首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental stresses dramatically affect plant survival and productivity. Because plants are immobile, presumably different strategies are required for protection against transient stresses. Under stress, plants synthesize specific proteins, and their accumulation has a role in protecting the tissue from possible damage. An increasing number of studies show the existence of cross‐tolerance in plants: Exposure of tissue to moderate stress conditions often induces resistance to other stresses. Many varied mechanisms explaining the phenomenon of cross‐tolerance have been proposed, and they often, but not always, suggest that specific proteins are induced by one kind of stress and are involved in the protection against other kinds. Although various cross‐protections have been demonstrated in a number of plants, a common mechanism has not been found. This review discusses heat‐shock proteins and their possible roles in protecting the plant under heat and other stresses.  相似文献   

2.
Environmental stresses have adverse effects on plant growth and productivity, and are predicted to become more severe and widespread in decades to come. Especially, prolonged and repeated severe stresses affecting growth and development would bring down long-lasting effects in woody plants as a result of its long-term growth period. To counteract these effects, trees have evolved specific mechanisms for acclimation and tolerance to environmental stresses. Plant growth and development are regulated by the integration of many environmental and endogenous signals including plant hormones. Acclimation of land plants to environmental stresses is controlled by molecular cascades, also involving cross-talk with other stresses and plant hormone signaling mechanisms. This review focuses on recent studies on molecular mechanisms of abiotic stress responses in woody plants, functions of plant hormones in wood formation, and the interconnection of cell wall biosynthesis and the mechanisms shown above. Understanding of these mechanisms in depth should shed light on the factors for improvement of woody plants to overcome severe environmental stress conditions.  相似文献   

3.
《遗传学报》2022,49(11):991-1001
The sessile plants encounter various stresses; some are prolonged, whereas some others are recurrent. Temperature is crucial for plant growth and development, and plants often encounter adverse high temperature fluctuations (heat stresses) as well as prolonged cold exposure such as seasonal temperature drops in winter when grown in temperate regions. Many plants can remember past temperature stresses to get adapted to adverse local temperature changes to ensure survival and/or reproductive success. Here, we summarize chromatin-based mechanisms underlying acquired thermotolerance or thermomemory in plants and review recent progresses on molecular epigenetic understanding of ‘remembering of prolonged cold in winter’ or vernalization, a process critical for various over-wintering plants to acquire competence to flower in the coming spring. In addition, perspectives on future study in temperature stress memories of economically-important crops are discussed.  相似文献   

4.
5.
Regulation of gene expression via microRNA is the key mechanism of response to biotic and abiotic stresses in plants. There are a lot of experimental data on the biological function of microRNAs in response to different stresses in various plant species. This review contains up-to-date information on molecular mechanisms of microRNA action in plants in response to abiotic stresses, including drought, salinity, mineral nutrient deficiency or imbalance.  相似文献   

6.
In the recent times, plants are facing certain types of environmental stresses, which give rise to formation of reactive oxygen species (ROS) such as hydroxyl radicals, hydrogen peroxides, superoxide anions and so on. These are required by the plants at low concentrations for signal transduction and at high concentrations, they repress plant root growth. Apart from the ROS activities, hydrogen sulfide (H2S) and nitric oxide (NO) have major contributions in regulating growth and developmental processes in plants, as they also play key roles as signaling molecules and act as chief plant immune defense mechanisms against various biotic as well as abiotic stresses. H2S and NO are the two pivotal gaseous messengers involved in growth, germination and improved tolerance in plants under stressed and non-stress conditions. H2S and NO mediate cell signaling in plants as a response to several abiotic stresses like temperature, heavy metal exposure, water and salinity. They alter gene expression levels to induce the synthesis of antioxidant enzymes, osmolytes and also trigger their interactions with each other. However, research has been limited to only cross adaptations and signal transductions. Understanding the change and mechanism of H2S and NO mediated cell signaling will broaden our knowledge on the various biochemical changes that occur in plant cells related to different stresses. A clear understanding of these molecules in various environmental stresses would help to confer biotechnological applications to protect plants against abiotic stresses and to improve crop productivity.  相似文献   

7.
Brassinosteroids are found in a wide range of organisms from lower to higher plants. They are steroidal plant hormones implicated in the promotion of plant growth and development. Brassinosteroid metabolism has long been known to be altered in plants responding to abiotic stresses and to undergo profound changes in plants interacting with bacterial, fungal and viral pathogens. This review describes the role of brassinosteroids in response to various kinds of stresses via activation of different mechanisms.  相似文献   

