimidine bases as well as pyrimidine nucleosides failed to be utilized by eitherP. pseudoalcaligenes orP. alcaligenes as sole carbon sources. The activities of the pyrimidine salvage enzymes nucleoside hydrolase, cytosine deaminase, dihydropyrimidine dehydrogenase and dihydropyrimidinase were detected in cell-free extracts ofP. pseudoalcaligenes andP. alcaligenes. InP. pseudoalcaligenes, the levels of cytosine deaminase, dihydropyrimidine dehydrogenase and dihydropyrimidinase could be affected by the nitrogen source present in the culture medium.  相似文献   

5.
Pyrimidine Salvage Pathways In Toxoplasma Gondii   总被引:1,自引:0,他引:1  
ABSTRACT. Pyrimidine salvage enzyme activities in cell-free extracts of Toxoplasma gondii were assayed in order to determine which of these enzyme activities are present in these parasites. Enzyme activities that were detected included phosphoribosyltransferase activity towards uracil (but not cytosine or thymine), nucleoside phosphorylase activity towards uridine, deoxyuridine and thymidine (but not cytidine or deoxycytidine), deaminase activity towards cytidine and deoxycytidine (but not cytosine, cytidine 5'-monophosphate or deoxycytidine 5'-monophosphate), and nucleoside 5'-monophosphate phosphohydrolase activity towards all nucleotides tested. No nucleoside kinase or phosphotransferase activity was detected, indicating that T. gondii lack the ability to directly phosphorylate nucleosides. Toxoplasma gondii appear to have a single non-specific uridine phosphorylase enzyme which can catalyze the reversible phosphorolysis of uridine, deoxyuridine and thymidine, and a single cytidine deaminase activity which can deaminate both cytidine and deoxycytidine. These results indicate that pyrimidine salvage in T. gondii probably occurs via the following reactions: cytidine and deoxycytidine are deaminated by cytidine deaminase to uridine and deoxyuridine, respectively; uridine and deoxyuridine are cleaved to uracil by uridine phosphorylase; and uracil is metabolized to uridine 5'-monophosphate by uracil phosphoribosyltransferase. Thus, uridine 5'-monophosphate is the end-product of both de novo pyrimidine biosynthesis and pyrimidine salvage in T. gondii.  相似文献   

6.
Summary Rhizobium leguminosarum, strain PRE, is unable to use sulphate as the sulphur source. Sulfhydryl compounds must be added to achieve growth.Omission of FeCl3 from the synthetic growth medium resulted in a sharp decrease in growth of this Rhizobium strain as contrasted to other strains of R. leguminosarum. The pyrimidine bases uracil and cytosine could replace FeCl3. Thymine almost completely inhibited bacterial growth. Adenine and guanine showed no effect. re]19760809  相似文献   

7.
An adenosine-sensitive mutant was isolated from Escherichia coli K12 derivative strain C600. This mutant (designated as PS100) grew slower than parental strain C600in a minimal medium, and its growth was completely inhibited by addition of all kinds of purine bases, nucleosides and nucleotides tested. On the other hand, this growth inhibitory effect of purine derivatives was reversed by co-addition of uridine to the medium. Other pyrimidine derivatives such as uracil, UMP,cytosine, cytidine, CMP and thymidine were also effective for this reversal. The mutant strain, PS100, showed a lower level (7%) of activity for orotate phosphoribosyltransferase than strain C600 did, and accumulated orotic acid in the growth medium. Lysogenization of strain PS100 with λ transducing phage containing the gene for orotate phosphoribosyltransferase (pyrE) resulted in restoration of the activity for orotate phosphoribosyltransferase and removal of growth inhibition by purine derivatives.  相似文献   

8.
The metabolism of exogenous pyrimidine bases and nucleosides was investigated in Brevibacterium ammoniagenes and Micrococcus luteus with fluorinated analogs and radioactive precursors. Salvage of thymine and thymidine was found in M. luteus, but not in B. ammoniagenes. Exogenous uracil or uracil nucleosides, but not cytosine or cytosine nucleosides, were nucleic acid precursors for both bacteria. By examining the possible nucleoside-metabolizing enzymes, it can be suggested that the pyrimidine salvage pathways in the coryneform bacteria are different from those of members of the family Enterobacteriaceae.  相似文献   