8.
9.
With the changing climate, crops are facing mounting threats from multiple abiotic stresses, and studies that assess the response of plants to combinations, rather than to individual, abiotic stresses are becoming increasingly relevant. Bananas are one of the most globally important and popular food crops and their production is threatened by increasing heat and diminishing rainfall in tropical and subtropical regions. In pursuit of effective stress management strategies, Jangale et al. (2019) look into the physiological and molecular responses of banana plants to combined heat and drought stresses.  相似文献   

10.
丛枝菌根真菌(arbuscular mycorrhiza fungi,AMF)是生态系统中普遍存在的土壤微生物,能与绝大多数植物形成共生关系,它在寄主植物抵御生物和非生物胁迫中所起的作用逐渐引起国内外学者的关注.论文综述了丛枝菌根真菌在植物抵御非生物胁迫(重金属污染、有机污染、盐胁迫和干旱胁迫)以及生物胁迫(致病菌和线虫侵染)中的作用,并在此基础上提出了未来该领域值得进一步研究的方向.  相似文献   

11.
The study of abiotic stress response of plants is important because they have to cope with environmental changes to survive. The plant genomes have evolved to meet environmental challenges. Salt, temperature, and drought are the main abiotic stresses. The tolerance and response to stress vary differently in plants. The idea was to analyze the genes showing differential expression under abiotic stresses. There are many pathways connecting the perception of external stimuli to cellular responses. In plants, these pathways play an important role in the transduction of abiotic stresses. In the present study, the gene expression data have been analyzed for their involvement in different steps of signaling pathways. The conserved genes were analyzed for their role in each pathway. The functional annotations of these genes and their response under abiotic stresses in other plant species were also studied. The enzymes of signal pathways, showing similarity with conserved genes, were analyzed for their role in different abiotic stresses. Our findings will help to understand the expression of genes in response to various abiotic stresses. These genes may be used to study the response of different abiotic stresses in other plant species and the molecular basis of stress tolerance.  相似文献   

12.
Being sessile, plants are subjected to a diverse array of environmental stresses during their life span. Exposure of plants to environmental stresses results in the generation of reactive oxygen species (ROS). These activated oxygen species tend to oxidize various cellular biomolecules like proteins, nucleic acids, and lipids, a process that challenges the core existence of the cell. To prevent the accumulation of these ROS and to sustain their own survival, plants have developed an intricate antioxidative defence system. The antioxidative defence system comprises various enzymatic and nonenzymatic molecules, produced to counter the adverse effect of environmental stresses. A sizable number of these molecules belong to the category of compounds called secondary metabolites. Secondary metabolites are organic compounds that are not directly involved in the growth and development of plants but perform specialized functions under a given set of conditions. Absence of secondary metabolites results in long-term impairment of the plant’s survivability. Such compounds generally include pigments, phenolics, and so on. Plant phenolic compounds such as flavonoids and lignin precursors have been reported to accumulate in response to various biotic and abiotic stresses and are regarded as crucial defence compounds that can scavenge harmful ROS. Another important category of plant metabolites, called brassinosteroids, exhibit stress regulatory and growth-promoting activity and are classified as phytohormones. Elucidation of the physiological and molecular effects of secondary metabolites and brassinosteroids have catapulted them as highly promising and environment-friendly natural substances, suitable for wider application in plant protection and crop yield promotion. The present review focuses on our current understanding of how plants respond to the generation of excessive ROS and the role of secondary metabolites and brassinosteroids in countering the adverse effects of environmental stresses.  相似文献   

13.
14.
Seed priming for abiotic stress tolerance: an overview   总被引:2,自引:0,他引:2  
Plants are exposed to any number of potentially adverse environmental conditions such as water deficit, high salinity, extreme temperature, submergence, etc. These abiotic stresses adversely affect the plant growth and productivity. Nowadays various strategies are employed to generate plants that can withstand these stresses. In recent years, seed priming has been developed as an indispensable method to produce tolerant plants against various stresses. Seed priming is the induction of a particular physiological state in plants by the treatment of natural and synthetic compounds to the seeds before germination. In plant defense, priming is defined as a physiological process by which a plant prepares to respond to imminent abiotic stress more quickly or aggressively. Moreover, plants raised from primed seeds showed sturdy and quick cellular defense response against abiotic stresses. Priming for enhanced resistance to abiotic stress obviously is operating via various pathways involved in different metabolic processes. The seedlings emerging from primed seeds showed early and uniform germination. Moreover, the overall growth of plants is enhanced due to the seed-priming treatments. The main objective of this review is to provide an overview of various crops in which seed priming is practiced and about various seed-priming methods and its effects.  相似文献   