9.
Escherichia coli mutants which secreted thymidine, thymine, uracil, cytosine, and guanine into the culture medium were isolated. The isolation strategy was based on the combination of a sensitive screening method and a mutant-generating system. The screening method made use of a thyA mutant of E. coli. These cells, when spread on the agar surface with the 3-galactosidase indicator X-gal, will grow into bule colonies if a minute amount of thymidine is supplied to them from a nearby secretor colony. A chemostat was used as a mutant-generating system to select for E. coli mutants that were resistant to inhibitors of the pyrimidine biosynthetic pathway. Although many mutants were selected based on their secretion of thymidine, other kinds of nucleosides and nucleobases, such as cytosine, uracil, guanine, and thymine, were also present in larger quantities. This rational selection strategy should be applicable to other species of micro-organisms for the isolation of better producers of nucleosides. The production of nucleosides and nucleobases by fermentation could then become a possibility.  相似文献   

10.
Giardia lamblia: uptake of pyrimidine nucleosides   总被引:1,自引:0,他引:1  
The aerotolerant, anaerobic parasite Giardia lamblia, which depends solely upon salvage pathways for its pyrimidine requirements, was found to transport uridine, cytidine, and thymidine by a carrier mediated mechanism. Support for this conclusion comes from the facts that uptake of radiolabeled uridine, cytidine, and thymidine exhibited saturation kinetics, and uptake of these same radiolabeled nucleosides was inhibited by unlabeled homologs, certain pyrimidine analogs, iodoacetate, and N-ethylmaleimide. Uridine and cytidine (perhaps uracil and cytosine also) are postulated to be transported at a common site which is distinct from the site for thymidine transport. Thymidine does appear to bind nonproductively to the uridine/cytidine transport site, but the reverse of this does not appear to occur.  相似文献   

11.
Abstract

A number of 1-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)uracil and -cytosine nucleosides substituted at the 5 position with a nitrophenyl or nitrobenzyl group were synthesized from 5-phenyl- and 5-benzyluracil via condensation of the fluorinated sugar, followed by nitration. The corresponding amino analogues were also prepared by reduction of the nitro nucleosides. The uracil nucleosides were converted into the corresponding cytosine nucleosides by way of the triazole intermediates. None of these nucleosides exhibited significant activity against herpes simplex virus type 1 in Vero cells. However, cytosine nucleosides containing the o-nitrophenyl, p-nitrophenyl, p-nitrobenzyl or p-aminobenzyl substituent were found to be toxic (even at 1 μM) to uninfected Vero cells, although they were essentially nontoxic in HL-60 cells. The 5′-monophosphates of the uracil nucleosides were inhibitors of the reaction catalyzed by purified Ehrlich ascites carcinoma thymidylate synthase, the 5-phenyluracil nucleotides causing a strong inhibition, competitive vs dUMP, described by the Ki value of 0.01 μM.  相似文献   

12.
Giardia lamblia, an aerotolerant anaerobe, respires in the presence of oxygen by a flavin, iron-sulfur protein-mediated electron transport system. Glucose appears to be the only sugar catabolized by the Embden-Meyerhof-Pamas and hexose monophosphate pathways, and energy is produced by substrate level phosphorylation. Substrates are incompletely oxidized to CO2, ethanol and acetate by nonsedimentable enzymes. The lack of incorporation of inosine, hypoxanthine, xanthine, formate or glycine into nucleotides indicates an absence of de novo purine synthesis. Only adenine, adenosine, guanine and guanosine are salvaged, and no interconversion of these purines was detected. Salvage of these purines and their nucleosides is accomplished by adenine phosphoribosyltransferase, adenosine hydrolase, guanosine phosphonbosyltransferase and guanine hydrolase. The absence of de novo pyrimidine synthesis was confirmed by the lack of incorporation of bicarbonate, orotate and aspartate into nucleotides, and by the lack of detectable levels of the enzymes of de novo pyrimidine synthesis. Salvage appears to be accomplished by the action of uracil phosphoribosyltransferase, uridine hydrolase, uridine phosphotransferase, cytidine deaminase, cytidine hydrolase, cytosine phosphoribosyltransferase and thymidine phosphotransferase. Nucleotides of uracil may be converted to nucleotides of cytosine by cytidine triphosphate synthetase, but thymidylate synthetase and dihydrofolate reductase activities were not detected. Uptake of pyrmidine nucleosides, and perhaps pyrimidines, appears to be accomplished by carrier-mediated transport, and the common site for uptake of uridine and cytidine is distinct from the site for thymidine. Thymine does not appear to be incorporated into nucleotide pools. Giardia trophozoites appear to rely on preformed lipids rather than synthesizing them de novo. Major lipids include phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingomyelin, sterol (probably cholesterol) and mono-, di- and triacylglycer-ides. The lipid composition of the cysts of G. lamblia isolated from gerbils and G. muris isolated from mice are similar to those obtained from the trophozoites of G. lamblia grown in vitro. The activities of several hydrolases of G. lamblia have been shown to be confined to a single lysosome-like particle population with an equilibrium density of approximately 1.15 in sucrose. Contrary to the trophozoites of Entamoeba and the trichomonads, Giardia trophozoites appear to lack most carbohydrate splitting hydrolases. Calmodulin has been reported in G. lamblia trophozoites, and it appears to have properties similar to the calmodulin isolated from other eucaryotic cells.  相似文献   

13.
The type 1 ribosome inactivating protein from Momordica balsamina (MbRIP1) has been shown to interact with purine bases, adenine and guanine of RNA/DNA. We report here the binding and structural studies of MbRIP1 with a pyrimidine base, cytosine; cytosine containing nucleoside, cytidine; and cytosine containing nucleotide, cytidine diphosphate. All three compounds bound to MbRIP1 at the active site with dissociation constants of 10?4 M–10?7 M. As reported earlier, in the structure of native MbRIP1, there are 10 water molecules in the substrate binding site. Upon binding of cytosine to MbRIP1, four water molecules were dislodged from the substrate binding site while five water molecules were dislodged when cytidine bound to MbRIP1. Seven water molecules were dislocated when cytidine diphosphate bound to MbRIP1. This showed that cytidine diphosphate occupied a larger space in the substrate binding site enhancing the buried surface area thus making it a relatively better inhibitor of MbRIP1 as compared to cytosine and cytidine. The key residues involved in the recognition of cytosine, cytidine and cytidine diphosphate were Ile71, Glu85, Tyr111 and Arg163. The orientation of cytosine in the cleft is different from that of adenine or guanine indicating a notable difference in the modes of binding of purine and pyrimidine bases. Since adenine containing nucleosides/nucleotides are suitable substrates, the cytosine containing nucleosides/nucleotides may act as inhibitors.  相似文献   

14.
Summary The effect of various purines, pyrimidines and nucleosides on the encystment of haploid cells ofPhysarum flavicomum was determined. Of the compounds tested guanine, guanosine, cytidine, cytosine, 5-methylcytosine and uracil had no effect on encystment. Adenosine, thymine, uridine and 3-methyladenine only slightly delayed encystment and protein degradation. Adenine and, to a lesser extent, hypoxanthine produced a significant inhibition of encystment and greatly increased rates of autolytic protein and RNA degradation, which eventually led to about 75% cell death in the adenine-exposed cells. The inhibition of microcyst formation by adenine was concentration dependent. The incubation of cells with adenine resulted initially in elevated intracellular levels of S-adenosylmethionine up to 3.5 times the level of untreated control cells.  相似文献   

15.
Pyrimidine ribonucleoside degradation in the human pathogen Pseudomonas aeruginosa ATCC 15692 was investigated. Either uracil, cytosine, 5-methylcytosine, thymine, uridine or cytidine supported P. aeruginosa growth as a nitrogen source when glucose served as the carbon source. Using thin-layer chromatographic analysis, the enzymes nucleoside hydrolase and cytosine deaninase were shown to be active in ATCC 15692. Compared to (NH4)2SO4-grown cells, nucleoside hydrolase activity in ATCC 15692 approximately doubled after growth on 5-methylcytosine as a nitrogen source while its cytosine deaminase activity increased several-fold after growth on the pyrimidine bases and ribonucleosides examined as nitrogen sources. Regulation at the level of protein synthesis by 5-methylcytosine was indicated for nucleoside hydrolase and cytosine deaminase in P. aeruginosa.  相似文献   

16.
Concanavalin A-induced proliferation of rat T-lymphocytes is completely inhibited by 10?5 M pyrazofurin, a potent inhibitor of pyrimidine de novo synthesis, as judged by cell viability and [3H]thymidine incorporation. Proliferation is completely restored by 5 × 10?5 M uridine. Cytidine, deoxycytidine, deoxyuridine and thymidine 10 × 10?5 M each, fail to re-establish proliferation but produce an isotropic dilution of [3H]thymidine uptake in DNA. Bases (cytosine, uracil and thymine) neither restore proliferation nor induce isotopic dilution. The unexpected inability of cytidine to reverse de novo pyrimidine synthesis inhibition suggests a lack of cytidine deaminase activity in rat T-lymphocytes. This is confirmed by a direct sensitive radioisotopic assay (<0.001 nmol.min?1.10?6 cells).  相似文献   