15.
Drought and salt stresses are two major factors that lower plant productivity. Transgenic approaches offer powerful means to better understand and then minimize loss of yield due to these abiotic stresses. In this study, we have generated transgenic rice plants expressing a wheat LEA group 2 protein (PMA80) gene, and separately the wheat LEA group 1 protein (PMA1959) gene. Molecular analysis of the transgenic plants revealed the stable integration of the transgenes. Immunoblot analysis showed the presence of the LEA group 2 protein (39 kDa) and the LEA group 1 protein (25 kDa) in most of the plant lines. Second-generation transgenic plants were subjected to dehydration or salt stress. The results showed that accumulation of either PMA80 or PMA1959 correlates with increased tolerance of transgenic rice plants to these stresses.  相似文献   

16.
Journal of Plant Research - Potato plants are often exposed to biotic and abiotic stresses that negatively impact their growth, development, and yield. Plants respond to different stresses by...  相似文献   

17.
Phytohormones play central roles in boosting plant tolerance to environmental stresses, which negatively affect plant productivity and threaten future food security. Strigolactones (SLs), a class of carotenoid‐derived phytohormones, were initially discovered as an “ecological signal” for parasitic seed germination and establishment of symbiotic relationship between plants and beneficial microbes. Subsequent characterizations have described their functional roles in various developmental processes, including root development, shoot branching, reproductive development, and leaf senescence. SLs have recently drawn much attention due to their essential roles in the regulation of various physiological and molecular processes during the adaptation of plants to abiotic stresses. Reports suggest that the production of SLs in plants is strictly regulated and dependent on the type of stresses that plants confront at various stages of development. Recently, evidence for crosstalk between SLs and other phytohormones, such as abscisic acid, in responses to abiotic stresses suggests that SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Moreover, the prospective roles of SLs in the management of plant growth and development under adverse environmental conditions have been suggested. In this review, we provide a comprehensive discussion pertaining to SL‐mediated plant responses and adaptation to abiotic stresses.  相似文献   

18.
Vegetable production is hampered by several abiotic stresses which are very common in this era of climate change. There is a huge pressure on the plants to survive and yield better results even in the prevalence of various environmental stresses such as cold stress, drought, heat stress, salinity etc. This necessitates the need of robust plant growth which is possible with mycorrhizal association. Mycorrhiza improves plants tolerance to several abiotic stresses by various physiological, functional and biochemical changes in plants. The application of arbuscular mycorrhiza (AM) as vegetable biofertilizers doesn’t only influence the plant health, but moreover discursively it lowers the demand for harmful chemical fertilizers. Overall, it may be concluded that inoculation of vegetables with arbuscular mycorrhizal fungi can be used, as it easily guards plants against undesirable abiotic stresses. In this work, information is provided based on several examples from the literature based on the application of AM to combat harmful abiotic stresses in vegetable crops. This paper reviews the impacts of AM fungi on the plant parameters, its functional activities and molecular mechanisms which makes it more adaptable and underline the future prospects of using AM fungi as a biofertilizer in the stress condition.  相似文献   

19.
20.
The sedentary habit of plants means that they must stand and fight environmental stresses that their mobile animal cousins can avoid. A range of these abiotic stresses initiate the production in plant cells of reactive oxygen and nitrogen species that ultimately lead to oxidative damage affecting the yield and quality of plant products. A complex network of enzyme systems, producing and quenching these reactive species operate in different organelles. It is the integration of these compartmented defense systems that coordinates an effective response to the various stresses. Future attempts to improve plant growth or yield must consider the complexity of inter-organelle signaling and protein targeting if they are to be successful in producing plants with resistance to a broad range of stresses. Here we highlight the role of pre-oxidant, antioxidant, and post-oxidant defense systems in plant mitochondria and the potential role of proteins targeted to both mitochondria and chloroplasts, in an integrated defense against oxidative damage in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号