17.
Purine and pyrimidine base and nucleoside levels were measured in adult rabbit cisternal CSF and plasma by reversed-phase high-performance liquid chromatography. The concentrations of bases, nucleosides, and nucleoside phosphates were similar in plasma and CSF except for the adenosine phosphates and uracil which were higher in the plasma. In plasma and CSF, adenosine levels were low (0.12 microM) and guanosine, deoxyadenosine, deoxyguanosine, and deoxyinosine were not detectable (less than 0.1 microM); inosine and xanthine concentrations were 1-2 microM and hypoxanthine concentrations were approximately 5 microM; uridine (approximately 8 microM), cytidine (2-3 microM), and thymidine, deoxyuridine, and deoxycytidine (0.5-1.4 microM) were easily detectable. In both plasma and CSF, guanine, and thymine were undetectable (less than 0.1 microM), adenine and cytosine were less than 0.2 microM, but uracil was present (greater than 1 microM). Adenosine, inosine, and guanosine phosphates were also detectable at low concentrations in CSF and plasma. These results are consistent with the hypothesis that purine deoxyribonucleosides are synthesized in situ in the adult rabbit brain. In contrast, pyrimidine deoxyribonucleosides and ribonucleosides, and purine and pyrimidine bases are available in the CSF for use by the brain.  相似文献   

18.
Nucleic acid subcomponents needed to satisfy the dietary nucleic acid requirement of Culex pipiens were studied in growth experiments using synthetic media in which nucleosides, bases and alternative nucleotides were variously substituted in mixtures of 3 nucleotides (adenylic acid, thymidylic acid, and either cytidylic or uridylic acid) previously shown to be adequate replacements for whole nucleic acid. Any or all 3 nucleotides could be replaced by corresponding nucleosides without adverse effect, except that adenosine substitution moderately delayed pupation. All base substitutions were unsatisfactory: substitution of thymine for thymidylic acid allowed development to the adult stage but at a greatly reduced rate; single substitution of adenine, cytosine or uracil for the corresponding nucleotides allowed scarcely more development than in the total absence of nucleic acid derivatives. Inosinic acid or inosine were adequate substitutes for adenylic acid, but orotic acid or orotidine were ineffective in place of the pyrimidine ribonucleotides, cytidylic or uridylic acids. Deoxyadenylic acid could take the place of adenylic acid, though inefficiently, but deoxycytidylic and deoxyuridylic acids were very poor replacements for the corresponding ribonucleotides. The minimal required nucleic acid derivatives thus appear to be a purine ribonucleotide (adenylic or inosinic acids), a pyrimidine ribonucleoside (either uridine or cytidine), and the pyrimidine deoxyribonucleoside, thymidine.  相似文献   

19.
Abstract

Liquid chromatography was used to follow the degradation of hexopyranosylated cytosine nucleosides in buffers of acid, neutral and alkaline pH and of constant ionic strength. The compounds were found to degrade by hydrolysis to cytosine and/or by deamination to the corresponding uracil nucleosides. Degradation in acid is influenced by the number of sugar hydroxyl groups, presence of sugar double bonds and the type of anomer. Stability of some of the compounds was compared with that of related thymine nucleosides. Temperature studies support a unimolecular mechanism of hydrolysis at pH 1.22.  相似文献   

20.
Giardia lamblia, an aerotolerant anaerobe, respires in the presence of oxygen by a flavin, iron-sulfur protein-mediated electron transport system. Glucose appears to be the only sugar catabolized by the Embden-Meyerhof-Parnas and hexose monophosphate pathways, and energy is produced by substrate level phosphorylation. Substrates are incompletely oxidized to CO2, ethanol and acetate by nonsedimentable enzymes. The lack of incorporation of inosine, hypoxanthine, xanthine, formate or glycine into nucleotides indicates an absence of de novo purine synthesis. Only adenine, adenosine, guanine and guanosine are salvaged, and no interconversion of these purines was detected. Salvage of these purines and their nucleosides is accomplished by adenine phosphoribosyltransferase, adenosine hydrolase, guanosine phosphoribosyltransferase and guanine hydrolase. The absence of de novo pyrimidine synthesis was confirmed by the lack of incorporation of bicarbonate, orotate and aspartate into nucleotides, and by the lack of detectable levels of the enzymes of de novo pyrimidine synthesis. Salvage appears to be accomplished by the action of uracil phosphoribosyltransferase, uridine hydrolase, uridine phosphotransferase, cytidine deaminase, cytidine hydrolase, cytosine phosphoribosyltransferase and thymidine phosphotransferase. Nucleotides of uracil may be converted to nucleotides of cytosine by cytidine triphosphate synthetase, but thymidylate synthetase and dihydrofolate reductase activities were not detected. Uptake of pyrmidine nucleosides, and perhaps pyrimidines, appears to be accomplished by carrier-mediated transport, and the common site for uptake of uridine and cytidine is distinct from the site for thymidine. Thymine does not appear to be incorporated into nucleotide pools. Giardia trophozoites appear to rely on preformed lipids rather than synthesizing them de novo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号